Skip to main content
Log in

New insights into the crystal chemistry of zemannite: Trigonal rather than hexagonal symmetry due to ordering within the host-guest structure

  • Research
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The microporous crystal structure of zemannite, Mg(H2O)6[Zn2+Fe3+(TeO3)3]2·nH2O, n ≤ 3, was re-investigated based on single-crystal X-ray diffraction data measured at 298 ± 0.5 K, 200 ± 1 K and 100 ± 3 K. So far, zemannite was described in space group P63 exhibiting a pronounced pseudosymmetry (P63/m). All refinements confirm the [Zn2+Fe3+(TeO3)3]1− framework topology with the extra-framework constituents (Mg atoms and H2O molecules) being located within the channels along [001]. Measurements on a sample from the type locality revealed the unexpected occurrence of 00l reflections with l = 2n + 1, which clearly violate the 63 screw-axis symmetry. The minor but significant intensities of the low-order 00l reflections are assigned to the small differences in the scattering power between the Fe and Zn atoms; thus, the Zn and Fe cations are partly ordered between crystallographically distinct sites within the framework. In addition, the low symmetry allows a full order of the extra-framework atoms for the first time. A series of comparative refinement models were performed in the space groups P63/m, P63, P\(\overline{6}\), and P3. A fully ordered arrangement of the extra-framework guest atoms confirms the earlier postulated theoretical structure model with a hexahydrated Mg2+ ion besides additional interstitial H2O molecules. The final refinements in space group P3 yield R1 ≤ 0.025 for the entire data sets measured at the distinct temperatures (2θmax = 101.4°, MoKα radiation). The polarity of the arrangement in the channels is restricted to individual domains of equal twin fractions related by a mirror plane parallel to (0001).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Binder HH (1999) Lexikon der chemischen Elemente. Das Periodensystem in Fakten, Zahlen und Daten. S. Hirzel Verlag, Stuttgart, Leipzig

  • Bindi L, Pratesi G (2007) Centric or acentric crystal structure for natural schmitterite, UTeO5? New evidence from a crystal from the type locality. Mineral Petrol 91:129–138

    Google Scholar 

  • Bosi F (2014) Bond valence at mixed occupancy sites. I Regular Polyhedra Acta Crystallogr B70:864–870

    Article  Google Scholar 

  • Braith H, Gröbner J, Langer G, Seitz M (2001) Moctezumas geheime Schätze: Bambolla, Bambollita und San Miguel. Lapis 26:11–23

    Google Scholar 

  • Brese NE, O’Keeffe M (1991) Bond-valence parameters for solids. Acta Crystallogr B47:192–197

    Article  Google Scholar 

  • Cametti G, Churakov S, Armbruster T (2017) Reinvestigation of the zemannite structure and its dehydration behavior: a single-crystal X-ray and atomistic simulation study. Europ J Mineral 29:53–61

    Google Scholar 

  • Christy AG, Kampf AR, Mills SJ, Housley RM, Thorne B (2014) Crystal structure and revised chemical formula for burckhardtite, Pb2(Fe3+Te6+)[AlSi3O8]O6: a double-sheet silicate with intercalated phyllotellurate layers. Mineral Mag 78:1763–1773

    Google Scholar 

  • Christy AG, Mills SJ (2013) Effect of lone-pair stereoactivity on polyhedral volume and structural flexibility: application to TeIVO6 octahedra. Acta Crystallogr B 69:446–456

    Google Scholar 

  • Christy AG, Mills SJ, Kampf AR (2016) A review of the structural architecture of tellurium oxycompounds. Mineral Mag 80:415–545

    Google Scholar 

  • Cooper MA, Hawthorne FC (1996) The crystal structure of spiroffite. Canad Mineral 34:821–826

    Google Scholar 

  • Donnay G, Stewart JM, Preston H (1970) The crystal structure of sonoraite, Fe3+Te4+O3(OH)·H2O. Tschermaks Mineral Petrogr Mitt 14:27–44

    Google Scholar 

  • Dowty E (1997) ATOMS 3.2. A computer program for displaying atomic structures, Kingsport, TN 37663

  • du Ry P, Fouassin M, Jedwab J, Van Tassel R (1976) Occurence de chalcoalumite, de minéraux de tellure (teinéite et paratellurite) et de béryl à Salmchâteau, Ardennes belges. Annales Soc Géolog Belgique 99:47–60

    Google Scholar 

  • Eder F, Marsollier A, Weil M (2023a) Structural studies on synthetic A2-x[M2(TeO3)3nH2O (A = Na, K, Rb, Cs; M = Mn, Co, Ni, Cu, Zn) phases with zemannite-type structures. https://doi.org/10.1007/s00710-023-00814-5

  • Eder F, Miletich R, Weil M (2023b) K[(CuII,MnII,MnIII)2(TeO3)3]·2H2O, the first zemannite-type structure based on a Jahn-Teller-distorted framework. https://doi.org/10.1007/s00710-022-00808-9

  • Ende M, Gatta GD, Lotti P, Grandtner A, Miletich R (2021) Cs(Be2Li)Al2Si6O18, a cesium-stuffed host-guest structure, and its structure-property variations with temperature and pressure. J Solid State Chem 293(121841):1–11

    Google Scholar 

  • Fischer R, Pertlik F, Zemann J (1975) The crystal structure of mroseite, CaTeO2(CO3). Canad Mineral 13:383–387

    Google Scholar 

  • Frost RL, Čejka J, Dickfos MJ (2009a) Raman spectroscopic study of the uranyl tellurite mineral moctezumite PbUO2(TeO3)2. J Raman Spectr 40:38–41

    Google Scholar 

  • Frost RL, Čejka J, Weier M, Ayoko GA (2006) A Raman spectroscopic study of the uranyl tellurite mineral schmitterite. Spectrochim Acta 65:571–574

    Google Scholar 

  • Frost RL, Dickfos MJ, Keeffe EC (2008a) Raman spectroscopic study of the tellurite minerals: emmonsite Fe23+Te34+O9·2H2O and zemannite Mg0.5[Zn2+Fe3+(TeO3)3]·4.5H2O. J Raman Spectr 39:1784–1788

    Google Scholar 

  • Frost RL, Dickfos MJ, Keeffe EC (2008b) Raman spectroscopic study of the tellurite minerals: rajite and denningite. Spectrochim Acta A71:1512–1515

    Google Scholar 

  • Frost RL, Dickfos MJ, Keeffe EC (2009b) Raman spectroscopic study of the tellurite minerals: Carlfriesite and spiroffite. Spectrochim Acta A71:1663–1666

    Google Scholar 

  • Frost RL, López A, Scholz R (2015) A SEM, EDS and vibrational spectroscopic study of the tellurite mineral: Sonoraite Fe3+Te4+O3(OH)·H2O. Spectrochim Acta A147:225–229

    Google Scholar 

  • Gaines RV (1970) The Moctezuma tellurium deposit. Mineral Rec 1:40–43

    Google Scholar 

  • Grundler PV, Brugger J, Meisser N, Ansermet S, Borg S, Etschmann B, Testemale D, Bolin T (2008) Xocolatlite, Ca2Mn4+2Te2O12·H2O, a new tellurate related to kuranakhite: Description and measurement of Te oxidation state by XANES spectroscopy. Amer Mineral 93:1911–1920

    Google Scholar 

  • Harris DC, Nuffield EW (1972) Bambollaite, a new copper telluro-selenide. Canad Mineral 11:738–742

    Google Scholar 

  • Hori H, Koyama E, Nagashima K (1981) Kinichilite, a new mineral from the Kawazu mines, Shimoda City, Japan. Mineral J 10:333–337

    Google Scholar 

  • Jacobson MI, Keller JW, Atkinson WA Jr (2018) The where of mineral names: moctezumite, Moctezuma Mine (La Bambolla Mine), Moctezuma, Municipality of Moctezuma, State of Sonora, Mexico. Rock Min 93:466–471

    Google Scholar 

  • Johnston MG, Harrison WTA (2011) New BaM2(SeO3)3·nH2O (M = Co, Ni, Mn, Mg; n ≈ 3) zemannite-type frameworks: single-crystal structures of BaCo2(SeO3)3·3H2O, BaMn2(SeO3)3·3H2O and BaMg2(SeO3)3·3H2O. Europ J Inorg Chem 2011:2967–2974

    Google Scholar 

  • Kampf AR, Mills SJ (2011) The role of hydrogen in tellurites: crystal structure refinements of juabite, poughite and rodalquilarite. J Geosciences 56:235–247

    Google Scholar 

  • Kong F, Xu X, Mao J-G (2010) A Series of new ternary and quaternary compounds in the LiI–GaIII–TeIV–O system. Inorg Chem 49:11573–11580

    Google Scholar 

  • Mandarino JA, Matzat E, Williams SJ (1969) Zemannite, a new tellurite mineral from Moctezum, Sonora, Mexico. Canad Mineral 10:139–140

    Google Scholar 

  • Mandarino JA, Matzat E, Williams SJ (1976) Zemannite, a zinc tellurite from Moctezuma, Sonora, Mexico. Canad Mineral 14:387–390

    Google Scholar 

  • Mandarino JA, Mitchell RS, Hancock RGV (1975) Mroseite, a calcium tellurite-carbonate from Moctezuma, Sonora, Mexico. Canad Mineral 13:286–288

    Google Scholar 

  • Mandarino JA, Williams SJ (1961) Five new minerals from Moctezum, Sonora, Mexico. Science 133:2017

    Google Scholar 

  • Matzat E (1967) Die Kristallstruktur eines unbenannten zeolithartigen Telluritminerals {(Zn, Fe)2[TeO3]3}NaxH2-x·yH2O. Tschermaks Mineral Petrogr Mitt 12:108–117

    Google Scholar 

  • Miletich R (1989) Synthese des Zn-Endgliedes des Zemannits, Zn2(TeO3)3NaxH2-x·yH2O. Österr Akad Wiss Math-Naturw KI Anz 126:77

    Google Scholar 

  • Miletich R (1993) Copper-substituted manganese-denningites, Mn(Mn1-xCux)(Te2O5)2 (0 ≤ x ≤ 1): Synthesis and crystal chemistry. Mineral Petrol 48:129–145

    Google Scholar 

  • Miletich R (1995a) The synthetic microporous tellurites Na2[Me2(TeO3)3]3H2O (Me = Zn, Co): crystal structure, de- and rehydration, and ion exchange properties. Monatsh Chem 126:417–430

    Google Scholar 

  • Miletich R (1995b) Crystal chemistry of the microporous tellurite minerals zemannite and kinichilite, Mg0.5[Me2+Fe3+(TeO3)3]·4.5H2O, (Me2+ = Zn, Mn). Europ J Mineral 7:509–523

    Google Scholar 

  • Mills SJ, Christy AG (2013) Revised values of the bondvalence parameters for TeIV–O, TeVI–O and TeIV–Cl. Acta Crystallogr B 69:145–149

    Google Scholar 

  • Missen OP, Back ME, Mills SJ, Roberts AC, LePage Y, Pinch WW, Mandarino JA (2021) Crystal chemistry of zemannite-type structures: III. Keystoneite, the Ni2+-analogue of zemannite, and ferrotellurite discredited. Canad Mineral 59:355–364

    Google Scholar 

  • Missen OP, Mills SJ, Brugger J, Birch WD, Elliott P (2023) Wortupaite, IMA 2022–107. In: CNMNC Newsletter 71, Europ J Mineral 35:75–79

  • Missen OP, Mills SJ, Rumsey MS, Spratt J, Najorka J, Kampf AR, Thorne B (2022) The new mineral tomiolloite, Al12(Te4+O3)5[(SO3)0.5(SO4)0.5](OH)24: A unique microporous tellurite structure. Amer Mineral 107:2167–2175

    Google Scholar 

  • Missen OP, Mills SJ, Spratt J (2019a) Crystal chemistry of zemannite-type structures: II. Synthetic sodium zemannite. Europ J Mineral 31:529–536

    Google Scholar 

  • Missen OP, Mills SJ, Spratt J, Birch WD, Brugger J (2019b) Crystal chemistry of zemannite-type structures: I. A re-examination of zemannite from Moctezuma, Mexico. Europ J Mineral 31:519–527

    Google Scholar 

  • Missen OP, Mills SJ, Spratt J, Welch MD, Birch WD, Rumsey MS, Vylita J (2018) The crystal structure determination and redefinition of eztlite, Pb2+2Fe3+3(Te4+O3)3(SO4)O2Cl. Mineral Mag 82:1355–1367

    Google Scholar 

  • Pekov IV, Siidra OG, Vlasov EA, Yapaskurt VO, Polekhovsky YuS, Apletalin AV (2018) Ilirneyite, Mg0.5[ZnMn3+(TeO3)3]·4.5H2O, a new mineral from Chukotka. Russia Canad Mineral 56:913–921

    Google Scholar 

  • Petříček V, Dušek M, Palatinus L (2014) Crystallographic computing system JANA2006: General features. Z Kristallogr 229:345–352

    Google Scholar 

  • Sheldrick GM (1997) SHELXL-97, a program for crystal structure refinement. University of Göttingen, Germany

    Google Scholar 

  • Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A 64:112–122

    Google Scholar 

  • Stoe & Cie (2002) X-AREA. Darmstadt, Germany

    Google Scholar 

  • Swihart GH, Gupta PKS, Schlemper EO, Back ME, Gaines RV (1993) The crystal structure of moctezumite [PbUO2](TeO3)2. Amer Mineral 78:835–839

    Google Scholar 

  • Welch MD, Stanley CJ, Spratt J, Mills SJ (2018) Rozhdestvenskayaite Ag10Zn2Sb4S13 and argentotetrahedrite Ag6Cu4(Fe2+, Zn)2Sb4S13: two Ag-dominant members of the tetrahedrite group. Europ J Mineral 30:1163–1172

    Google Scholar 

  • Wildner M (1991) Die erste Synthese von Seleniten mit Zemannit-Struktur: Kristallstrukturanalyse von {Co2(SeO3)3}K22H2O. Anz Österr Akad Wiss Math-Naturwiss Kl 128:121–123

    Google Scholar 

  • Wildner M (1992) Synthese und Kristallstrukturen der zeolithartigen Selenite K2[Co2(SeO3)3] 2H2O und K2[Ni2(SeO3)3]2H2O (Zemannittyp). Z Krist Suppl 5:261

    Google Scholar 

  • Wildner M (1993) Zemannite-type selenites: crystal structures of K2[Co2(SeO3)3]·2H2O and K2[Ni2(SeO3)3]·2H2O. Mineral Petrol 48:215–225

    Google Scholar 

  • Williams SA (1982) Cuzticite and eztlite, two new tellurium minerals from Moctezuma, Mexico. Mineral Mag 46:257–259

    Google Scholar 

  • Wilson AJC (1992) International Tables for X-ray Crystallography. Kluver, Dordrecht, The Netherlands

  • Wontcheu J, Schleid T (2003) Sc2Se3O9: Scandium(III) oxoselenate(IV) according to Sc2[SeO3]3 with a hexagonal “lone-pair” channel structure. Z Anorg Allg Chem 629:1463–1465

    Google Scholar 

  • Zemann J (1968) The crystal chemistry of the tellurium oxide and tellurium oxosalt minerals. Z Kristallogr 127:315–326

    Google Scholar 

  • Zemann J (1971) Zur Stereochemie des Te(IV) gegenüber Sauerstoff. Monatsh Chem 102:1209–1216

    Google Scholar 

  • Zemann J (1974) Tellurium. Crystal Chemistry. In Wedepohl KH (ed) Handbook of Geochemistry V01. II. Springer-Verlag, Berlin

Download references

Acknowledgements

The article is dedicated to Prof. Dr. Josef Zemann (1923-2022) on the occasion of the 100th anniversary of his birthday. The authors acknowledge information about ongoing investigations of zemannite-type compounds by Matthias Weil and Felix Eder (Technical University of Vienna). We thank two anonymous reviewers and Guest Editor Thomas Armbruster for their constructive comments, which significantly improved the manuscript. University of Vienna is thanked for financial support within the scope of the grants BE532003, IP532010 and IP532022 dedicated to instrumentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herta S. Effenberger.

Additional information

Editorial handling: T. Armbruster

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 409 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Effenberger, H.S., Ende, M. & Miletich, R. New insights into the crystal chemistry of zemannite: Trigonal rather than hexagonal symmetry due to ordering within the host-guest structure. Miner Petrol 117, 117–131 (2023). https://doi.org/10.1007/s00710-023-00820-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-023-00820-7

Keywords

Navigation