1932

Abstract

There is a dramatic remodeling of the T cell compartment during aging. The most notorious changes are the reduction of the naive T cell pool and the accumulation of memory-like T cells. Memory-like T cells in older people acquire a phenotype of terminally differentiated cells, lose the expression of costimulatory molecules, and acquire properties of senescent cells. In this review, we focus on the different subsets of age-associated T cells that accumulate during aging. These subsets include extremely cytotoxic T cells with natural killer properties, exhausted T cells with altered cytokine production, and regulatory T cells that gain proinflammatory features. Importantly, all of these subsets lose their lymph node homing capacity and migrate preferentially to nonlymphoid tissues, where they contribute to tissue deterioration and inflammaging.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-101721-064501
2023-04-26
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/immunol/41/1/annurev-immunol-101721-064501.html?itemId=/content/journals/10.1146/annurev-immunol-101721-064501&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Lynch HE, Goldberg GL, Chidgey A, Van den Brink MRM, Boyd R, Sempowski GD 2009. Thymic involution and immune reconstitution. Trends Immunol 30:7366–73
    [Google Scholar]
  2. 2.
    den Braber I, Mugwagwa T, Vrisekoop N, Westera L, Mögling R et al. 2012. Maintenance of peripheral naive T cells is sustained by thymus output in mice but not humans. Immunity 36:2288–97
    [Google Scholar]
  3. 3.
    Mittelbrunn M, Kroemer G. 2021. Hallmarks of T cell aging. Nat. Immunol. 22:6687–98
    [Google Scholar]
  4. 4.
    Haluszczak C, Akue AD, Hamilton SE, Johnson LDS, Pujanauski L et al. 2009. The antigen-specific CD8+ T cell repertoire in unimmunized mice includes memory phenotype cells bearing markers of homeostatic expansion. J. Exp. Med. 206:2435–48
    [Google Scholar]
  5. 5.
    Sosinowski T, White JT, Cross EW, Haluszczak C, Marrack P et al. 2013. CD8α+ dendritic cell trans presentation of IL-15 to naive CD8+ T cells produces antigen-inexperienced T cells in the periphery with memory phenotype and function. J. Immunol. 190:51936–47
    [Google Scholar]
  6. 6.
    Quinn KM, Fox A, Harland KL, Russ BE, Li J et al. 2018. Age-related decline in primary CD8+ T cell responses is associated with the development of senescence in virtual memory CD8+ T cells. Cell Rep 23:123512–24
    [Google Scholar]
  7. 7.
    Akbar AN, Henson SM. 2011. Are senescence and exhaustion intertwined or unrelated processes that compromise immunity?. Nat. Rev. Immunol. 11:4289–95
    [Google Scholar]
  8. 8.
    Mogilenko DA, Shchukina I, Artyomov MN. 2022. Immune ageing at single-cell resolution. Nat. Rev. Immunol. 22:8484–98
    [Google Scholar]
  9. 9.
    Martínez-Zamudio RI, Dewald HK, Vasilopoulos T, Gittens-Williams L, Fitzgerald-Bocarsly P, Herbig U 2021. Senescence-associated β-galactosidase reveals the abundance of senescent CD8+ T cells in aging humans. Aging Cell 20:5e13344
    [Google Scholar]
  10. 10.
    Andreu-Sánchez S, Aubert G, Ripoll-Cladellas A, Henkelman S, Zhernakova DV et al. 2022. Genetic, parental and lifestyle factors influence telomere length. Commun. Biol. 5:1565
    [Google Scholar]
  11. 11.
    Nguyen LNT, Nguyen LN, Zhao J, Schank M, Dang X et al. 2022. TRF2 inhibition rather than telomerase disruption drives CD4T cell dysfunction during chronic viral infection. J. Cell Sci. 135:13jcs259481
    [Google Scholar]
  12. 12.
    Lanna A, Vaz B, D'Ambra C, Valvo S, Vuotto C et al. 2022. An intercellular transfer of telomeres rescues T cells from senescence and promotes long-term immunological memory. Nat. Cell Biol. 24:101461–74
    [Google Scholar]
  13. 13.
    Ron-Harel N, Notarangelo G, Ghergurovich JM, Paulo JA, Sage PT et al. 2018. Defective respiration and one-carbon metabolism contribute to impaired naïve T cell activation in aged mice. PNAS 115:5213347–52
    [Google Scholar]
  14. 14.
    Bektas A, Schurman SH, Gonzalez-Freire M, Dunn CA, Singh AK et al. 2019. Age-associated changes in human CD4+ T cells point to mitochondrial dysfunction consequent to impaired autophagy. Aging 11:219234–63
    [Google Scholar]
  15. 15.
    Desdín-Micó G, Soto-Heredero G, Aranda JF, Oller J, Carrasco E et al. 2020. T cells with dysfunctional mitochondria induce multimorbidity and premature senescence. Science 368:64971371–76
    [Google Scholar]
  16. 16.
    Moro-García MA, Alonso-Arias R, López-Larrea C 2013. When aging reaches CD4+ T-cells: phenotypic and functional changes. Front. Immunol. 4:107
    [Google Scholar]
  17. 17.
    Thewissen M, Somers V, Hellings N, Fraussen J, Damoiseaux J, Stinissen P. 2007. CD4+CD28null T cells in autoimmune disease: pathogenic features and decreased susceptibility to immunoregulation. J. Immunol. 179:106514–23
    [Google Scholar]
  18. 18.
    Weyand CM, Brandes JC, Schmidt D, Fulbright JW, Goronzy JJ. 1998. Functional properties of CD4+ CD28 T cells in the aging immune system. Mech. Ageing Dev. 102:2–3131–47
    [Google Scholar]
  19. 19.
    Mou D, Espinosa J, Lo DJ, Kirk AD. 2014. CD28 negative T cells: Is their loss our gain?. Am. J. Transplant. 14:112460–66
    [Google Scholar]
  20. 20.
    Elyahu Y, Hekselman I, Eizenberg-Magar I, Berner O, Strominger I et al. 2019. Aging promotes reorganization of the CD4 T cell landscape toward extreme regulatory and effector phenotypes. Sci. Adv. 5:8eaaw8330
    [Google Scholar]
  21. 21.
    Lanna A, Gomes DCO, Muller-Durovic B, McDonnell T, Escors D et al. 2017. A sestrin-dependent Erk-Jnk-p38 MAPK activation complex inhibits immunity during aging. Nat. Immunol. 18:3354–63
    [Google Scholar]
  22. 22.
    Pereira BI, De Maeyer RPH, Covre LP, Nehar-Belaid D, Lanna A et al. 2020. Sestrins induce natural killer function in senescent-like CD8+ T cells. Nat. Immunol. 21:6684–94
    [Google Scholar]
  23. 23.
    Blank CU, Haining WN, Held W, Hogan PG, Kallies A et al. 2019. Defining “T cell exhaustion. .” Nat. Rev. Immunol. 19:11665–74
    [Google Scholar]
  24. 24.
    Frebel H, Nindl V, Schuepbach RA, Braunschweiler T, Richter K et al. 2012. Programmed death 1 protects from fatal circulatory failure during systemic virus infection of mice. J. Exp. Med. 209:132485–99
    [Google Scholar]
  25. 25.
    Mogilenko DA, Shpynov O, Andhey PS, Arthur L, Swain A et al. 2021. Comprehensive profiling of an aging immune system reveals clonal GZMK+ CD8+ T cells as conserved hallmark of inflammaging. Immunity 54:199–115.e12
    [Google Scholar]
  26. 26.
    Morales-Nebreda L, Helmin KA, Torres Acosta MA, Markov NS, Hu JY-S et al. 2021. Aging imparts cell-autonomous dysfunction to regulatory T cells during recovery from influenza pneumonia. JCI Insight 6:6e141690
    [Google Scholar]
  27. 27.
    Sage PT, Tan CL, Freeman GJ, Haigis M, Sharpe AH. 2015. Defective TFH cell function and increased TFR cells contribute to defective antibody production in aging. Cell Rep 12:2163–71
    [Google Scholar]
  28. 28.
    Lefebvre JS, Masters AR, Hopkins JW, Haynes L. 2016. Age-related impairment of humoral response to influenza is associated with changes in antigen specific T follicular helper cell responses. Sci. Rep. 6:25051
    [Google Scholar]
  29. 29.
    Lefebvre JS, Maue AC, Eaton SM, Lanthier PA, Tighe M, Haynes L. 2012. The aged microenvironment contributes to the age-related functional defects of CD4 T cells in mice. Aging Cell 11:5732–40
    [Google Scholar]
  30. 30.
    Stebegg M, Bignon A, Hill DL, Silva-Cayetano A, Krueger C et al. 2020. Rejuvenating conventional dendritic cells and T follicular helper cell formation after vaccination. eLife 9:e52473
    [Google Scholar]
  31. 31.
    Webb LMC, Fra-Bido S, Innocentin S, Matheson LS, Attaf N et al. 2021. Ageing promotes early T follicular helper cell differentiation by modulating expression of RBPJ. Aging Cell 20:1e13295
    [Google Scholar]
  32. 32.
    Almanan M, Raynor J, Ogunsulire I, Malyshkina A, Mukherjee S et al. 2020. IL-10-producing Tfh cells accumulate with age and link inflammation with age-related immune suppression. Sci. Adv. 6:31eabb0806
    [Google Scholar]
  33. 33.
    Tahir S, Fukushima Y, Sakamoto K, Sato K, Fujita H et al. 2015. A CD153+CD4+ T follicular cell population with cell-senescence features plays a crucial role in lupus pathogenesis via osteopontin production. J. Immunol. 194:125725–35
    [Google Scholar]
  34. 34.
    Lee JL, Linterman MA. 2022. Mechanisms underpinning poor antibody responses to vaccines in ageing. Immunol. Lett. 241:1–14
    [Google Scholar]
  35. 35.
    Hu B, Jadhav RR, Gustafson CE, Le Saux S, Ye Z et al. 2020. Distinct age-related epigenetic signatures in CD4 and CD8 T cells. Front. Immunol. 11:585168
    [Google Scholar]
  36. 36.
    Moskowitz DM, Zhang DW, Hu B, Le Saux S, Yanes RE et al. 2017. Epigenomics of human CD8 T cell differentiation and aging. Sci. Immunol. 2:8eaag0192
    [Google Scholar]
  37. 37.
    Li G, Yu M, Lee W-W, Tsang M, Krishnan E et al. 2012. Decline in miR-181a expression with age impairs T cell receptor sensitivity by increasing DUSP6 activity. Nat. Med. 18:101518–24
    [Google Scholar]
  38. 38.
    Kim C, Hu B, Jadhav RR, Jin J, Zhang H et al. 2018. Activation of miR-21-regulated pathways in immune aging selects against signatures characteristic of memory T cells. Cell Rep 25:82148–62.e5
    [Google Scholar]
  39. 39.
    Li Q-J, Chau J, Ebert PJR, Sylvester G, Min H et al. 2007. miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell 129:1147–61
    [Google Scholar]
  40. 40.
    Kim C, Jadhav RR, Gustafson CE, Smithey MJ, Hirsch AJ et al. 2019. Defects in antiviral T cell responses inflicted by aging-associated miR-181a deficiency. Cell Rep 29:82202–216.e5
    [Google Scholar]
  41. 41.
    Jin J, Li X, Hu B, Kim C, Cao W et al. 2020. FOXO1 deficiency impairs proteostasis in aged T cells. Sci. Adv. 6:17eaba1808
    [Google Scholar]
  42. 42.
    Czesnikiewicz-Guzik M, Lee W-W, Cui D, Hiruma Y, Lamar DL et al. 2008. T cell subset-specific susceptibility to aging. Clin. Immunol. 127:1107–18
    [Google Scholar]
  43. 43.
    Wertheimer AM, Bennett MS, Park B, Uhrlaub JL, Martinez C et al. 2014. Aging and cytomegalovirus infection differentially and jointly affect distinct circulating T cell subsets in humans. J. Immunol. 192:52143–55
    [Google Scholar]
  44. 44.
    Sun X, Nguyen T, Achour A, Ko A, Cifello J et al. 2022. Longitudinal analysis reveals age-related changes in the T cell receptor repertoire of human T cell subsets. J. Clin. Investig. 132:17e158122
    [Google Scholar]
  45. 45.
    Mold JE, Réu P, Olin A, Bernard S, Michaëlsson J et al. 2019. Cell generation dynamics underlying naive T-cell homeostasis in adult humans. PLOS Biol 17:10e3000383
    [Google Scholar]
  46. 46.
    Seder RA, Ahmed R 2003. Similarities and differences in CD4+ and CD8+ effector and memory T cell generation. Nat. Immunol. 4:9835–42
    [Google Scholar]
  47. 47.
    Chiu B-C, Martin BE, Stolberg VR, Chensue SW. 2013. Cutting edge: Central memory CD8 T cells in aged mice are virtual memory cells. J. Immunol. 191:125793–96
    [Google Scholar]
  48. 48.
    Appay V, Dunbar PR, Callan M, Klenerman P, Gillespie GMA et al. 2002. Memory CD8+ T cells vary in differentiation phenotype in different persistent virus infections. Nat. Med. 8:4379–85
    [Google Scholar]
  49. 49.
    Brenchley JM, Karandikar NJ, Betts MR, Ambrozak DR, Hill BJ et al. 2003. Expression of CD57 defines replicative senescence and antigen-induced apoptotic death of CD8+ T cells. Blood 101:72711–20
    [Google Scholar]
  50. 50.
    Kared H, Martelli S, Ng TP, Pender SLF, Larbi A. 2016. CD57 in human natural killer cells and T-lymphocytes. Cancer Immunol. Immunother. 65:4441–52
    [Google Scholar]
  51. 51.
    Nishimura M, Umehara H, Nakayama T, Yoneda O, Hieshima K et al. 2002. Dual functions of fractalkine/CX3C ligand 1 in trafficking of perforin+/granzyme B+ cytotoxic effector lymphocytes that are defined by CX3CR1 expression. J. Immunol. 168:126173–80
    [Google Scholar]
  52. 52.
    Weng N-P, Akbar AN, Goronzy J. 2009. CD28 T cells: their role in the age-associated decline of immune function. Trends Immunol 30:7306–12
    [Google Scholar]
  53. 53.
    Henson SM, Riddell NE, Akbar AN. 2012. Properties of end-stage human T cells defined by CD45RA re-expression. Curr. Opin. Immunol. 24:4476–81
    [Google Scholar]
  54. 54.
    Zhang H, Weyand CM, Goronzy JJ, Gustafson CE. 2021. Understanding T cell aging to improve anti-viral immunity. Curr. Opin. Virol. 51:127–33
    [Google Scholar]
  55. 55.
    Vallejo AN, Mueller RG, Hamel DL, Way A, Dvergsten JA et al. 2011. Expansions of NK-like αβT cells with chronologic aging: novel lymphocyte effectors that compensate for functional deficits of conventional NK cells and T cells. Ageing Res. Rev. 10:3354–61
    [Google Scholar]
  56. 56.
    Gumá M, Busch LK, Salazar-Fontana LI, Bellosillo B, Morte C et al. 2005. The CD94/NKG2C killer lectin-like receptor constitutes an alternative activation pathway for a subset of CD8+ T cells. Eur. J. Immunol. 35:72071–80
    [Google Scholar]
  57. 57.
    Henel G, Singh K, Cui D, Pryshchep S, Lee W-W et al. 2006. Uncoupling of T-cell effector functions by inhibitory killer immunoglobulin-like receptors. Blood 107:114449–57
    [Google Scholar]
  58. 58.
    Pieren DKJ, Smits NAM, Postel RJ, Kandiah V, de Wit J et al. 2022. Co-expression of TIGIT and Helios marks immunosenescent CD8+ T cells during aging. Front. Immunol. 13:833531
    [Google Scholar]
  59. 59.
    Takeuchi A, Saito T. 2017. CD4 CTL, a cytotoxic subset of CD4+ T cells, their differentiation and function. Front. Immunol. 8:194
    [Google Scholar]
  60. 60.
    Appay V, Zaunders JJ, Papagno L, Sutton J, Jaramillo A et al. 2002. Characterization of CD4+ CTLs ex vivo. J. Immunol. 168:115954–58
    [Google Scholar]
  61. 61.
    Mucida D, Husain MM, Muroi S, van Wijk F, Shinnakasu R et al. 2013. Transcriptional reprogramming of mature CD4+ helper T cells generates distinct MHC class II-restricted cytotoxic T lymphocytes. Nat. Immunol. 14:3281–89
    [Google Scholar]
  62. 62.
    Lindsley MD, Torpey DJ, Rinaldo CR. 1986. HLA-DR-restricted cytotoxicity of cytomegalovirus-infected monocytes mediated by Leu-3-positive T cells. J. Immunol. 136:83045–51
    [Google Scholar]
  63. 63.
    Hong X, Meng S, Tang D, Wang T, Ding L et al. 2020. Single-cell RNA sequencing reveals the expansion of cytotoxic CD4+ T lymphocytes and a landscape of immune cells in primary Sjögren's syndrome. Front. Immunol. 11:594658
    [Google Scholar]
  64. 64.
    Raveney BJE, Oki S, Hohjoh H, Nakamura M, Sato W et al. 2015. Eomesodermin-expressing T-helper cells are essential for chronic neuroinflammation. Nat. Commun. 6:8437
    [Google Scholar]
  65. 65.
    Fu J, Zhang Z, Zhou L, Qi Z, Xing S et al. 2013. Impairment of CD4+ cytotoxic T cells predicts poor survival and high recurrence rates in patients with hepatocellular carcinoma. Hepatology 58:1139–49
    [Google Scholar]
  66. 66.
    Oh DY, Fong L. 2021. Cytotoxic CD4+ T cells in cancer: expanding the immune effector toolbox. Immunity 54:122701–11
    [Google Scholar]
  67. 67.
    Hashimoto K, Kouno T, Ikawa T, Hayatsu N, Miyajima Y et al. 2019. Single-cell transcriptomics reveals expansion of cytotoxic CD4 T cells in supercentenarians. PNAS 116:4824242–51
    [Google Scholar]
  68. 68.
    Alonso-Arias R, Moro-García MA, López-Vázquez A, Rodrigo L, Baltar J et al. 2011. NKG2D expression in CD4+ T lymphocytes as a marker of senescence in the aged immune system. Age 33:4591–605
    [Google Scholar]
  69. 69.
    Qui HZ, Hagymasi AT, Bandyopadhyay S, St. Rose M-C, Ramanarasimhaiah R et al. 2011. CD134 plus CD137 dual costimulation induces Eomesodermin in CD4 T cells to program cytotoxic Th1 differentiation. J. Immunol. 187:73555–64
    [Google Scholar]
  70. 70.
    Curran MA, Geiger TL, Montalvo W, Kim M, Reiner SL et al. 2013. Systemic 4–1BB activation induces a novel T cell phenotype driven by high expression of Eomesodermin. J. Exp. Med. 210:4743–55
    [Google Scholar]
  71. 71.
    Hirschhorn-Cymerman D, Budhu S, Kitano S, Liu C, Zhao F et al. 2012. Induction of tumoricidal function in CD4+ T cells is associated with concomitant memory and terminally differentiated phenotype. J. Exp. Med. 209:112113–26
    [Google Scholar]
  72. 72.
    Knudson CJ, Férez M, Alves-Peixoto P, Erkes DA, Melo-Silva CR et al. 2021. Mechanisms of antiviral cytotoxic CD4 T cell differentiation. J. Virol. 95:19e0056621
    [Google Scholar]
  73. 73.
    Reis BS, Rogoz A, Costa-Pinto FA, Taniuchi I, Mucida D. 2013. Mutual expression of the transcription factors Runx3 and ThPOK regulates intestinal CD4+ T cell immunity. Nat. Immunol. 14:3271–80
    [Google Scholar]
  74. 74.
    Ramello MC, Núñez NG, Tosello Boari J, Bossio SN, Canale FP et al. 2021. Polyfunctional KLRG-1+CD57+ senescent CD4+ T cells infiltrate tumors and are expanded in peripheral blood from breast cancer patients. Front. Immunol. 12:713132
    [Google Scholar]
  75. 75.
    Casazza JP, Betts MR, Price DA, Precopio ML, Ruff LE et al. 2006. Acquisition of direct antiviral effector functions by CMV-specific CD4+ T lymphocytes with cellular maturation. J. Exp. Med. 203:132865–77
    [Google Scholar]
  76. 76.
    Nicolet BP, Guislain A, Wolkers MC. 2021. CD29 enriches for cytotoxic human CD4+ T cells. J. Immunol. 207:122966–75
    [Google Scholar]
  77. 77.
    Zheng CF, Ma LL, Jones GJ, Gill MJ, Krensky AM et al. 2007. Cytotoxic CD4+ T cells use granulysin to kill Cryptococcus neoformans, and activation of this pathway is defective in HIV patients. Blood 109:52049–57
    [Google Scholar]
  78. 78.
    Téo FH, de Oliveira RTD, Mamoni RL, Ferreira MCS, Nadruz W et al. 2013. Characterization of CD4+CD28null T cells in patients with coronary artery disease and individuals with risk factors for atherosclerosis. Cell. Immunol. 281:111–19
    [Google Scholar]
  79. 79.
    Patil VS, Madrigal A, Schmiedel BJ, Clarke J, O'Rourke P et al. 2018. Precursors of human CD4+ cytotoxic T lymphocytes identified by single-cell transcriptome analysis. Sci. Immunol. 3:19eaan8664
    [Google Scholar]
  80. 80.
    Paludan C, Schmid D, Landthaler M, Vockerodt M, Kube D et al. 2005. Endogenous MHC class II processing of a viral nuclear antigen after autophagy. Science 307:5709593–96
    [Google Scholar]
  81. 81.
    Brien JD, Uhrlaub JL, Nikolich-Zugich J. 2008. West Nile virus-specific CD4 T cells exhibit direct antiviral cytokine secretion and cytotoxicity and are sufficient for antiviral protection. J. Immunol. 181:128568–75
    [Google Scholar]
  82. 82.
    Sáez-Borderías A, Gumá M, Angulo A, Bellosillo B, Pende D, López-Botet M. 2006. Expression and function of NKG2D in CD4+ T cells specific for human cytomegalovirus. Eur. J. Immunol. 36:123198–206
    [Google Scholar]
  83. 83.
    Alam MS, Cavanaugh C, Pereira M, Babu U, Williams K. 2020. Susceptibility of aging mice to listeriosis: role of anti-inflammatory responses with enhanced Treg-cell expression of CD39/CD73 and Th-17 cells. Int. J. Med. Microbiol. 310:2151397
    [Google Scholar]
  84. 84.
    van Leeuwen EMM, Remmerswaal EBM, Vossen MTM, Rowshani AT, Wertheim-van Dillen PME et al. 2004. Emergence of a CD4+CD28 granzyme B+, cytomegalovirus-specific T cell subset after recovery of primary cytomegalovirus infection. J. Immunol. 173:31834–41
    [Google Scholar]
  85. 85.
    Brown DM, Kamperschroer C, Dilzer AM, Roberts DM, Swain SL. 2009. IL-2 and antigen dose differentially regulate perforin- and FasL-mediated cytolytic activity in antigen specific CD4+ T cells. Cell. Immunol. 257:1–269–79
    [Google Scholar]
  86. 86.
    Pearce EL, Mullen AC, Martins GA, Krawczyk CM, Hutchins AS et al. 2003. Control of effector CD8+ T cell function by the transcription factor Eomesodermin. Science 302:56471041–43
    [Google Scholar]
  87. 87.
    Eshima K, Chiba S, Suzuki H, Kokubo K, Kobayashi H et al. 2012. Ectopic expression of a T-box transcription factor, eomesodermin, renders CD4+ Th cells cytotoxic by activating both perforin- and FasL-pathways. Immunol. Lett. 144:1–27–15
    [Google Scholar]
  88. 88.
    Śledzińska A, Vila de Mucha M, Bergerhoff K, Hotblack A, Demane DF et al. 2020. Regulatory T cells restrain interleukin-2- and Blimp-1-dependent acquisition of cytotoxic function by CD4+ T cells. Immunity 52:1151–66.e6
    [Google Scholar]
  89. 89.
    Donnarumma T, Young GR, Merkenschlager J, Eksmond U, Bongard N et al. 2016. Opposing development of cytotoxic and follicular helper CD4 T cells controlled by the TCF-1-Bcl6 nexus. Cell Rep 17:61571–83
    [Google Scholar]
  90. 90.
    Oja AE, Vieira Braga FA, Remmerswaal EBM, Kragten NAM, Hertoghs KML et al. 2017. The transcription factor Hobit identifies human cytotoxic CD4+ T cells. Front. Immunol. 8:325
    [Google Scholar]
  91. 91.
    Tian Y, Babor M, Lane J, Schulten V, Patil VS et al. 2017. Unique phenotypes and clonal expansions of human CD4 effector memory T cells re-expressing CD45RA. Nat. Commun. 8:11473
    [Google Scholar]
  92. 92.
    Mackay LK, Minnich M, Kragten NAM, Liao Y, Nota B et al. 2016. Hobit and Blimp1 instruct a universal transcriptional program of tissue residency in lymphocytes. Science 352:6284459–63
    [Google Scholar]
  93. 93.
    van Gisbergen KPJM, Kragten NAM, Hertoghs KML, Wensveen FM, Jonjic S et al. 2012. Mouse Hobit is a homolog of the transcriptional repressor Blimp-1 that regulates NKT cell effector differentiation. Nat. Immunol. 13:9864–71
    [Google Scholar]
  94. 94.
    Takeuchi A, Badr MESG, Miyauchi K, Ishihara C, Onishi R et al. 2016. CRTAM determines the CD4+ cytotoxic T lymphocyte lineage. J. Exp. Med. 213:1123–38
    [Google Scholar]
  95. 95.
    Wherry EJ. 2011. T cell exhaustion. Nat. Immunol. 12:6492–99
    [Google Scholar]
  96. 96.
    Sandu I, Cerletti D, Claassen M, Oxenius A. 2020. Exhausted CD8+ T cells exhibit low and strongly inhibited TCR signaling during chronic LCMV infection. Nat. Commun. 11:14454
    [Google Scholar]
  97. 97.
    Minato N, Hattori M, Hamazaki Y. 2020. Physiology and pathology of T-cell aging. Int. Immunol. 32:4223–31
    [Google Scholar]
  98. 98.
    McLane LM, Abdel-Hakeem MS, Wherry EJ. 2019. CD8 T cell exhaustion during chronic viral infection and cancer. Annu. Rev. Immunol. 37:457–95
    [Google Scholar]
  99. 99.
    Shakiba M, Zumbo P, Espinosa-Carrasco G, Menocal L, Dündar F et al. 2022. TCR signal strength defines distinct mechanisms of T cell dysfunction and cancer evasion. J. Exp. Med. 219:2e20201966
    [Google Scholar]
  100. 100.
    Crespo J, Sun H, Welling TH, Tian Z, Zou W. 2013. T cell anergy, exhaustion, senescence, and stemness in the tumor microenvironment. Curr. Opin. Immunol. 25:2214–21
    [Google Scholar]
  101. 101.
    Pauken KE, Wherry EJ. 2015. Overcoming T cell exhaustion in infection and cancer. Trends Immunol 36:4265–76
    [Google Scholar]
  102. 102.
    Chemnitz JM, Parry RV, Nichols KE, June CH, Riley JL 2004. SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation. J. Immunol. 173:2945–54
    [Google Scholar]
  103. 103.
    Sheppard K-A, Fitz LJ, Lee JM, Benander C, George JA et al. 2004. PD-1 inhibits T-cell receptor induced phosphorylation of the ZAP70/CD3ζ signalosome and downstream signaling to PKCθ. FEBS Lett 574:1–337–41
    [Google Scholar]
  104. 104.
    Bardhan K, Anagnostou T, Boussiotis VA. 2016. The PD1:PD-L1/2 pathway from discovery to clinical implementation. Front. Immunol. 7:550
    [Google Scholar]
  105. 105.
    Martinez GJ, Pereira RM, Äijö T, Kim EY, Marangoni F et al. 2015. The transcription factor NFAT promotes exhaustion of activated CD8+ T cells. Immunity 42:2265–78
    [Google Scholar]
  106. 106.
    Barber DL, Wherry EJ, Masopust D, Zhu B, Allison JP et al. 2006. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439:7077682–87
    [Google Scholar]
  107. 107.
    Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC et al. 2012. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 366:262443–54
    [Google Scholar]
  108. 108.
    Velu V, Titanji K, Zhu B, Husain S, Pladevega A et al. 2009. Enhancing SIV-specific immunity in vivo by PD-1 blockade. Nature 458:7235206–10
    [Google Scholar]
  109. 109.
    Duraiswamy J, Ibegbu CC, Masopust D, Miller JD, Araki K et al. 2011. Phenotype, function, and gene expression profiles of programmed death-1hi CD8 T cells in healthy human adults. J. Immunol. 186:74200–12
    [Google Scholar]
  110. 110.
    Khan O, Giles JR, McDonald S, Manne S, Ngiow SF et al. 2019. TOX transcriptionally and epigenetically programs CD8+ T cell exhaustion. Nature 571:7764211–18
    [Google Scholar]
  111. 111.
    Pereira RM, Hogan PG, Rao A, Martinez GJ. 2017. Transcriptional and epigenetic regulation of T cell hyporesponsiveness. J. Leukoc. Biol. 102:3601–15
    [Google Scholar]
  112. 112.
    Paley MA, Kroy DC, Odorizzi PM, Johnnidis JB, Dolfi DV et al. 2012. Progenitor and terminal subsets of CD8+ T cells cooperate to contain chronic viral infection. Science 338:61111220–25
    [Google Scholar]
  113. 113.
    Miller BC, Sen DR, Al Abosy R, Bi K, Virkud YV et al. 2019. Subsets of exhausted CD8+ T cells differentially mediate tumor control and respond to checkpoint blockade. Nat. Immunol. 20:3326–36
    [Google Scholar]
  114. 114.
    Zhao Y, Shao Q, Peng G. 2020. Exhaustion and senescence: two crucial dysfunctional states of T cells in the tumor microenvironment. Cell. Mol. Immunol. 17:127–35
    [Google Scholar]
  115. 115.
    Kim C, Jin J, Weyand CM, Goronzy JJ 2020. The transcription factor TCF1 in T cell differentiation and aging. Int. J. Mol. Sci. 21:186497
    [Google Scholar]
  116. 116.
    Hudson WH, Gensheimer J, Hashimoto M, Wieland A, Valanparambil RM et al. 2019. Proliferating transitory T cells with an effector-like transcriptional signature emerge from PD-1+ stem-like CD8+ T cells during chronic infection. Immunity 51:61043–58.e4
    [Google Scholar]
  117. 117.
    Zander R, Schauder D, Xin G, Nguyen C, Wu X et al. 2019. CD4+ T cell help is required for the formation of a cytolytic CD8+ T cell subset that protects against chronic infection and cancer. Immunity 51:61028–42.e4
    [Google Scholar]
  118. 118.
    Gupta PK, Godec J, Wolski D, Adland E, Yates K et al. 2015. CD39 expression identifies terminally exhausted CD8+ T cells. PLOS Pathog. 11:10e1005177
    [Google Scholar]
  119. 119.
    Crawford A, Angelosanto JM, Kao C, Doering TA, Odorizzi PM et al. 2014. Molecular and transcriptional basis of CD4+ T cell dysfunction during chronic infection. Immunity 40:2289–302
    [Google Scholar]
  120. 120.
    Yoshitomi H, Kobayashi S, Miyagawa-Hayashino A, Okahata A, Doi K et al. 2018. Human Sox4 facilitates the development of CXCL13-producing helper T cells in inflammatory environments. Nat. Commun. 9:13762
    [Google Scholar]
  121. 121.
    Ligon MM, Wang C, Jennings Z, Schulz C, DeJong EN et al. 2019. Tertiary lymphoid tissue develops during normal aging in mice and humans. bioRxiv 749200, Aug. 29
  122. 122.
    Brahmer JR, Tykodi SS, Chow LQM, Hwu W-J, Topalian SL et al. 2012. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med. 366:262455–65
    [Google Scholar]
  123. 123.
    Brooks DG, Trifilo MJ, Edelmann KH, Teyton L, McGavern DB, Oldstone MBA. 2006. Interleukin-10 determines viral clearance or persistence in vivo. Nat. Med. 12:111301–9
    [Google Scholar]
  124. 124.
    Gabriel SS, Tsui C, Chisanga D, Weber F, Llano-León M et al. 2021. Transforming growth factor-β-regulated mTOR activity preserves cellular metabolism to maintain long-term T cell responses in chronic infection. Immunity 54:81698–714.e5
    [Google Scholar]
  125. 125.
    Elsaesser H, Sauer K, Brooks DG. 2009. IL-21 is required to control chronic viral infection. Science 324:59341569–72
    [Google Scholar]
  126. 126.
    Im SJ, Hashimoto M, Gerner MY, Lee J, Kissick HT et al. 2016. Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy. Nature 537:7620417–21
    [Google Scholar]
  127. 127.
    Stelekati E, Cai Z, Manne S, Chen Z, Beltra J-C et al. 2022. MicroRNA-29a attenuates CD8 T cell exhaustion and induces memory-like CD8 T cells during chronic infection. PNAS 119:17e2106083119
    [Google Scholar]
  128. 128.
    Josefowicz SZ, Lu L-F, Rudensky AY. 2012. Regulatory T cells: mechanisms of differentiation and function. Annu. Rev. Immunol. 30:531–64
    [Google Scholar]
  129. 129.
    Linterman MA, Pierson W, Lee SK, Kallies A, Kawamoto S et al. 2011. Foxp3+ follicular regulatory T cells control the germinal center response. Nat. Med. 17:8975–82
    [Google Scholar]
  130. 130.
    Sharma S, Dominguez AL, Lustgarten J. 2006. High accumulation of T regulatory cells prevents the activation of immune responses in aged animals. J. Immunol. 177:128348–55
    [Google Scholar]
  131. 131.
    Lages CS, Suffia I, Velilla PA, Huang B, Warshaw G et al. 2008. Functional regulatory T cells accumulate in aged hosts and promote chronic infectious disease reactivation. J. Immunol. 181:31835–48
    [Google Scholar]
  132. 132.
    Trujillo-Vargas CM, Mauk KE, Hernandez H, de Souza RG, Yu Z et al. 2022. Immune phenotype of the CD4+ T cells in the aged lymphoid organs and lacrimal glands. GeroScience 44:42105–28
    [Google Scholar]
  133. 133.
    Durand A, Audemard-Verger A, Guichard V, Mattiuz R, Delpoux A et al. 2018. Profiling the lymphoid-resident T cell pool reveals modulation by age and microbiota. Nat. Commun. 9:168
    [Google Scholar]
  134. 134.
    Bapat SP, Myoung Suh J, Fang S, Liu S, Zhang Y et al. 2015. Depletion of fat-resident Treg cells prevents age-associated insulin resistance. Nature 528:7580137–41
    [Google Scholar]
  135. 135.
    Lorenzo EC, Torrance BL, Keilich SR, Al-Naggar I, Harrison A et al. 2022. Senescence-induced changes in CD4 T cell differentiation can be alleviated by treatment with senolytics. Aging Cell 21:1e13525
    [Google Scholar]
  136. 136.
    Kuswanto W, Burzyn D, Panduro M, Wang KK, Jang YC et al. 2016. Poor repair of skeletal muscle in aging mice reflects a defect in local, interleukin-33-dependent accumulation of regulatory T cells. Immunity 44:2355–67
    [Google Scholar]
  137. 137.
    Chen YJ, Liao YJ, Tram VTN, Lin CH, Liao KC, Liu CL. 2020. Alterations of specific lymphocytic subsets with aging and age-related metabolic and cardiovascular diseases. Life 10:10246
    [Google Scholar]
  138. 138.
    Agius E, Lacy KE, Vukmanovic-Stejic M, Jagger AL, Papageorgiou A-P et al. 2009. Decreased TNF-alpha synthesis by macrophages restricts cutaneous immunosurveillance by memory CD4+ T cells during aging. J. Exp. Med. 206:91929–40
    [Google Scholar]
  139. 139.
    Oh J, Wang W, Thomas R, Su D-M. 2017. Capacity of tTreg generation is not impaired in the atrophied thymus. PLOS Biol 15:11e2003352
    [Google Scholar]
  140. 140.
    Thiault N, Darrigues J, Adoue V, Gros M, Binet B et al. 2015. Peripheral regulatory T lymphocytes recirculating to the thymus suppress the development of their precursors. Nat. Immunol. 16:6628–34
    [Google Scholar]
  141. 141.
    Weist BM, Kurd N, Boussier J, Chan SW, Robey EA. 2015. Thymic regulatory T cell niche size is dictated by limiting IL-2 from antigen-bearing dendritic cells and feedback competition. Nat. Immunol. 16:6635–41
    [Google Scholar]
  142. 142.
    Tsaknaridis L, Spencer L, Culbertson N, Hicks K, LaTocha D et al. 2003. Functional assay for human CD4+CD25+ Treg cells reveals an age-dependent loss of suppressive activity. J. Neurosci. Res. 74:2296–308
    [Google Scholar]
  143. 143.
    Nishioka T, Shimizu J, Iida R, Yamazaki S, Sakaguchi S. 2006. CD4+CD25+Foxp3+ T cells and CD4+CD25-Foxp3+ T cells in aged mice. J. Immunol. 176:116586–93
    [Google Scholar]
  144. 144.
    Raynor J, Karns R, Almanan M, Li K-P, Divanovic S et al. 2015. IL-6 and ICOS antagonize Bim and promote regulatory T cell accrual with age. J. Immunol. 195:3944–52
    [Google Scholar]
  145. 145.
    Raynor J, Sholl A, Plas DR, Bouillet P, Chougnet CA, Hildeman DA. 2013. IL-15 fosters age-driven regulatory T cell accrual in the face of declining IL-2 levels. Front. Immunol. 4:161
    [Google Scholar]
  146. 146.
    Carpentier M, Chappert P, Kuhn C, Lalfer M, Flament H et al. 2013. Extrathymic induction of Foxp3+ regulatory T cells declines with age in a T-cell intrinsic manner. Eur. J. Immunol. 43:102598–604
    [Google Scholar]
  147. 147.
    Guo Z, Wang G, Wu B, Chou W-C, Cheng L et al. 2020. DCAF1 regulates Treg senescence via the ROS axis during immunological aging. J. Clin. Investig. 130:115893–908
    [Google Scholar]
  148. 148.
    Garg SK, Delaney C, Toubai T, Ghosh A, Reddy P et al. 2014. Aging is associated with increased regulatory T-cell function. Aging Cell 13:3441–48
    [Google Scholar]
  149. 149.
    Sun L, Hurez VJ, Thibodeaux SR, Kious MJ, Liu A et al. 2012. Aged regulatory T cells protect from autoimmune inflammation despite reduced STAT3 activation and decreased constraint of IL-17 producing T cells. Aging Cell 11:3509–19
    [Google Scholar]
  150. 150.
    Chougnet CA, Tripathi P, Lages CS, Raynor J, Sholl A et al. 2011. A major role for Bim in regulatory T cell homeostasis. J. Immunol. 186:1156–63
    [Google Scholar]
  151. 151.
    Zhao L, Sun L, Wang H, Ma H, Liu G, Zhao Y. 2007. Changes of CD4+CD25+Foxp3+ regulatory T cells in aged Balb/c mice. J. Leukoc. Biol. 81:61386–94
    [Google Scholar]
  152. 152.
    Tauro S, Nguyen P, Li B, Geiger TL. 2013. Diversification and senescence of Foxp3+ regulatory T cells during experimental autoimmune encephalomyelitis. Eur. J. Immunol. 43:51195–207
    [Google Scholar]
  153. 153.
    Fessler J, Raicht A, Husic R, Ficjan A, Schwarz C et al. 2017. Novel senescent regulatory T-cell subset with impaired suppressive function in rheumatoid arthritis. Front. Immunol. 8:300
    [Google Scholar]
  154. 154.
    Komatsu N, Okamoto K, Sawa S, Nakashima T, Oh-hora M et al. 2014. Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis. Nat. Med. 20:162–68
    [Google Scholar]
  155. 155.
    Schmitt V, Rink L, Uciechowski P. 2013. The Th17/Treg balance is disturbed during aging. Exp. Gerontol. 48:121379–86
    [Google Scholar]
  156. 156.
    González-Osuna L, Sierra-Cristancho A, Rojas C, Cafferata EA, Melgar-Rodríguez S et al. 2021. Premature senescence of T-cells favors bone loss during osteolytic diseases: a new concern in the osteoimmunology arena. Aging Dis 12:51150–61
    [Google Scholar]
  157. 157.
    Rousseau A-S, Murdaca J, Le Menn G, Sibille B, Wahli W et al. 2021. Invalidation of the transcriptional modulator of lipid metabolism PPARβ/δ in T cells prevents age-related alteration of body composition and loss of endurance capacity. Front. Physiol. 12:587753
    [Google Scholar]
  158. 158.
    Schmidleithner L, Thabet Y, Schönfeld E, Köhne M, Sommer D et al. 2019. Enzymatic activity of HPGD in Treg cells suppresses Tconv cells to maintain adipose tissue homeostasis and prevent metabolic dysfunction. Immunity 50:51232–48.e14
    [Google Scholar]
  159. 159.
    Wu D, Wong CK, Han JM, Orban PC, Huang Q et al. 2020. T reg-specific insulin receptor deletion prevents diet-induced and age-associated metabolic syndrome. J. Exp. Med. 217:8e20191542
    [Google Scholar]
  160. 160.
    Iwai H, Inaba M, Van Bui D, Suzuki K, Sakagami T et al. 2021. Treg and IL-1 receptor type 2-expressing CD4+ T cell-deleted CD4+ T cell fraction prevents the progression of age-related hearing loss in a mouse model. J. Neuroimmunol. 357:577628
    [Google Scholar]
  161. 161.
    Iwai H, Inaba M. 2015. Fetal thymus graft enables recovery from age-related hearing loss and expansion of CD4-positive T cells expressing IL-1 receptor type 2 and regulatory T Cells. Immun. Ageing 12:26
    [Google Scholar]
  162. 162.
    Wang W, Thomas R, Oh J, Su D-M. 2022. Accumulation of pTreg cells is detrimental in late-onset (aged) mouse model of multiple sclerosis. Aging Cell 21:6e13630
    [Google Scholar]
  163. 163.
    Rosenkranz D, Weyer S, Tolosa E, Gaenslen A, Berg D et al. 2007. Higher frequency of regulatory T cells in the elderly and increased suppressive activity in neurodegeneration. J. Neuroimmunol. 188:1–2117–27
    [Google Scholar]
  164. 164.
    Bhaskaran N, Faddoul F, Paes da Silva A, Jayaraman S, Schneider E et al. 2020. IL-1β-MyD88-mTOR axis promotes immune-protective IL-17A+Foxp3+ cells during mucosal infection and is dysregulated with aging. Front. Immunol. 11:595936
    [Google Scholar]
  165. 165.
    Namdeo M, Kandel R, Thakur PK, Mohan A, Dey AB, Mitra DK. 2020. Old age-associated enrichment of peripheral T regulatory cells and altered redox status in pulmonary tuberculosis patients. Eur. J. Immunol. 50:81195–208
    [Google Scholar]
  166. 166.
    Simone R, Zicca A, Saverino D. 2008. The frequency of regulatory CD3+CD8+CD28CD25+ T lymphocytes in human peripheral blood increases with age. J. Leukoc. Biol. 84:61454–61
    [Google Scholar]
  167. 167.
    Lukas Yani S, Keller M, Melzer FL, Weinberger B, Pangrazzi L et al. 2018. CD8+HLADR+ regulatory T cells change with aging: They increase in number, but lose checkpoint inhibitory molecules and suppressive function. Front. Immunol. 9:1201
    [Google Scholar]
  168. 168.
    Wen Z, Shimojima Y, Shirai T, Li Y, Ju J et al. 2016. NADPH oxidase deficiency underlies dysfunction of aged CD8+ Tregs. J. Clin. Investig. 126:51953–67
    [Google Scholar]
  169. 169.
    Cho S-Y, Kim J, Lee JH, Sim JH, Cho D-H et al. 2016. Modulation of gut microbiota and delayed immunosenescence as a result of syringaresinol consumption in middle-aged mice. Sci. Rep. 6:39026
    [Google Scholar]
  170. 170.
    Davies JS, Thompson HL, Pulko V, Padilla Torres J, Nikolich-Žugich J 2018. Role of cell-intrinsic and environmental age-related changes in altered maintenance of murine T cells in lymphoid organs. J. Gerontol. A 73:81018–26
    [Google Scholar]
  171. 171.
    Pishel I, Shytikov D, Orlova T, Peregudov A, Artyuhov I, Butenko G. 2012. Accelerated aging versus rejuvenation of the immune system in heterochronic parabiosis. Rejuvenation Res 15:2239–48
    [Google Scholar]
  172. 172.
    Lagnado A, Leslie J, Ruchaud-Sparagano M-H, Victorelli S, Hirsova P et al. 2021. Neutrophils induce paracrine telomere dysfunction and senescence in ROS-dependent manner. EMBO J 40:9e106048
    [Google Scholar]
  173. 173.
    Yousefzadeh MJ, Flores RR, Zhu Y, Schmiechen ZC, Brooks RW et al. 2021. An aged immune system drives senescence and ageing of solid organs. Nature 594:7861100–5
    [Google Scholar]
  174. 174.
    Carrasco E, Gómez de las Heras MM, Gabandé-Rodríguez E, Desdín-Micó G, Aranda JF, Mittelbrunn M 2022. The role of T cells in age-related diseases. Nat. Rev. Immunol. 22:297–111
    [Google Scholar]
  175. 175.
    Xue W, Zender L, Miething C, Dickins RA, Hernando E et al. 2007. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445:7128656–60
    [Google Scholar]
  176. 176.
    Kang T-W, Yevsa T, Woller N, Hoenicke L, Wuestefeld T et al. 2011. Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature 479:7374547–51
    [Google Scholar]
  177. 177.
    Ovadya Y, Landsberger T, Leins H, Vadai E, Gal H et al. 2018. Impaired immune surveillance accelerates accumulation of senescent cells and aging. Nat. Commun. 9:15435
    [Google Scholar]
  178. 178.
    Amor C, Feucht J, Leibold J, Ho Y-J, Zhu C et al. 2020. Senolytic CAR T cells reverse senescence-associated pathologies. Nature 583:7814127–32
    [Google Scholar]
  179. 179.
    Pereira BI, Devine OP, Vukmanovic-Stejic M, Chambers ES, Subramanian P et al. 2019. Senescent cells evade immune clearance via HLA-E-mediated NK and CD8+ T cell inhibition. Nat. Commun. 10:12387
    [Google Scholar]
  180. 180.
    Ye J, Huang X, Hsueh EC, Zhang Q, Ma C et al. 2012. Human regulatory T cells induce T-lymphocyte senescence. Blood 120:102021–31
    [Google Scholar]
  181. 181.
    Liu X, Mo W, Ye J, Li L, Zhang Y et al. 2018. Regulatory T cells trigger effector T cell DNA damage and senescence caused by metabolic competition. Nat. Commun. 9:1249
    [Google Scholar]
  182. 182.
    Sawant DV, Yano H, Chikina M, Zhang Q, Liao M et al. 2019. Adaptive plasticity of IL-10+ and IL-35+ Treg cells cooperatively promotes tumor T cell exhaustion. Nat. Immunol. 20:6724–35
    [Google Scholar]
/content/journals/10.1146/annurev-immunol-101721-064501
Loading
/content/journals/10.1146/annurev-immunol-101721-064501
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error