Skip to main content
Log in

Statistical diagnostics for sensing spatial residue cover

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Timely information on within field soil quality spatial variability is pertinent for sustainable agroecosystem management. Although, plant residues constitute a critical input influencing soil quality dynamic, robust baseline residue maps to inform agricultural policy are nonexistent. Remote sensing-based indices can be used to generate maps that can provide timely information on within-field spatial distribution of residue cover. However, heavily used indices such as the Cellulose Absorption Index (CAI), Lignin Cellulose Absorption (LCA) index, or the Shortwave Infrared Normalized Difference Residue Index (SINDRI) rely on data scanned within the 2000 to 2500 nm spectral wavelength window, thus are impractical for mapping because most freely accessible spaceborne sensors collect significant data within the 450 to 1750 nm wavelength range. Here, insitu line transect residue cover measurements were integrated with spectral reflectance data scanned by Cropscan handheld multispectral radiometer (MSR) and satellite sensors, to identify alternative indices within the 450 to 1750 nm wavelength range suitable for monitoring residue cover. The green band reflectance had the highest correlation with spatial variability in residue cover, followed closely by the blue band. Analyzed data shows that Normalized Difference Vegetation Indexwide band (NDVIw), preeminently mapped corn (Zea mays) residue cover, with an R2 of 0.95 between residue mapped by satellite vis a vis in situ field measurements. The line transect residue measurements from field plots sampled at Aurora (48%) and Badger (57%) fell within the range estimated by satellite (30 to 60%), but this was not true for the Lennox site (72%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated and analysed in this study are included in this article, and appendix.

References

  • Andrews, S. (2006). Crop residue removal for biomass energy production: Effect on soils and recommendations.

  • Barnes, E. M., Sudduth, K. A., Hummel, J. W., Lesch, S. M., Corwin, D. L., Yang, C.,  Daughtry, C. S. T., Bausch, W. C. (2003). Remote- and ground-based sensor techniques to map soil properties. Photogrammetric Engineering & Remote Sensing, 69, 619–630.

    Article  Google Scholar 

  • Biard, F., & Baret, F. (1997). Crop residue estimation using multiband reflectance. Remote Sensing of Environment, 59, 530–536.

    Article  Google Scholar 

  • Blanco-Canqui, H., & Lal, R. (2007). Impacts of long-term wheat straw management on soil hydraulic properties under no-tillage. Soil Science Society of America Journal, 71, 1166–1173.

    Article  CAS  Google Scholar 

  • Blanco-Canqui, H., Lal, R., Post, W. M., & Owens, L. B. (2006). Changes in long-term no-till corn growth and yield under different rates of Stover mulch. Agronomy Journal, 98, 1128–1136.

    Article  Google Scholar 

  • Bonham-Carter, G. F. (1988). Numerical procedures and computer program for fitting an inverted Gaussian model to vegetation reflectance data. Computers & Geosciences, 14, 339–356.

    Article  Google Scholar 

  • Bouma, J., Wopereis, M. C. S, Wösten, J. H. M., & Stein, A. (1993). Soil data for crop-soil models. In F. Penning de Vries, P. Teng, & K. Metselaar (Eds.), Systems approaches for agricultural development: Proceedings of the international symposium on systems approaches for agricultural development, 2–6 December 1991, Bangkok, Thailand. Springer Netherlands, Dordrecht (pp. 207–220).

  • Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression trees. Chapman and Hall.

    Google Scholar 

  • Broge, N. H., & Leblanc, E. (2001). Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sensing of Environment, 76, 156–172.

    Article  Google Scholar 

  • Bünemann, E. K., Bongiorno, G., Bai, Z., Creamer, R. E., De Deyn, G., de Goede, R., Fleskens, L., Geissen, V.,  Kuyper, T. W., Mäder, P.,  Pulleman, M., Sukkel, W., Van Groenigen, J.W., Brussaard, L. (2018). Soil quality—A critical review. Soil Biology and Biochemistry, 120, 105–125.

    Article  Google Scholar 

  • Chander, G., Markham, B. L., & Helder, D. L. (2009). Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sensing of Environment, 113, 893–903.

    Article  Google Scholar 

  • Chang, J., Clay, D. E., Leigh, L., Aaron, D., Dalsted, K., & Volz, M. (2008). Evaluating modified atmospheric correction methods for landsat imagery: Image-based and model-based calibration methods. Communications in Soil Science and Plant Analysis, 39, 1532–1545.

    Article  CAS  Google Scholar 

  • Chang, J., Clay, S. A., Clay, D. E., Aaron, D., Helder, D., & Dalsted, K. (2005). Clouds influence precision and accuracy of ground-based spectroradiometers. Communications in Soil Science and Plant Analysis, 36, 1799–1807.

    Article  CAS  Google Scholar 

  • Chang, J., Clay, S. A., Clay, D. E., & Dalsted, K. (2004). Detecting weed-free and weed-infested areas of a soybean field using near-infrared spectral data. Weed Science, 52, 642–648.

    Article  CAS  Google Scholar 

  • CTIC. (2011). Conservation Technology Information Center’s (CTIC) National Crop Residue Management Survey (CRM). 4/22/2022.

  • Daughtry, C. S. T., Doraiswamy, P. C., Hunt, E. R., Stern, A. J., McMurtrey, J. E., & Prueger, J. H. (2006). Remote sensing of crop residue cover and soil tillage intensity. Soil & Tillage Research, 91, 101–108.

    Article  Google Scholar 

  • Daughtry, C. S. T., Hunt, E. R., Jr., Doraiswamy, P. C., & McMurtrey, J. E., III. (2005). Remote sensing the spatial distribution of crop residues. Agronomy Journal, 97, 864–871.

    Article  Google Scholar 

  • Daughtry, C., Hunt, E. R., Jr., Doraiswamy, P. C., McMurtrey, J. E., III, & Russ, A. (2003). Remote sensing of crop residue cover and soil tillage intensity.

  • Daughtry, C. S. T., Serbin, G., Reeves, J. B., Doraiswamy, P. C., & Hunt, E. R. (2010). Spectral Reflectance of wheat residue during decomposition and remotely sensed estimates of residue cover. Remote Sensing, 2, 416–431.

    Article  Google Scholar 

  • Davidson, E. A., Savage, K., Bolstad, P., Clark, D. A., Curtis, P. S., Ellsworth, D. S.,Hanson, P.J, Law,  B. E.,  Luo, Y., Pregitzer, K., Randolph, J. C., Zak, D. (2002). Belowground carbon allocation in forests estimated from litterfall and IRGA-based soil respiration measurements. Agricultural and Forest Meteorology, 113, 39–51.

    Article  Google Scholar 

  • de Paul, O. V. (2019). Integrating management information with soil quality dynamics to monitor agricultural productivity. Science of the Total Environment, 651, 2036–2043.

    Article  Google Scholar 

  • de Paul, O. V., Gaya, C., & Obade, P. T. (2022). Challenges and opportunities of digital technology in soil quality and land management research. In C. M. Galanakis (Ed.), Environment and climate-smart food production (pp. 285–317). Springer.

    Google Scholar 

  • de Paul, O. V., & Lal, R. (2014). Soil quality evaluation under different land management practices. Environmental Earth Sciences, 72, 4531–4549.

    Article  Google Scholar 

  • de Paul, O. V., & Lal, R. (2016). Towards a standard technique for soil quality assessment. Geoderma, 265, 96–102.

    Article  Google Scholar 

  • Dennison, P. E., & Roberts, D. A. (2003). Endmember selection for multiple endmember spectral mixture analysis using endmember average RMSE. Remote Sensing of Environment, 87, 123–135.

    Article  Google Scholar 

  • Deventer, A., Ward, A. D., Gowda, P. H., & Lyon, J. G. (1997). Using thematic mapper data to identify contrasting soil plains and tillage practices. Photogrammetric Engineering and Remote Sensing, 63, 87–93.

    Google Scholar 

  • EROS. (2019). USGS EROS Archive - ISRO Resourcesat 1 and Resourcesat 2 - AWiFS, Earth Resources Observation and Science (EROS) Center.

  • Fargione, J., Hill, J., Tilman, D., Polasky, S., & Hawthorne, P. (2008). Land Clearing and the Biofuel Carbon Debt. Science, 319, 1235–1238.

    Article  CAS  PubMed  Google Scholar 

  • Freund, R., & William, W. (2003). Statistical methods. Elsevier.

    Google Scholar 

  • Gao, B.-c. (1996). NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 58, 257–266.

    Article  Google Scholar 

  • Gelder, B. K., Kaleita, A. L., & Cruse, R. M. (2009). Estimating mean field residue cover on midwestern soils using satellite imagery. Agronomy Journal, 101, 635–643.

    Article  Google Scholar 

  • Haboudane, D., Miller, J., Tremblay, N., Zarco-Tejada, P., & Dextraze, L. (2002). Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sensing of Environment, 81, 416–426.

    Article  Google Scholar 

  • Hargrove, W. W., Hoffman, F. M., & Hessburg, P. F. (2006). Mapcurves: A quantitative method for comparing categorical maps. Journal of Geographical Systems, 8, 187–208.

    Article  Google Scholar 

  • Hothorn, T., & Everitt, B. S. (2006a). A handbook of statistical analyses using R. Chapman and Hall/CRC.

    Book  Google Scholar 

  • Ju, J., & Roy, D. P. (2008). The availability of cloud-free Landsat ETM+ data over the conterminous United States and globally. Remote Sensing of Environment, 112, 1196–1211.

    Article  Google Scholar 

  • Lillesand, T. M., Johnson, W. L., Deuell, R. L., Lindstrom, O. M., & Meisner, D. E. (1983). Use of Landsat data to predict the trophic state of Minnesota Lakes. Photogrammetric Engineering and Remote Sensing, 49, 219–229.

    Google Scholar 

  • Lillesand, T. M., & Kiefer, R. W. (2000). Remote sensing and image interpretation. Wiley.

    Google Scholar 

  • Markham, B., Goward, S., Arvidson, T., Barsi, J., & Scaramuzza, P. (2006). Landsat-7 long-term acquisition plan radiometry—Evolution over time. Photogrammetric Engineering & Remote Sensing, 72, 1129–1135.

    Article  Google Scholar 

  • Masek, J., Vermote, E., Saleous, N., Wolfe, R., Hall, F., Huemmrich, K., Gao, F., Kutler, J., Lim, T., K. (2006). A Landsat surface reflectance data set for North America, 1990–2000. Geoscience and Remote Sensing Letters, IEEE, 3, 68–72.

    Article  Google Scholar 

  • McCarthy, J. R. (1993). Conservation tillage and residue management to reduce soil erosion. Natural Resources Conservation Service

  • McNairn, H., & Protz, R. (1993). Mapping corn residue cover on agricultural fields in Oxford County, Ontario, using thematic mapper. Canadian Journal of Remote Sensing, 19, 152–159.

    Article  Google Scholar 

  • Montgomery, D. C. (1991). Design and analysis of experiments. Wiley.

    Google Scholar 

  • Nagler, P., Daughtry, C., & Goward, S. (2000). Plant litter and soil reflectance. Remote Sensing of Environment, 71, 207–215.

    Article  Google Scholar 

  • NASA. (2022b). AVIRIS - Airborne Visible / Infrared Imaging ... - NASA.

  • NASA. (2022a). ASTER SWIR.

  • Obade, V. P., Clay, D. E., Carlson, C. G., Dalsted, K., Wylie, B., Ren, C., Clay, S. A. (2011). Estimating nonharvested crop residue cover dynamics using remote sensing. Progress in Biomass and Bioenergy Production, 17, 325–332.

    Google Scholar 

  • Obade, V. P., & Gaya, C. (2020a). Mapping tillage practices using spatial information techniques. Environmental Management, 66, 722–731.

    Article  PubMed  Google Scholar 

  • Obade, V. P., & Gaya, C. (2021). Digital technology dilemma: On unlocking the soil quality index conundrum. Bioresources and Bioprocessing, 8, 6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pacheco, A., & McNairn, H. (2010). Evaluating multispectral remote sensing and spectral unmixing analysis for crop residue mapping. Remote Sensing of Environment, 114, 2219–2228.

    Article  Google Scholar 

  • Rondeaux, G., Steven, M., & Baret, F. (1996). Optimization of soil-adjusted vegetation indices. Remote Sensing of Environment, 55, 95–107.

    Article  Google Scholar 

  • Rouse, J. W., Haas, R. W., Schell, J. A., Deering, D. W., & Harlan, J. C. (1974). Monitoring the Vernal Advancement and Retrogradation (Greenwave Effect) of Natural Vegetation, NASA/GSFCT Type III Final Report.

  • Roy, D., Ju, J., Kline, K., Scaramuzza, P., Kovalskyy, V., Hansen, M., Loveland, T., Vermote, E., Zhang, C. (2010). Web-enabled Landsat Data (WELD): Landsat ETM+ composited mosaics of the conterminous United States. Remote Sensing of Environment, 114, 35–49.

    Article  Google Scholar 

  • Roy, D. P., Ju, J., Lewis, P., Schaaf, C., Gao, F., Hansen, M., Lindquist, E. (2008). Multi-temporal MODIS–Landsat data fusion for relative radiometric normalization, gap filling, and prediction of Landsat data. Remote Sensing of Environment, 112, 3112–3130.

    Article  Google Scholar 

  • Roy, D. P., Wulder, M. A., Loveland, T. R., Woodcock, C. E., Allen, R. G., Anderson, M. C.,  Helder, D., Irons, J. R., Johnson, D. M., Kennedy, R., Scambos, T. A., Schaaf, C. B., Schott, J.R., Sheng, Y., Vermote, E.F., Belward, A.S., Bindschadler, R.A., Cohen, W.B., Gao, F., Hipple, J.D., Hostert, P., Huntington, J., Justice, C.O., Kilic, A., Kovalskyy, V., Lee, Z.P., Lymburner, L., Masek, J.G., McCorkel, J.,Shuai, Y., Trezza, R., Vogelmann, J., Wynne, R.H., Zhu, Z. (2014). Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145, 154–172.

    Article  Google Scholar 

  • Serbin, G., Hunt, E. R., Daughtry, C. S. T., McCarty, G. W., & Doraiswamy, P. C. (2009). An Improved ASTER Index for remote sensing of crop residue. Remote Sensing, 1, 971–991.

    Article  Google Scholar 

  • South, S., Qi, J., & Lusch, D. (2004). Optimal classification methods for mapping agricultural tillage practices. Remote Sensing of Environment, 91, 90–97.

    Article  Google Scholar 

  • Thoma, D., Gupta, S., & Bauer, M. (2004). Evaluation of optical remote sensing models for crop residue cover assessment. Journal of Soil and Water Conservation, 59, 224–233.

    Google Scholar 

  • USDA. (2010). United State Department of Agriculture (USDA). Retrieved February 2, 2023, from, https://croplandcros.scinet.usda.gov/

  • USGS. (2022). USGS EROS Archive - Earth Observing One (EO-1) - Hyperion.

  • Vitale, J. D., Godsey, C., Edwards, J., & Taylor, R. (2011). The adoption of conservation tillage practices in Oklahoma: Findings from a producer survey. Journal of Soil and Water Conservation, 66, 250–264.

    Article  Google Scholar 

  • Wang, C. K., Li, Z. T., & Pan, X. Z. (2017). Estimating crop residue cover using SPOT 5 data. Journal of Soil and Water Conservation, 72, 343–350.

    Article  Google Scholar 

  • Wang, L., Okin, G. S., Caylor, K. K., & Macko, S. A. (2009). Spatial heterogeneity and sources of soil carbon in southern African savannas. Geoderma, 149, 402–408.

    Article  CAS  Google Scholar 

  • Williams, D., Goward, S., & Arvidson, T. (2006). Landsat: Yesterday, today, and tomorrow. Photogrammetric Engineering & Remote Sensing, 72, 1171–1178.

    Article  Google Scholar 

  • Wollenhaupt, N. C., Hammer, R. D., & Thompson, B. W. (1993). Missouri soil surveys.

  • Zarco-Tejada, P., Whiting, M., & Ustin, S. (2005). Temporal and spatial relationships between within-field yield variability in cotton and high-spatial hyperspectral remote sensing imagery. Agronomy Journal, 97, 641–653.

    Article  Google Scholar 

  • Zheng, B., Campbell, J. B., & de Beurs, K. M. (2012). Remote sensing of crop residue cover using multi-temporal Landsat imagery. Remote Sensing of Environment, 117, 177–183.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent de Paul Obade.

Ethics declarations

Conflict of interest

The authors do not have any conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Figs. 9 and 10 and Tables 16, 17, 18, 19, 20, and 21.

Table 16 Principal Components (PC) importance for Aurora from year 2009 data
Table 17 Principal Components (PC) importance for Badger from year 2009 data
Table 18 Principal components (PC) importance for Aurora site, year 2009
Table 19 Principal components (PC) importance for Badger site, year 2009
Table 20 Principal components (PC) importance for Aurora site, year 2010
Table 21 Principal components (PC) importance for Badger site, year 2010
Fig. 9
figure 9

Percent residue cover versus indices correlation graphs for Aurora (A), and Badger (B), from year 2009 data. The x-axis are respective principal components (PC)

Fig. 10
figure 10

Percent residue cover verses indices correlation graphs for Aurora (A), and Badger (B) site, year 2010. The x-axis are respective principal components (PC)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Paul Obade, V., Gaya, C.O. & Obade, P.T. Statistical diagnostics for sensing spatial residue cover. Precision Agric 24, 1932–1964 (2023). https://doi.org/10.1007/s11119-023-10024-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-023-10024-w

Keywords

Navigation