Skip to main content

Advertisement

Log in

Tl(I) sequestration by pharmacosiderite supergroup arsenates: synthesis, crystal structures and relationships in Tl(I)–M(III)–As(V)–H2O (M = Al, Fe) system

  • Research
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Due to their heteropolyhedral 3D open framework with cation exchange possibilities, pharmacosiderite supergroup arsenates play an essential role in the retention, mobility, and fate of various trace elements in the environment. However, the geochemical interaction with extremely toxic thallium (Tl) remains understudied. The formation of the compounds in the Tl(I)–M(III)–As(V)–H2O (M(III) = Al, Fe) system results in the occurrence of poorly-crystalline thalliumpharmacosiderite, which was reported in the mining-impacted areas as well as in corresponding sediments and soils. Unfortunately, due to its low crystallinity, just a partial understanding of its key structural and compositional properties exists. Therefore, using hydrothermal synthesis (stainless steel autoclaves, autogenous pressure, Tmax = 170 °C), we have synthesized good-quality synthetic analogue of thalliumpharmacosiderite (Tpsd), Tl2.5Fe4[(AsO4)3(OH)4](OH)1.5·3H2O, and still-not discovered “thalliumpharmacoalumite” (Tpal), Tl1.25Al4[(AsO4)3(OH)4](OH)0.25·4H2O single crystals. They were characterized using single-crystal X-ray diffraction (SC-XRD), powder X-ray diffraction (PXRD), Raman spectroscopy, scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS) and transmission electron microscopy (TEM), providing more details on their chemical composition and crystal structure, thus bringing us one step further in better understanding of their structural and chemical properties and how they may relate to their formation in nature. Furthermore, Tl3AsO4 was resynthesized and its crystal structure and Raman spectrum were discussed, since it has a potential to be found in natural environments. Additionally, chemical characterization and Raman spectrum of a novel Tl-Fe-arsenate (Tl:Fe:As = 1:1:1) was mentioned. Consequently, the present research delivers useful insights on the role of pharmacosiderite supergroup arsenates in the environmental cycle of Tl.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aguilar-Carrillo J, Herrera L, Gutierrez EJ, Reyes-Domínguez IA (2018) Solid-phase distribution and mobility of thallium in mining-metallurgical residues: environmental hazard implications. Environ Poll 243:1833–1845

    Google Scholar 

  • Aguilar-Carrillo J, Herrera-García L, Reyes-Domínguez IA, Gutiérrez EJ (2020) Thallium(I) sequestration by jarosite and birnessite: structural incorporation vs surface adsorption. Environ Poll 257:113492–113503

    Google Scholar 

  • Balić-Žunić T, Moëlo Y, Lončar Z, Micheelsen H (1994) Dorallcharite, Tl0.8K0.2Fe3(SO4)2(OH)6, a new member of the jarosite-alunite family. Eur J Mineral 6:255–263

    Google Scholar 

  • Biagioni C, D’Orazio M, Lepore GO, d’Acapito VS (2017) Thallium-rich rust scales in drinkable water distribution systems: A case study from northern Tuscany, Italy. Sci Total Environ 587:491–501

    Google Scholar 

  • Bondi A (1964) Van der Waals Volumes and Radii. J Phys Chem 68:441–451

    Google Scholar 

  • Bossy A, Grosbois C, Beauchemin S, Courtin-Nomade A, Hendershot W, Bril H (2010) Alteration of As-bearing phases in a small watershed located on a high-grade arsenic-geochemical anomaly (French Massif Central). Appl Geochem 25:1889–1901

    Google Scholar 

  • Bruker (2007) Bruker SAINT-Plus. Bruker AXS Inc, Madison

    Google Scholar 

  • Buerger M, Dollase W, Garaycochea-Wittke I (1967) The structure and composition of the mineral pharmacosiderite. Z Kristallogr N Cryst Struct 125:92–108

    Google Scholar 

  • Chen D, Wang G, Zou Z, Chen Y (2001) A new mineral - Lanmuchangite. Acta Mineral Sinica 21:271–277

    Google Scholar 

  • Cruz-Hernández Y, Ruiz-García M, Villalobos M, Martin Romero F, Meza-Figueroa D, Garrido F, Hernández-Alvarez E, Pi-Puig T (2018) Fractionation and mobility of thallium in areas impacted by mining-metallurgical activities: Identification of a water-soluble Tl(I) fraction. Environ Poll 237:154–165

    Google Scholar 

  • D’Orazio M, Biagioni C, Dini A, Vezzoni S (2017) Thallium-rich pyrite ores from the Apuan Alps, Tuscany, Italy: constraints for their origin and environmental concerns. Mineral Deposita 52:687–707

    Google Scholar 

  • Ðorđević T, Drahota P, Kolitsch U, Majzlan J, Peřestá M, Kiefer S, Stöger-Pollach M, Tepe N, Hofmann T, Mikuš T, Tasev G, Serafimovski T, Boev I, Boev B (2021a) Synergetic Tl and As retention in secondary minerals: An example of extreme arsenic and thallium pollution. Appl Geochem 135:105114–105130

    Google Scholar 

  • Đorđević T, Kolitsch U, Drahota, P, Majzlan J, Peřestá M, Tasev G, Serafmovski T, Boev I, Boev B (2021b) Tl sequestration in the middle part of the Allchar SbAsTlAu deposit, North Macedonia. Goldschmidt Abstracts, 2021. https://doi.org/10.7185/gold2021.5196

  • Đorđević T, Drahota P, Kolitsch U, Majzlan J, Kiefer S, Tepe N, Hofmann T, Serafimovski T, Tasev G, Boev I, Boev B (2021c) Geogenic thallium-extreme environments: In which secondary phases is Tl(I) incorporated? Mitt Österr Mineral Ges 167:84

    Google Scholar 

  • Dowty E (2000) ATOMS for Windows. Version 5.1. Shape Software, Kingsport, Tennessee, USA

  • Drahota P, Rohovec J, Fillipi M, Mihaljevič M, Rychlovský P, Červený V, Pertold Z (2009) Mineralogical and geochemical controls of arsenic speciation and mobility under different redox conditions in soil, sediment and water at the Mokrsko-West gold deposit, Czech Republic. Sci Total Environ 407:3372–3384

    Google Scholar 

  • Drahota P, Kulakowski O, Culka A, Knappová M, Rohovec J, Veselovský F, Racek M (2018) Arsenic mineralogy of near-neutral soils and mining waste at the Smolotely-Líšnice historical gold district, Czech Republic. Appl Geochem 89:243–254

    Google Scholar 

  • Effenberger H (1998) Structure investigations of Tl(I)-arsenates(V): Tl3(AsO4), Tl2Cu(I)(AsO4) and TlCu(II)2(AsO4)(AsO3OH). Z Kristallogr Cryst Mater 213:42–46

    Google Scholar 

  • Farrugia LJ (2012) WinGX and ORTEP for Windows: an update. J Appl Crystallogr 45:849–854

    Google Scholar 

  • Filippi M, Doušová B, Machovič V (2007) Mineralogical speciation of arsenic in soils above the Mokrsko-west gold deposit, Czech Republic. Geoderma 139:154–170

    Google Scholar 

  • Flack HD (1983) On enantiomorph polarity estimation. Acta Crystallogr A39:876–881

    Google Scholar 

  • Frost RL, Kloprogge JT (2003) Raman spectroscopy of some complex arsenate minerals - implications for soil remediation. Spectrochim Acta A59:2797–2804

    Google Scholar 

  • Gagné OC, Hawthorne FC (2018) Bond-length distributions for ions bonded to oxygen: metalloids and post-transition metals. Acta Crystallogr B 74:63–78

    Google Scholar 

  • Gagné OC, Hawthorne FC (2020) Bond-length distributions for ions bonded to oxygen: results for the transition metals and qu­antification of the factors underlying bond-length variation in inorganic solids. IUCrJ 7:581–629

    Google Scholar 

  • Garrido F, Garcia-Guinea J, Lopez-Arce P, Voegelin A, Göttlicher J, Mangold S, Almendros G (2020) Thallium and co-genetic trace elements in hydrothermal Fe-Mn deposits of Central Spain. Sci Total Environ 717:137162–137177

    Google Scholar 

  • George LL, Biagioni C, Lepore GO, Lacalamita M, Agros G, Capitani GC, Bonaccorsi E, d’Acapito F (2019) The speciation of thallium in (Tl, Sb, As)-rich pyrite. Ore Geol Rev 107:364–380

    Google Scholar 

  • Gołębiowska B, Pieczka A, Zubko M, Voegelin A, Göttlicher J, Rzepa G (2021) Thalliomelane, TIMn7.54+Cu0.52+O16, a new member of the coronadite group from the preglacial oxidation zone at Zalas, southern Poland. Am Mineral 106:2020–2027

    Google Scholar 

  • Gomez-Gonzalez MA, Garcia-Guinea J, Garrido F, Townsend PD, Marco J-F (2015) Thallium and manganese complexes involved in the luminescence emission of potassium-bearing aluminosilicates. J Lumin 159:197–206

    Google Scholar 

  • Haffert L, Craw D, Pope J (2010) Climatic and compositional controls on secondary arsenic mineral formation in high-arsenic mine wastes, South Island, New Zealand, New Zealand. J Georg Geol 53:91–101

    Google Scholar 

  • Hager SL, Leverett P, Williams PA, Mills SJ, Hibbs DE, Raudsepp M, Kampf AR, Birch WD (2010) The single-crystal X-ray structures of bariopharmacosiderite-C, bariopharmacosiderite-Q and natropharmacosiderite. Can Mineral 48:1477–1485

    Google Scholar 

  • Herrmann J, Voegelin A, Palatinu L, Mangold S, Majzlan J (2018) Secondary Fe-AsTl mineralization in soils near Buus in the Swiss Jura Mountains. Eur J Mineral 30:887–898

    Google Scholar 

  • Hochleitner R, Fehr KT, Kaliwoda M, Günther A, Schmahl WW, Park S (2013) Hydroniumpharmacoalumite, IMA 2012-050. CNMNC Newsletter No. 16, August 2013, page 2699. Mineral Mag 77:26952709

    Google Scholar 

  • Hochleitner R, Fehr KT, Kaliwoda M, Günther A, Rewitzer C, Schmahl WW, Park S (2015) Hydroniumpharmacoalumite, (H3O)Al4[(OH)4(AsO4)3]·4-5 H2O, a new mineral of the pharmacosiderite supergroup from Rodalquilar, Spain. N Jahrb Mineral Abh 192:169–176

    Google Scholar 

  • Jamieson HE (2011) Geochemistry and Mineralogy of Solid Mine Waste: Essential Knowledge for Predicting Environmental Impact. Elements 7:381–386

    Google Scholar 

  • Janković S, Jelenković R (1994) Thallium mineralization in the Allchar Sb–As–Tl–Au Deposit. N Jahrb Mineral Abh 167:283–297

    Google Scholar 

  • Kalinin AA, Savchenko YE (2019) Thallium mineralization in the Oleninskoe gold prospect, Kolmozero-Voronya belt. Proceed Fersman Sci Sess 16:240–244 (in Russian)

    Google Scholar 

  • Karanović LJ, Poleti D, Balić-Žunić T, Makovicky E, Gržetić I (2008) Two new examples of very short thallium-transition metal contacts: Tl3Ag3Sb2S6 and Tl3Ag3As2S6. J Alloys Compd 457:66–74

    Google Scholar 

  • Karpova KN, Kon’kova EA, Larkin ED, Savel’ev VF (1958) Avicennite, a new mineral. Doklady Akademii Nauk Uzbekistan SSR 2:23–26 (in Russian)

    Google Scholar 

  • Kasatkin AV, Stepanov SYu, Tsyganko MV, Škoda R, Nestola F, Plášil J, Makovicky E, Agakhanov AA, Palamarchuk RS (2022) Mineralogy of the Vorontsovskoe gold deposit (Northern Urals). Mineralogy 8:5–93

    Google Scholar 

  • Laznicka P (2010) Giant metallic deposits: future sources of industrial metals, 2nd edn. Springer-Verlag, Berlin Heidelberg, p 826

    Google Scholar 

  • Lin J, Yin M, Wang J, Liu J, Tsang DCW, Wang Y, Lin M, Li H, Zhou Y, Song G, Chen Y (2020) Geochemical fractionation of thallium in contaminated soils near a large-scale Hg-Tl mineralized area. Chemosphere 239:124775

    Google Scholar 

  • Lottermoser BG (2010) Mine wastes: characterization, treatment and environmental impacts, 3rd edn. Springer, Berlin, p 400

    Google Scholar 

  • Lottermoser BG (2017) Predictive environmental indicators in metal mining. In: Environmental indicators in metal mining, pp 3–12, Springer: Berlin/Heidelberg, Germany

  • Majzlan J, Drahota P, Filippi M (2014) Paragenesis and crystal chemistry of arsenic minerals. Rev Mineral Geochem 79:17–184

    Google Scholar 

  • Majzlan J, Haase P, Plášil J, Dachs E (2019) Synthesis and stability of some members of the pharmacosiderite group, AFe4(OH)4(AsO4)3nH2O (A= K, Na, 0.5Ba, 0.5Sr). Can Mineral 57:663–675

    Google Scholar 

  • Manceau A, Simionovic AS, Findling N, Glatzel P, Detlefs B, Wegorzewski AV, Mizell K, Hein JR, Koschinsky A (2022) Crystal chemistry of thallium in marine ferromanganese deposits. ACS Earth Space Chem 6:1269–1285

    Google Scholar 

  • Martin LA, Wissocq A, Benedetti MF, Latrille C (2018) Thallium (Tl) sorption onto illite and smectite: Implications for Tl mobility in the environment. Geochim Cosmochim Acta 230:1–16

    Google Scholar 

  • Mills SJ, Kampf AR, Williams PA, Leverett P, Poirier G, Raudsepp M, Francis CA (2010a) Hydroniumpharmacosiderite, a new member of the pharmacosiderite supergroup from Cornwall, UK: structure and description. Mineral Mag 74:863–869

    Google Scholar 

  • Mills SJ, Hager SL, Leverett P, Williams PA, Raudsepp M (2010b) The structure of H3O+-exchanged pharmacosiderite. Mineral Mag 74:487–492

    Google Scholar 

  • Mills SJ, Rumsey MS, Favreu G, Spratt J, Raudsepp M, Dini M (2011) Bariopharmacoalumite, a new mineral species from Cap Garonne, France and Mina Grande, Chile. Mineral Mag 75:135–144

    Google Scholar 

  • Mills SJ, Petrini E, Bellatreccia F, Schlüter J, Kampf A, Rumsey M, Dini M, Spratt J (2013) Caesiumpharmacosiderite, IMA 2013–096. CNMNC Newsletter No. 18, December 2013, page 3257. Mineral Mag 77:3249–3258

    Google Scholar 

  • Mills SJ, Meisser N, Rumsey MS, Hay DG, Spratt J, Ansermet S, Vonlanthen P (2014) Strontiopharmacosiderite, IMA 2013–101. CNMNC Newsletter No. 19, February 2014, page 166. Mineral Mag 78:165–170

    Google Scholar 

  • Momma K, Izumi F (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 44:1272–1276

    Google Scholar 

  • Morin G, Lecocq D, Juillot F, Calas G, Ildefonse P, Belin S, Briois V, Dillmann P, Chevallier P, Gauthier C, Sole A, Petit PE, Borensztajn S (2002) EXAFS evidence of sorbed arsenic(V) and pharmacosiderite in a soil overlying the Echassières geochemical anomaly, Allier, France. Bull Soc Géolog France Société Géologique De France 173:281–291

    Google Scholar 

  • Nonius (2005-2007) COLLECT data collection software. 2005–2007 Nonius BV, Delft, The Netherlands

  • Otwinowski Z, Borek D, Majewski W, Minor W (2003) Multiparametric scaling of diffraction intensities. Acta Crystallogr A 59:228–234

    Google Scholar 

  • Parsons S, Flack HD, Wagner T (2013) Use of intensity quotients and differences in absolute structure refinement. Acta Crystallogr B 69:249–259

    Google Scholar 

  • Rodríguez-Mercado JJ, Álvarez-Barrera L, Mateos-Nava RA, Rodríguez-Espitia JD, Altamirano-Lozano MA (2019) Induction of cytotoxicity in human cells exposed to thallium(I) and thallium(III). Curr Top Toxicol 15:17–27

    Google Scholar 

  • Rumsey MS, Mills SJ, Spratt J (2010) Natropharmacoalumite, NaAl4[(OH)4(AsO4)3]·4H2O, a new mineral of the pharmacosiderite supergroup and the renaming of aluminopharmacosiderite to pharmacoalumite. Mineral Mag 74:929–936

    Google Scholar 

  • Rumsey MS, Mills SJ, Spratt J, Hay DG, Farber G (2014) Thalliumpharmacosiderite, IMA 2013–124. CNMNC Newsletter No. 20, June 2014, page 553. Mineral Mag 78:549–558

    Google Scholar 

  • Schmetzer K, Horn W, Bank H (1981) Alumopharmakosiderite, K[Al4(OH)4(AsO4)3]·6.5H2O, ein neues Mineral. N Jahrb Mineral Mh 1981:97–102

    Google Scholar 

  • Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32:751–767

    Google Scholar 

  • Sheldrick GM (2015a) SHELXT – Integrated space-group and crystal structure determination. Acta Crystallogr A 71:3–8

    Google Scholar 

  • Sheldrick GM (2015b) Crystal structure refinement with SHELXL. Acta Crystallogr C 71:3–8

    Google Scholar 

  • Steinfeld A, Ðorđević T, Kolitsch U, Nagl P, Tasev G, Serafimovski T, Boev I, Boev B (2021) An update on secondary thallium minerals. Mitt Österr Mineral Ges 167:145

    Google Scholar 

  • Van Aken P, Liebscher B (2002) Quantification of ferrous/ferric ratios in minerals: new evaluation schemes of Fe L23 electron energy-loss near-edge spectra. Phys Chem Mineral 29:188–200

    Google Scholar 

  • Vaněk A, Chrastný V, Mihaljevič M, Drahota P, Grygar T, Komárek M (2009) Lithogenic thallium behaviour in soils with different land use. J Geochem Explor 102:7–12

    Google Scholar 

  • Vaněk A, Komárek M, Vorkurková P, Mihaljevič M, Šebek O, Panušková G, Chrastný V, Drábek O (2011) Effect of illite and birnessite on thallium retention and bioavailability in contaminated soils. J Hazard Mater 191:170–176

    Google Scholar 

  • Vaněk A, Grösslová Z, Mihaljevič M, Ettler V, Trubač J, Chrastný V, Penížek V, Teper L, Cabala J, Voegelin A, Zádorová T, Oborná V, Drábek O, Holubík O, Houška J, Pavlů L, Ash C (2018) Thallium isotopes in metallurgical wastes/ contaminated soils: a novel tool to trace metal source and behavior. J Hazard Mater 343:78–85

    Google Scholar 

  • Vaněk A, Vejvodová K, Mihaljevič M, Ettler V, Trubač J, Vaňková M, Goliáš V, Teper L, Sutkowska K, Vokurková P, Penížek V, Zádorová T, Drábek O (2021) Thallium and lead variations in a contaminated peatland: A combined isotopic study from a mining/smelting area. Environ Poll 290:117973–117982

    Google Scholar 

  • Vaněk A, Vejvodová K, Mihaljevič M, Ettler V, Trubač J, Vaňková M, Teper L, Cabala J, Sutkowska K, Voegelin A, Göttlicher J, Holubík O, Vokurková P, Pavlů L, Galušková I, Zádorová T (2022) Evaluation of thallium isotopic fractionation during the metallurgical processing of sulphides: an update. J Hazard Mater 424:127325–127332

    Google Scholar 

  • Vignola P, Rotiroti N, Hatert F, Dal Bo F, Gentile P, Albertini C, Merlini M, Risplendente A, Pavese A (2018) Plumbopharmacosiderite, Pb0.5Fe3+4[(OH)4(AsO4)3]∙5H2O, a new mineral species from the Monte Falò Pb-Zn mine near the village of Coiromonte in the Armeno municipality, Novara Province, Italy. Can Mineral 56:143–150

    Google Scholar 

  • Voegelin A, Pfenninger N, Petrikis J, Majzlan J, Plötze M, Senn A-C, Mangold S, Steininger R, Göttlicher J (2015) Thallium speciation and extractability in a thallium- and arsenic-rich soil developed from mineralized carbonate rock. Environ Sci Technol 49:5390–5398

    Google Scholar 

  • Voegelin A, Wick S, Pfenninger N, Mangold S, Baeyens B, Marques Fernandes M (2022) Thallium adsorption onto phyllosilicate minerals. Environ Sci Processes Impacts 24:1343–1350

    Google Scholar 

  • Voudouris P, Kati M, Magganas A, Keith M, Valsami-Jones E, Haase K, Klemd R, Nestmeyer M (2021) Arsenian pyrite and cinnabar from active submarine nearshore vents. Paleochori Bay, Milos Island, Greece. Minerals 11:1–25

    Google Scholar 

  • Warr LN (2021) IMA-CNMNC approved symbols. Mineral Mag 85:291–320

    Google Scholar 

  • Wick S, Baeyens B, Marques Fernandes M, Voegelin A (2018) Thallium adsorption onto illite. Environ Sci Technol 5:571–580

    Google Scholar 

  • Wick S, Peña J, Voegelin A (2019) Thallium sorption onto manganese oxides. Environ Sci Technol 53:13168–13178

    Google Scholar 

  • Wick S, Baeyens B, Marques Fernandes M, Göttlicher J, Fischer M, Pfenninger N, Plötze M, Voegelin A (2020) Thallium sorption and speciation in soils: Role of micaceous clay minerals and manganese oxides. Geochim Cosmochim Acta 288:83–100

    Google Scholar 

  • Willner J, Fornalczyk A, Jablonska-Czapla M, Grygoyc K, Rachwal M (2021) Studies on the content of selected technology critical elements (Germanium, Tellurium and Thallium) in electronic waste. Materials 14:3722–3737

    Google Scholar 

  • Zhou TF, Fan Y, Yuan F, Wu MA, Hou MJ, Voicu G, Hu QH, Zhang QM, Yue SC (2005) A preliminary geological and geochemical study of the Xiangquan thallium deposit, eastern China: the world’s first thallium-only mine. Mineral Petrol 85:243–251

    Google Scholar 

Download references

Acknowledgements

We are very grateful to Uwe Kolitsch for the assistance during the SEM-EDS measurements and for taking photos of our crystals. We are thankful to Tonči Balić-Žunić for the editorial handling of the manuscript and to two anonymous reviewers for their careful corrections and comments, which helped to improve the manuscript.

Funding

Financial support by the Austrian Science Foundation (FWF) (Grant P 30900-N28) to TĐ and MSP is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamara Đorđević.

Additional information

Editorial handling: T. Balic-Zunic

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Đorđević, T., Karasalihović, T., Stöger-Pollach, M. et al. Tl(I) sequestration by pharmacosiderite supergroup arsenates: synthesis, crystal structures and relationships in Tl(I)–M(III)–As(V)–H2O (M = Al, Fe) system. Miner Petrol 117, 325–343 (2023). https://doi.org/10.1007/s00710-023-00823-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-023-00823-4

Keywords

Navigation