Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Spherical ferroelectric solitons

Abstract

Spherical ferroelectric domains, such as electrical bubbles, polar skyrmion bubbles and hopfions, share a single and unique feature—their homogeneously polarized cores are surrounded by a vortex ring of polarization whose outer shells form a spherical domain boundary. The resulting polar texture, typical of three-dimensional topological solitons, has an entirely new local symmetry characterized by a high polarization and strain gradients. Consequently, spherical domains represent a different material system of their own with emergent properties drastically different from that of their surrounding medium. Examples of new functionalities inherent to spherical domains include chirality, optical response, negative capacitance and giant electromechanical response. These characteristics, particularly given that the domains naturally have an ultrafine scale, offer new opportunities in high-density and low-energy nanoelectronic technologies. This Perspective gives an insight into the complex polar structure and physical origin of these spherical domains, which facilitates the understanding and development of spherical domains for device applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Topology of divergence-free vector fields.
Fig. 2: Spherical ferroelectric solitons.
Fig. 3: Manipulation of ferroelectric solitons under external stimuli for bubbles (left column) and polar skyrmion bubbles (right column).
Fig. 4: Functional properties of the ferroelectric solitons.

Similar content being viewed by others

References

  1. Lu, L. et al. Topological defects with distinct dipole configurations in PbTiO3/SrTiO3 multilayer films. Phys. Rev. Lett. 120, 177601 (2018).

    Article  Google Scholar 

  2. Luk’yanchuk, I., Tikhonov, Y., Razumnaya, A. & Vinokur, V. M. Hopfions emerge in ferroelectrics. Nat. Commun. 11, 2433 (2020).

    Article  Google Scholar 

  3. Arnold, V. I. Topological Methods in Hydrodynamics (Springer, 1998).

  4. Naumov, I. I., Bellaiche, L. & Fu, H. Unusual phase transitions in ferroelectric nanodisks and nanorods. Nature 432, 737–740 (2004).

    Article  CAS  Google Scholar 

  5. Fu, H. & Bellaiche, L. Ferroelectricity in barium titanate quantum dots and wires. Phys. Rev. Lett. 91, 257601 (2003).

    Article  Google Scholar 

  6. Zhu, X. et al. Perovskite lead zirconium titanate nanorings: towards nanoscale ferroelectric ‘solenoids’? Appl. Phys. Lett. 89, 122913 (2006).

    Article  Google Scholar 

  7. Rodriguez, B. et al. Vortex polarization states in nanoscale ferroelectric arrays. Nano Lett. 9, 1127–1131 (2009).

    Article  CAS  Google Scholar 

  8. Lai, B.-K. et al. Electric-field-induced domain evolution in ferroelectric ultrathin films. Phys. Rev. Lett. 96, 137602 (2006).

    Article  Google Scholar 

  9. Han, L. et al. High-density switchable skyrmion-like polar nanodomains integrated on silicon. Nature 603, 63–67 (2022).

    Article  CAS  Google Scholar 

  10. Hill, M. J. M. VI On a spherical vortex. Phil. Trans. R. Soc. A 185, 213–245 (1894).

    Google Scholar 

  11. Zhang, Q. et al. Nanoscale bubble domains and topological transitions in ultrathin ferroelectric films. Adv. Mater. 29, 1702375 (2017).

    Article  Google Scholar 

  12. Gao, X. S. et al. Bubble polarization domain patterns in periodically ordered epitaxial ferroelectric nanodot arrays. J. Appl. Phys. 110, 052006 (2011).

    Article  Google Scholar 

  13. Lichtensteiger, C. et al. Tuning of the depolarization field and nanodomain structure in ferroelectric thin films. Nano Lett. 14, 4205–4211 (2014).

    Article  CAS  Google Scholar 

  14. Edwards, D. et al. Giant resistive switching in mixed phase BiFeO3 via phase population control. Nanoscale 10, 17629–17637 (2018).

    Article  CAS  Google Scholar 

  15. Tikhonov, Y. et al. Controllable skyrmion chirality in ferroelectrics. Sci. Rep. 10, 8657 (2020).

    Article  CAS  Google Scholar 

  16. Lu, H. et al. Mechanical writing of ferroelectric polarization. Science 336, 59–61 (2012).

    Article  CAS  Google Scholar 

  17. Chen, X. et al. Nonvolatile data storage using mechanical force-induced polarization switching in ferroelectric polymer. Appl. Phys. Lett. 106, 042903 (2015).

    Article  Google Scholar 

  18. Zhang, Q. et al. Deterministic switching of ferroelectric bubble nanodomains. Adv. Funct. Mater. 29, 1808573 (2019).

    Article  Google Scholar 

  19. Bakaul, S. R. et al. Freestanding ferroelectric bubble domains. Adv. Mater. 33, 2105432 (2021).

    Article  CAS  Google Scholar 

  20. Das, S. et al. Observation of room-temperature polar skyrmions. Nature 568, 368–372 (2019).

    Article  CAS  Google Scholar 

  21. Gonçalves, M. P., Escorihuela-Sayalero, C., Garca-Fernández, P., Junquera, J. & Íñiguez, J. Theoretical guidelines to create and tune electric skyrmion bubbles. Sci. Adv. 5, eaau7023 (2019).

    Article  Google Scholar 

  22. Das, S. et al. Local negative permittivity and topological phase transition in polar skyrmions. Nat. Mater. 20, 194–201 (2021).

    Article  CAS  Google Scholar 

  23. Wei, X.-K. et al. Néel-like domain walls in ferroelectric Pb(Zr,Ti)O3 single crystals. Nat. Commun. 7, 12385 (2016).

    Article  CAS  Google Scholar 

  24. Shafer, P. et al. Emergent chirality in the electric polarization texture of titanate superlattices. Proc. Natl Acad. Sci. USA 115, 915–920 (2018).

    Article  CAS  Google Scholar 

  25. Damodaran, A. et al. Phase coexistence and electric-field control of toroidal order in oxide superlattices. Nat. Mater. 16, 1003–1009 (2017).

    Article  CAS  Google Scholar 

  26. Stoica, V. et al. Optical creation of a supercrystal with three-dimensional nanoscale periodicity. Nat. Mater. 18, 377–383 (2019).

    Article  CAS  Google Scholar 

  27. Garel, A. Boundary conditions for textures and defects. J. Phys. Fr. 39, 225–229 (1978).

    Article  CAS  Google Scholar 

  28. Whitehead, J. An expression of Hopf’s invariant as an integral. Proc. Natl Acad. Sci. USA 33, 117–123 (1947).

    Article  CAS  Google Scholar 

  29. Thorner, G., Kiat, J.-M., Bogicevic, C. & Kornev, I. Axial hypertoroidal moment in a ferroelectric nanotorus: a way to switch local polarization. Phys. Rev. B 89, 220103 (2014).

    Article  Google Scholar 

  30. Li, L. et al. Defect-induced hedgehog polarization states in multiferroics. Phys. Rev. Lett. 120, 137602 (2018).

    Article  CAS  Google Scholar 

  31. Nahas, Y., Prokhorenko, S. & Kornev, I. Interplay between pressure and local symmetry in (Pb1–3/2xLax)(Zr60Ti40) O3: emergence of a relaxor state. Phys. Rev. B 90, 180102 (2014).

    Article  Google Scholar 

  32. Nahas, Y., Prokhorenko, S., Kornev, I. & Bellaiche, L. Topological point defects in relaxor ferroelectrics. Phys. Rev. Lett. 116, 127601 (2016).

    Article  CAS  Google Scholar 

  33. Prokhorenko, S., Nahas, Y. & Bellaiche, L. Fluctuations and topological defects in proper ferroelectric crystals. Phys. Rev. Lett. 118, 147601 (2017).

    Article  CAS  Google Scholar 

  34. Prokhorenko, S., Nahas, Y. & Kornev, I. Finite-temperature properties of (BiFeO3)x(BaTiO3)1−x solid solutions. Phys. Rev. B 90, 140201 (2014).

    Article  Google Scholar 

  35. Govinden, V. et al. Stability of ferroelectric bubble domains. Phys. Rev. Mater. 7, L011401 (2023).

    Article  CAS  Google Scholar 

  36. Govinden, V. et al. Controlling topological defect transitions in nanoscale lead zirconate titanate heterostructures. Phys. Rev. Mater. 5, 124205 (2021).

    Article  CAS  Google Scholar 

  37. Chenskii, E. V. & Tarasenko, V. V. Theory of phase transitions into inhomogeneous states in organic ferroelectrics in an external electric field. Sov. Phys. JETP 56, 618–623 (1982).

    Google Scholar 

  38. Kornev, I., Fu, H. & Bellaiche, L. Ultrathin films of ferroelectric solid solutions under a residual depolarizing field. Phys. Rev. Lett. 93, 196104 (2004).

    Article  Google Scholar 

  39. Nahas, Y. et al. Topology and control of self-assembled domain patterns in low-dimensional ferroelectrics. Nat. Commun. 11, 5779 (2020).

    Article  CAS  Google Scholar 

  40. Zhu, R. et al. Dynamics of polar skyrmion bubbles under electric fields. Phys. Rev. Lett. 129, 107601 (2022).

    Article  CAS  Google Scholar 

  41. Hong, Z. & Chen, L.-Q. Blowing polar skyrmion bubbles in oxide superlattices. Acta Mater. 152, 155–161 (2018).

    Article  CAS  Google Scholar 

  42. Nahas, Y., Prokhorenko, S. & Bellaiche, L. Frustration and self-ordering of topological defects in ferroelectrics. Phys. Rev. Lett. 116, 117603 (2016).

    Article  CAS  Google Scholar 

  43. Govinden, V., Zhang, Q., Sando, D. & Valanoor, N. Depolarization field tuning of nanoscale ferroelectric domains in (001) PbZr0.4Ti0.6O3/SrTiO3/PbZr0.4Ti0.6O3 epitaxial heterostructures. J. Appl. Phys. 129, 024104 (2021).

    Article  CAS  Google Scholar 

  44. Peng, W. et al. Oxygen vacancy-induced topological nanodomains in ultrathin ferroelectric films. npj Quantum Mater. 6, 48 (2021).

    Article  CAS  Google Scholar 

  45. Yin, J. et al. Nanoscale bubble domains with polar topologies in bulk ferroelectrics. Nat. Commun. 12, 3632 (2021).

    Article  CAS  Google Scholar 

  46. Zhuo, F. & Yang, C.-H. Observation of a stable fractionalized polar skyrmion-like texture with giant piezoelectric response enhancement. Phys. Rev. B 102, 214112 (2020).

    Article  CAS  Google Scholar 

  47. Shao, Y.-T. et al. Emergent chirality in a polar meron to skyrmion transition revealed by 4D-STEM. Microsc. Microanal. 27, 348–350 (2021).

    Article  Google Scholar 

  48. Kent, N. et al. Creation and observation of hopfions in magnetic multilayer systems. Nat. Commun. 12, 1562 (2021).

    Article  CAS  Google Scholar 

  49. Parkin, S. S., Hayashi, M. & Thomas, L. Magnetic domain-wall racetrack memory. Science 320, 190–194 (2008).

    Article  CAS  Google Scholar 

  50. Sampaio, J., Cros, V., Rohart, S., Thiaville, A. & Fert, A. Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. Nat. Nanotechnol. 8, 839–844 (2013).

    Article  CAS  Google Scholar 

  51. Zhang, X., Ezawa, M. & Zhou, Y. Magnetic skyrmion logic gates: conversion, duplication and merging of skyrmions. Sci. Rep. 5, 9400 (2015).

    Article  Google Scholar 

  52. Xing, X., Pong, P. W. & Zhou, Y. Skyrmion domain wall collision and domain wall-gated skyrmion logic. Phys. Rev. B 94, 054408 (2016).

    Article  Google Scholar 

  53. Gruener, W. IBM puts millipede on public display. Tom’s Hardware http://www.tomshardware.com/news/ibm-puts-millipede-public-display,755.html (2005).

  54. Lu, D. et al. Synthesis of freestanding single-crystal perovskite films and heterostructures by etching of sacrificial water-soluble layers. Nat. Mater. 15, 1255–1260 (2016).

    Article  CAS  Google Scholar 

  55. Bakaul, S. R. et al. Ferroelectric domain wall motion in freestanding single‐crystal complex oxide thin film. Adv. Mater. 32, 1907036 (2020).

    Article  CAS  Google Scholar 

  56. Bakaul, S. R. et al. Single crystal functional oxides on silicon. Nat. Commun. 7, 10547 (2016).

    Article  CAS  Google Scholar 

  57. Bakaul, S. R. et al. High speed epitaxial perovskite memory on flexible substrates. Adv. Mater. 29, 1605699 (2017).

    Article  Google Scholar 

  58. Baek, S. et al. Giant piezoelectricity on Si for hyperactive MEMS. Science 334, 958–961 (2011).

    Article  CAS  Google Scholar 

  59. Behera, P. et al. Electric field control of chirality. Sci. Adv. 8, eabj8030 (2022).

    Article  CAS  Google Scholar 

  60. Dong, S., Liu, J.-M., Cheong, S.-W. & Ren, Z. Multiferroic materials and magnetoelectric physics: symmetry, entanglement, excitation, and topology. Adv. Phys. 64, 519–626 (2015).

    Article  CAS  Google Scholar 

  61. Birch, M. et al. Real-space imaging of confined magnetic skyrmion tubes. Nat. Commun. 11, 1726 (2020).

    Article  CAS  Google Scholar 

  62. Milde, P. et al. Unwinding of a skyrmion lattice by magnetic monopoles. Science 340, 1076–1080 (2013).

    Article  CAS  Google Scholar 

  63. Louis, L., Kornev, I., Geneste, G., Dkhil, B. & Bellaiche, L. Novel complex phenomena in ferroelectric nanocomposites. J. Phys. Condens. Matter 24, 402201 (2012).

    Article  Google Scholar 

  64. Scase, M. M. & Terry, H. L. Spherical vortices in rotating fluids. J. Fluid Mech. 846, R4 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

The research at the University of New South Wales (UNSW) was supported by DARPA grant no. HR0011727183-D18AP00010 (TEE Program), partially supported by the Australian Research Council Centre of Excellence in Future Low-Energy Electronics Technologies (project number CE170100039) and funded by the Australian Government. Q.Z. acknowledges the support of a Women in FLEET Fellowship. The research at the University of Arkansas is also supported by the Vannevar Bush Faculty Fellowship (VBFF) grant no. N00014-20-1-2834 from the Department of Defense, award no. DMR-1906383 from the National Science Foundation Q-AMASE-i Program (MonArk NSF Quantum Foundry) and an ARO grant no. W911NF- 21-2-0162 (ETHOS).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qi Zhang or Nagarajan Valanoor.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Govinden, V., Prokhorenko, S., Zhang, Q. et al. Spherical ferroelectric solitons. Nat. Mater. 22, 553–561 (2023). https://doi.org/10.1038/s41563-023-01527-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-023-01527-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing