Skip to main content
Log in

Compositional evolution of igneous garnets: calcic garnets from alkaline rocks of Terskiy Coast (Kola Alkaline Carbonatite Province)

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The study examined garnets in lamprophyric and carbonatitic dykes and massif melilitolites from the Devonian Kola Alkaline Carbonatite Province (North-Eastern European craton). We analyzed major and trace element compositions of garnet in 14 well-characterized samples of aillikite, carbonatite, alnöites, monchiquites, nephelinite and turjaites and correlated the garnet zoning with the sequence of magmatic crystallization and late deuteric changes. The garnets occur in all textural positions, from early phenocrysts to groundmass phases and deuteric pseudomorphs. The garnets are calcic and classified into five compositional types, 1) high-Zr, 2) high-Ti, 3) medium-Ti, 4) low-Ti, and 5) high-Al. These garnet types combine in distinct ways comprising four zoning patterns (turjaite, nephelinite, monchiquite and carbonate-related) repeated in different rock types. Fractional crystallization controls the observed garnet evolution from high-Ti and high-Zr to garnets poorer in Ti, but richer in Al. Garnets progressing from magmatic to deuteric crystallization evolve from heavy rare earth elements (HREE)-enriched to light rare earth elements (LREE)-enriched and become depleted in trace elements. We interpret high-Zr garnets as antecrysts crystallized from deep alkaline carbonate-rich melts and subsequently destabilized in evolved shallow lamprophyric melts. High-Al garnets have late magmatic or deuteric origin as they replace melilite or carbonate, have low Y/Ho ratio and occur only in a location where carbonatites formed by melt and fluid immiscibility. Significant compositional changes accompanying magmatic crystallization and variations in accessory mineralogy in a single rock type result in a very wide range of major and trace element compositions of garnets and complicate their use as petrogenetic indicators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Antao SM, Mohib S, Zaman M, Marr RA (2015) Ti-rich andradites: Chemistry, structure, multi-phases, optical anisotropy, and oscillatory zoning. Can Miner 5:133–158.

    Article  Google Scholar 

  • Bau M (1996) Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: Evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect. Contrib Miner Petr 123:323–333

    Article  Google Scholar 

  • Bühn B (2008) The role of the volatile phase for REE and Y fractionation in low-silica carbonate magmas: implications from natural carbonatites, Namibia. Miner Petr 92:453–470

  • Buse B, Schumacher J, Sparks S, Field M (2010) Growth of bultfonteinite and hydrogarnet in metasomatized basalt xenoliths in the B/K9 kimberlite, Damtshaa, Botswana: Insights into hydrothermal metamorphism in kimberlite pipes. Contr Miner Petr 160:533–550

    Article  Google Scholar 

  • Canil D (2002) Vanadium in peridotites, mantle redox and tectonic environments: Archean to present. Earth Planet Sci Lett 195:75–90

    Article  Google Scholar 

  • Chakhmouradian AR, McCammon CA (2005) Schorlomite: a discussion of the crystal chemistry, formula, and inter-species boundaries. Phys Chem Miner 32:277–289

    Article  Google Scholar 

  • Chakhmouradian AR, Cooper MA, Medici L, Hawthorne FC, Adar F (2008) Fluorine-rich hibschite from silicocarbonatite, Afrikanda complex, Russia: crystal chemistry and conditions of crystallization. Can Min 46:1033–1042

    Article  Google Scholar 

  • Chakhmouradian AR, Reguir EP, Kamenetsky VS, Sharygin VV, Golovin A V (2013) Trace-element partitioning in perovskite: implications for the geochemistry of kimberlites and other mantle-derived undersaturated rocks. Chem Geol 353:112–131

  • Chakhmouradian AR, Zaitsev AN (2002) Calcite–amphibole–clinopyroxene rock from the Afrikanda complex, Kola Peninsula, Russia: mineralogy and a possible link to carbonatites. III Silicate Minerals Can Miner 40:1347–1374

    Google Scholar 

  • Chen W, Zhang W, Simonetti A, Jian S (2016) Mineral chemistry of melanite from calcitic ijolite, the Oka carbonatite complex, Canada: Implications for multi-pulse magma mixing. Canad J Earth Sci 27:599–610

    Article  Google Scholar 

  • Dawson JB, Hill PG (1998) Mineral chemistry of a peralkaline combeite-lamprophyllite nephelinite from Oldoinyo Lengai, Tanzania. Min Mag 62(2):179–196

  • Deng XD, Li JW, Luo T, Wang HQ (2017) Dating magmatic and hydrothermal processes using andradite-rich garnet U-Pb geochronometry. Contrib Miner Petr 172:71–81

    Article  Google Scholar 

  • Dongre AN, Viljoen KS, Rao NC, Gucsik A (2016) Origin of Ti-rich garnets in the groundmass of Wajrakarur field kimberlites, southern India: insights from EPMA and Raman spectroscopy. Min and Petr 110:295–307

  • Doroshkevich AG, Veksler IV, Klemd R, Khromova EA, Izborodin I (2017) Trace-element composition of minerals and rocks in the Belaya Zima carbonatite complex (Russia): Implications for the mechanisms of magma evolution and carbonatite formation. Lithos 284–28:91–108

    Article  Google Scholar 

  • Downes H, Balaganskaya E, Beard A, Liferovich R, Demaiffe D (2005) Petrogenetic processes in the ultramafic, alkaline and carbonatitic magmatism in the Kola Alkaline Province: A review. Lithos 85:48–75

    Article  Google Scholar 

  • Dunworth EA, Bell K (2001) The Turij Massif, Kola Peninsula, Russia: Isotopic and geochemical evidence for multi-source evolution. J Petr 42:377–405

    Article  Google Scholar 

  • Farmer N, Rushmer T, Burnham A, Wykes J (2021) Zr solubility in silicate melts: Insights from X-ray absorption studies at high pressure and temperature with implications for mantle zircon. Abstract, the 2021 Goldschmidt Conference, 5–9 July, Lyon, France

  • Fedortchouk Y, Chinn IL, Kopylova MG (2017) Three styles of diamond resorption in a single kimberlite: Effects of volcanic degassing and assimilation. Geology 45:871–874

    Article  Google Scholar 

  • Flohr MJK, Ross M (1990) Alkaline igneous rocks of Magnet Cove, Arkansas: Mineralogy and geochemistry of syenites. Lithos 26:67–98

    Article  Google Scholar 

  • Galushkina IO, Galushkin EV, Dzierzanowski P, Armbruster T, Kozanecki M (2005) A Natural Scandian Garnet Am Miner 90:1688–1692

    Google Scholar 

  • Geiger CA (2008) Silicate garnet: a micro to macroscopic (re)view. Am Miner 93:360–437

    Article  Google Scholar 

  • Guo X, Navrotsky A, Kakkadapu RK, Engelhard MH, Lanzirotti A, Newville M, Ilton ES, Sutton SR, Xu H (2016) Structure and thermodynamics of uranium-containing iron garnets. Geoch Cosmoch Acta 189:269–281

    Article  Google Scholar 

  • Hammond AL, Mitchell RH (2002) Accessory mineralogy of orangeite from Swartruggens, South Africa. Miner Petr 76:1–19

    Article  Google Scholar 

  • Henmi C, Isao K, Henmi K (1996) Zirconium minerals and zirconian garnet from Fuka. Okayama Prefecture, Jpn Min J 18:54–59

    Google Scholar 

  • Katerinopoulou A, Katerinopoulos A, Voudouris P, Bieniok A, Musso M, Amthauer G (2009) A multi-analytical study of the crystal structure of unusual Ti–Zr–Cr-rich Andradite from the Maronia skarn, Rhodope massif, western Thrace. Greece Miner Petr 95(1):113–124

    Article  Google Scholar 

  • Kaur G, Korakoppa MM, Pruseth KL (2013) Petrology of P-5 and P-13 “kimberlites” from Lattavaram kimberlite cluster, Wajrakarur Kimberlite Field, Andhra Pradesh, India: Reclassification as lamproites. In Proceedings of 10th International Kimberlite Conference Springer, New Delhi (pp. 183–194)

  • Kaur G, Mitchell RH (2013) Mineralogy of P2 west kimberlite, Wajrakarur kimberlite field, Andhra Pradesh, India: Kimberlite or lamproite? Min Mag 77:3175–3196

    Article  Google Scholar 

  • Kaur G, Mitchell RH (2015) Mineralogy of P-12 K-Ti richterite-diopside- olivine lamproite from Wajrakarur, Andhra Pradesh, India: Implications for subduction related magmatism in eastern India. Miner Petr 110(2):223–245

    Google Scholar 

  • Kiihberger A, Fehr KT, Huckenholz HG, Amthauer G (1989) Crystal chemistry of a natural schorlomite and Ti-andradites synthesized at different oxygen fugacities. Phys Chem Miner 16:734–740

    Article  Google Scholar 

  • Kjarsgaard BA (1998) Phase relations of a carbonated high-CaO nephelinite at 0.2 and 0.5 GPa. J of Petr 39(11-12):2061–2075

  • Kramm U, Kogarko LN, Kononova VA, Vartiainen H (1993) The Kola Alkaline Province of the CIS and Finland: Precise Rb-Sr ages define 380–360 Ma age range for all magmatism. Lithos 30:33–44

    Article  Google Scholar 

  • Kukharenko AA, Abakumova NB, Bagdasarov EA, Bulakh AG, Dontsova EI, Ilinsky GA, Nefedov AN, Orlova MP, Rimskaya-Korsakova OM, Sergeev AS (1965) The Caledonian complex of ultrabasic, alkaline rocks and carbonatites of the Kola Peninsula and northern Karelia (geology, petrology, mineralogy and geochemistry). Nedra, Moscow (in Russian), pp 1–390

  • Laguta V, Buryi M, Beitlerova A, Laguta O, Nejezchleb K, Nikl M (2019) Vanadium in yttrium aluminum garnet: charge states and localization in the lattice. Opt Mater 91:228–234

    Article  Google Scholar 

  • Locock AJ (2008) An Excel spreadsheet to recast analyses of garnet into end-member components, and a synopsis of the crystal chemistry of natural silicate garnets. Comput Geosci 34:1769–1780

  • Lupini L, Williams CT, Woolley AR (1992) Zr-rich garnet and Zr- and Th-rich perovskite from the Polino carbonatite, Italy. Min Mag 56:581–586

    Article  Google Scholar 

  • Marks MA, Coulson IM, Schilling J, Jacob DE, Schmitt AK, Markl G (2008a) The effect of titanite and other HFSE-rich mineral (Ti-bearing andradite, zircon, eudialyte) fractionation on the geochemical evolution of silicate melts. Chem Geol 257(1–2):153–172

    Article  Google Scholar 

  • Marks MA, Schilling J, Coulson IM, Wenzel T, Markl G (2008b) The alkaline–peralkaline Tamazeght complex, High Atlas Mountains, Morocco: Mineral chemistry and petrological constraints for derivation from a compositionally heterogeneous mantle source. J Petrol 49(6):1097–1131

    Article  Google Scholar 

  • Mattsson HB, Högdahl K, Carlsson M, Malehmir A (2019) The role of mafic dykes in the petrogenesis of the Archean Siilinjärvi carbonatite complex, east-central Finland. Lithos 342–343:468–479

    Article  Google Scholar 

  • McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120(3-4):223–253

  • Milton C, Ingram BL, Blade L (1961) Kimzeyite, a zirconium garnet from Magnet Cove, Arkansas. Am Miner 46:533–554

    Google Scholar 

  • Munno R, Rossi G, Tadini C (1980) Crystal chemistry of kimzeyite from Stromboli, Aeolian Islands. Italy Am Miner 65:188

    Google Scholar 

  • Niyazova S, Kopylova M, Dyck B, Benisek A, Dachs E, De Stefano A (2021) The assimilation of felsic xenoliths in kimberlites: insights into temperature and volatiles during kimberlite emplacement. Contrib Miner Petr 176:84

    Article  Google Scholar 

  • Nosova A, Kopylova M, Sazonova L, Vozniak A, Kargin A, Lebedeva N, Volkova G, Peresetskaya E (2021a) Petrology of lamprophyre dykes in the Kola Alkaline Carbonatite Province (N Europe). Lithos 398–399: 106277

  • Nosova AA, Kopylova MG, Lebedeva NM, Larionova YO, Kargin AV, Sazonova LV, Vozniak AA, Kovach VP (2023) Melt sources for alkaline carbonate-bearing rocks of the Terskiy Coast (Kola Alkaline Carbonatitic Province). Chem Geol 617:121267

  • Nosova AA, Kopylova MG, Sazonova LV, Vozniak AA, Lebedeva NM, Volkova GD, Peresetskaya EV (2021b) Data on bulk rock compositions, geochemical and textural contrasts between central and marginal parts of dykes, and MELTS modeling of lamprophyre dykes in the Kola Alkaline Carbonatite Province (N Europe). Data Brief 38:107307

    Article  Google Scholar 

  • Nosova AA, Narkisova VV, Sazonova LV, Simakin SG (2002) Minor elements in clinopyroxene from Paleozoic volcanics of the Tagil island arc in the Central Urals. Geoch Intern 40(3):219–232

    Google Scholar 

  • Nosova AA, Voznyak AA, Bogdanova SV, Savko KA, Lebedeva NM, Travin AV, Postnikov AV (2019) Early Cambrian syenite and monzonite magmatism in the southeast of the East European Platform: Petrogenesis and tectonic setting. Petrology 27:329–369

    Article  Google Scholar 

  • Philpotts AR (1989) Petrography of Igneous and Metamorphic Rocks. Prentice Hall, USA, p 178

    Google Scholar 

  • Pilipiuk AN, Ivanikov VV, Bulakh AG (2001) Unusual rocks and mineralisation in a new carbonatite complex at Kandaguba, Kola Peninsula, Russia. Lithos 56:333–347

    Article  Google Scholar 

  • Platt RG, Mitchell RH (1979) The Marathon Dikes. I: Zirconium-rich titanian garnets and manganoan magnesian ulvospinel-magnetite spinels. Am Miner 64:546–550

    Google Scholar 

  • Rock NMS (1991) Lamprophyres. Blackie, Glasgow

    Book  Google Scholar 

  • Rubatto D (2002) Zircon trace element geochemistry: Partitioning with garnet and the link between U-Pb ages and metamorphism. Chem Geol 184:123–138

    Article  Google Scholar 

  • Rukhlov AS (1999) Dykes and explosive pipes of the Kandalaksha Graben (Kola Alkaline Province): models of magmatic processes and subcontinental mantle evolution. Ph.D. dissertation, Dept of Petrography, St. Petersburg State University, St. Petersburg, Russia, pp 287 (in Russian)

  • Salnikova EB, Chakhmouradian AR, Stifeeva MV, Reguir EP, Kotov AB, Gritsenko YD, Nikiforov AV (2019) Calcic garnets as a geochronological and petrogenetic tool applicable to a wide variety of rocks. Lithos 338:141–154

    Article  Google Scholar 

  • Scheibner B, Wörner G, Civetta L, Stosch HG, Simon K, Kronz A (2007) Rare earth element fractionation in magmatic Ca-rich garnets. Contrib Miner Petr 154:55–74

  • Schingaro E, Scordari F, Capitanio F, Parodi G, Smith DC, Mottana A (2001) Crystal chemistry of kimzeyite from Anguillara, Mts. Sabatini, Italy. Eur J Miner 13(4):749–759

  • Scott Smith B, Nowicki TE, Russell JK, Webb KJ, Mitchell RH, Hetman CM, Robey JA (2013) Kimberlite terminology and classification. In: Proceedings of 10th International Kimberlite Conference, Springer, New Delhi, pp. 1–17

  • Seaman S, Stockli DF, McLean NM (2017) U-Pb geochronology of grossular-andradite garnet. Chem Geol 460:106–116

    Article  Google Scholar 

  • Stagno V, Ojwang DO, McCammon CA, Frost DJ (2013) The oxidation state of the mantle and the extraction of carbon from Earth’s interior. Nature 493:84–88

    Article  Google Scholar 

  • Stifeeva MV, Salnikova EB, Nosova AA, Kotov AB, Vozniak AA Dimitrova DA (2023) U-Pb (ID-TIMS) age of garnet from aillikites (Kola alkaline province). Dokl Earth Sci 590(2):225–229

  • Stripp GR, Field M, Schumacher JC, Sparks RSJ, Cressey G (2006) Post-emplacement serpentinization and related hydrothermal metamorphism in a kimberlite from Venetia. South Africa J Metam Geol 24(6):515–534

    Article  Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc of London Spec Publ 42(1):313–345

    Article  Google Scholar 

  • Sweeney RJ, Green DH, Sie SH (1992) Trace and minor element partitioning between garnet and amphibole and carbonatitic melt. Earth Planet Sci Let 113:1–14

    Article  Google Scholar 

  • Tappe S, Jenner GA, Foley SF, Heaman L, Besserer D, Kjarsgaard BA, Ryan B (2004) Torngat ultramafic lamprophyres and their relation to the North Atlantic Alkaline Province. Lithos 76(1–4):491–518

    Article  Google Scholar 

  • Tappe S, Foley SF, Jenner GA, Heaman LM, Kjarsgaard BA, Romer RL, Stracke A, Joyce N, Hoefs J (2006) Genesis of ultramafic lamprophyres and carbonatites at Aillik Bay, Labrador: A consequence of incipient lithospheric thinning beneath the North Atlantic craton. J Petr 47(7):1261–1315

    Article  Google Scholar 

  • Tappe S, Steenfelt A, Heaman LM, Simonetti A (2009) The newly discovered Jurassic Tikiusaaq carbonatite-aillikite occurrence, West Greenland, and some remarks on carbonatite-kimberlite relationships. Lithos 112:385–399

    Article  Google Scholar 

  • Ubide T, Gale C, Arranz E, Lago M, Larrea P (2014a) Clinopyroxene and amphibole crystal populations in a lamprophyre sill from the Catalonian Coastal Ranges (NE Spain): a record of magma history and a window to mineral-melt partitioning. Lithos 184:225–242

    Article  Google Scholar 

  • Ubide T, Galé C, Larrea P, Arranz E, Lago M (2014b) Antecrysts and their effect on rock compositions: the Cretaceous lamprophyre suite in the Catalonian Coastal Ranges (NE Spain). Lithos 206:214–233

    Article  Google Scholar 

  • Uher P, Milovská S, Milovský R, Koděra P, Bačík P, Bilohuščin V (2015) Kerimasite, Ca3[Zr2](SiFe3+ 2)O12 garnet from the Vysoká-Zlatno skarn, Štiavnica stratovolcano. Slovakia Min Mag 79(3):715–733

    Article  Google Scholar 

  • Veksler IV, Dorfman AM, Dulski P, Kamenetsky VS, Danyushevsky LV, Jeffries T, Dingwell DB (2012) Partitioning of elements between silicate melt and immiscible fluoride, chloride, carbonate, phosphate and sulfate melts, with implications to the origin of natrocarbonatite. Geoch Cosmoch Acta 79:20–40

    Article  Google Scholar 

  • Vozniak AA, Kopylova MG, Peresetskaya EV, Nosova AA, Sazonova LV, Anosova MO (2023) Olivine in lamprophyres of the Kola Alkaline Province and the magmatic evolution of olivine in carbonate melts. Lithos 107149. https://doi.org/10.1016/j.lithos.2023.107149

  • Vuorinen JH, Halenius U, Whitehouse MJ, Mansfeld J, Skelton ADL (2005b) Compositional variations (major and trace elements) of clinopyroxene and Ti-andradite from pyroxenite, ijolite and nepheline syenite. Alno Island, Sweden, Lithos 81(1–4):55–77

    Google Scholar 

  • Vuorinen JH, Hålenius U, Whitehouse MJ, Mansfeld J, Skelton AD (2005) Compositional variations (major and trace elements) of clinopyroxene and Ti-andradite from pyroxenite, ijolite and nepheline syenite, Alnö Island. Sweden Lithos 81(1–4):55–77

    Article  Google Scholar 

  • Wang M, Shang X, Zhang F, Wei K, Wang W (2019) In-situ major and trace element chemistry of melanite from Tieshan Fe–Cu skarn deposit, Hubei Province, Eastern China: Implications for hydrothermal fluid evolution. Ore Geol Rev 111:102996

  • Weidendorfer D, Schmidt MW, Mattsson HB (2016) Fractional crystallization of Si-undersaturated alkaline magmas leading to unmixing of carbonatites on Brava Island (Cape Verde) and a general model of carbonatite genesis in alkaline magma suites. Contrib Miner Petr 171:43

    Article  Google Scholar 

  • Xu J, Ciobanu CL, Cook NJ, Zheng Y, Li X, Wade BP, Verdugo-Ihl MR, Gao W, Zhu Q (2020) Numerical modelling of rare earth element fractionation trends in garnet: a tool to monitor skarn evolution. Contrib Miner Petr 175(4):1–17

    Article  Google Scholar 

  • Zaitsev AN, Williams CT, Britvin SN, Kuznetsova IV, Spratt J, Petrov SV, Keller J (2010) Kerimasite, Ca3Zr2(Fe23+ Si)O12, a new garnet from carbonatites of Kerimasi volcano and surrounding explosion craters, northern Tanzania. Min Mag 74(5):803–820

    Article  Google Scholar 

  • Zu B, Xue C, Dong C, Zhao Y (2019) Mineralogy and garnet Sm-Nd dating for the Hongshan skarn deposit in the Zhongdian area, SW China. Minerals 9:1–17

    Article  Google Scholar 

Download references

Acknowledgements

The electron microscopy and a quantitative analysis of most garnet compositions was carried out at the Laboratory of Analytical Techniques of High Spatial Resolution in the Geology Department, the Lomonosov Moscow State University, Moscow, Russia. Analysis of a few representative garnet samples on Hitachi S-3400N were carried out at the Geomodel Research Center (St. Petersburg State University, Russia). Trace element concentrations of garnets were determined at the Valiev Institute of Physics and Technology of the Russian Academy of Sciences, Yaroslavl Branch, Russia. The authors thank Natalia N. Korataeva for help with the scanning electron microscopy, Sergey G. Simakin and Evgeniy V. Potapov for SIMS analysis. We are grateful to Andrey A. Arzamastsev and Alexey V. Kargin for help with the fieldwork and Irina T. Rass for valuable comments on earlier versions of the manuscript. We thank two anonymous reviewers and editor Anton Chakhmouradian for improving the manuscript.

Funding

The study was supported by the Russian Science Foundation under Grant 19-17-00024.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maya G. Kopylova.

Additional information

Editorial handling: A. R. Chakhmouradian

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 43 KB)

Supplementary file2 (XLSX 14 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vozniak, A.A., Kopylova, M.G., Nosova, A.A. et al. Compositional evolution of igneous garnets: calcic garnets from alkaline rocks of Terskiy Coast (Kola Alkaline Carbonatite Province). Miner Petrol 117, 553–571 (2023). https://doi.org/10.1007/s00710-023-00819-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-023-00819-0

Keywords

Navigation