Skip to main content
Log in

A general construction of regular complete permutation polynomials

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Let \(r\ge 3\) be a positive integer and \({\mathbb {F}}_q\) the finite field with q elements. In this paper, we consider the r-regular complete permutation property of maps with the form \(f=\tau \circ \sigma _M\circ \tau ^{-1}\) where \(\tau \) is a PP over an extension field \({\mathbb {F}}_{q^d}\) and \(\sigma _M\) is an invertible linear map over \({\mathbb {F}}_{q^d}\). When \(\tau \) is additive, we give a general construction of r-regular CPPs for any positive integer r. When \(\tau \) is not additive, we give many examples of regular CPPs over the extension fields for \(r=3,4,5,6,7\) and for arbitrary odd positive integer r. These examples are the generalization of the first class of r-regular CPPs constructed by Xu et al. (Des Codes Cryptogr 90:545–575, 2022).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahmad S.: Cycle structure of automorphisms of finite cyclic groups. J. Comb. Theory 6, 370–374 (1969).

    Article  MathSciNet  MATH  Google Scholar 

  2. Biryukov A.: Analysis of involutional ciphers: Khazad and Anubis. Fast Softw. Encrypt. 2887, 45–53 (2003).

    MATH  Google Scholar 

  3. Bors A., Wang Q.: Coset-wise affine functions and cycle types of complete mappings. Finite Fields Appl. 83, 102088 (2022).

    Article  MathSciNet  MATH  Google Scholar 

  4. Canteaut A., Roue J.: On the behaviors of affine equivalent S-boxes regarding differential and linear attacks. In: Advances in Cryptology—EUROCRYPT 2015—34th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26–30, 2015, Lecture Notes in Computer Science, Part I, vol. 9056, Springer, pp. 45-74 (2015).

  5. Carlet C., Charpin P., Zinoviev V.: Codes, bent functions and permutations suitable for DES-like cryptosystems. Des. Codes Cryptogr. 15(2), 125–156 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  6. Charpin P., Mesnager S., Sarkar S.: Involutions over the Galois field \({\mathbb{F} }_{2^n}\). IEEE Trans. Inf. Theory 62(4), 2266–2276 (2016).

    Article  MATH  Google Scholar 

  7. Chen Y., Wang L., Zhu S.: On the constructions of n-cycle permutations. Finite Fields Appl. 73, 101847 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  8. Coulter R.S., Mesnager S.: Bent functions from involutions over \({\mathbb{F} }_{2^n}\). IEEE Trans. Inf. Theory 64(4), 2979–2986 (2018).

    Article  MATH  Google Scholar 

  9. Dempwolff U., Muller P.: Permutation polynomials and translation planes of even order. Adv. Geom. 13(2), 293–313 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  10. Diffie W., Ledin G. (translators): SMS4 encryption algorithm for wireless networks. https://eprint.iacr.org/2008/329.pdf.

  11. Ding C.: Cyclic codes from some monomials and trinomials. SIAM J. Discret. Math. 27(4), 1977–1994 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  12. Ding C., Yuan J.: A family of skew Hadamard difference sets. J. Combin. Theory A 113(7), 1526–1535 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  13. Ding C., Qu L., Wang Q., Yuan J., Yuan P.: Permutation trinomials over finite fields with even characteristic. SIAM J. Discret. Math. 29(1), 79–92 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  14. Dobbertin H.: Almost perfect nonlinear power functions on GF(\(2^n\)): the Niho case. Inf. Comput. 151(1–2), 57–72 (1999).

    Article  MATH  Google Scholar 

  15. Dobbertin H.: Almost perfect nonlinear power functions on GF(\(2^n\)): the Welch case. IEEE Trans. Inf. Theory 45(4), 1271–1275 (1999).

    Article  MATH  Google Scholar 

  16. Feng D., Feng X., Zhang W., et al.: Loiss: a byte-oriented stream cipher. In: IWCC’11 Proceedings of the Third International Conference on Coding and Cryptology. Springer, New York, pp. 109–125 (2011).

  17. Fredricksen H.: A survey of full length nonlinear shift register cycle algorithms. SIAM Rev. 24(2), 195–221 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  18. Fripertinger H.: Cycle indices of linear, affine, and projective groups. Linear Algebra Appl. 263(1), 133–156 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  19. Gallager R.: Low-density parity-check codes. IRE Trans. Inf. Theory 8(1), 21–28 (1962).

    Article  MathSciNet  MATH  Google Scholar 

  20. Golomb S.W.: Shift Register Sequences. Holden-Day Inc, Laguna Hills (1967).

    MATH  Google Scholar 

  21. Golomb S.W., Gong G.: Signal Design for Good Correlation. For Wireless Communication, Cryptography, and Radar. Cambridge University Press, New York (2005).

    Book  MATH  Google Scholar 

  22. Hou X.D.: Determination of a type of permutation trinomials over finite fields. II. Finite Fields Their Appl. 35, 16–35 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  23. Lang S.: Algebra. Springer, New York (2002).

    Book  MATH  Google Scholar 

  24. Lidl R., Muller W. B.: Permutation polynomials in RSA-cryptosystems. In: Advances in Cryptology. Springer, Boston, pp. 293–301 (1984).

  25. Lidl R., Mullen G.L.: Cycle structure of Dickson permutation polynomials. Math. J. Okayama Univ. 33, 1–11 (1991).

    MathSciNet  MATH  Google Scholar 

  26. Mann H.B.: The construction of orthogonal Latin squares. Ann. Math. Stat. 13(4), 418–423 (1942).

    Article  MathSciNet  MATH  Google Scholar 

  27. Markovski S., Mileva A.: Generating huge quasigroups from small non-linear bijections via extended Feistel function. Quasigroups Relat. Syst. 17(1), 91–106 (2009).

    MathSciNet  MATH  Google Scholar 

  28. McFarland R.L.: A family of difference sets in non-cyclic groups. J. Combin. Theory A 15(1), 1–10 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  29. Mesnager S.: On constructions of bent functions from involutions. In: 2016 IEEE International Symposium on Information Theory (ISIT), IEEE, 110–114 (2016).

  30. Mileva A., Markovski S.: Quasigroup representation of some Feistel and generalized Feistel ciphers. In: ICT Innovations 2012. Advances in Intelligent Systems and Computing, vol. 207. Springer, Berlin, pp. 161–171 (2012).

  31. Mileva A., Markovski S.: Shapeless quasigroups derived by Feistel orthomorphisms. Glas. Mater. 47(67), 333–349 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  32. Mittenthal L.: Block substitutions using orthomorphic mappings. Adv. Appl. Math. 16(10), 59–71 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  33. Mittenthal L.: Nonlinear dynamic substitution devices and methods for block substitutions employing coset decompositions and direct geometric generation. US Patent 5647001 (1997).

  34. Muratovic-Ribic A.: On generalized strong complete mappings and mutually orthogonal Latin squares. Ars Math. Contemp. 21(2), 1–10 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  35. Muratovic-Ribic A., Pasalic E.: A note on complete polynomials over finite fields and their applications in cryptography. Finite Fields Appl. 25, 306–315 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  36. Niederreiter H., Robinson K.H.: Complete mappings of finite fields. J. Aust. Math. Soc. A 33(2), 197–212 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  37. Rubio I., Corrada C.: Cyclic Decomposition of Permutations of Finite Fields Obtained Using Monomials, Finite Fields and Applications, LNCS 2948, pp. 254–261. Springer, New York (2004).

    MATH  Google Scholar 

  38. Rubio I., Mullen G.L., Corrada C., Castro F.N.: Dickson permutation polynomials that decompose in cycles of the same length. Contemp. Math. 461, 229–240 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  39. Rudolf L., Harald N.: Finite fields. In: Encyclopedia of Mathematics and ITS Applications (2003).

  40. Sakzad A., Sadeghi M.R., Panario D.: Cycle structure of permutation functions over finite fields and their applications. Adv. Math. Commun. 6(3), 347–361 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  41. Schnorr C.P., Vaudenay S.: Black box cryptanalysis of hash networks based on multipermutations. In: Advances in Cryptology-Eurocrypt’94, 47–57. Springer, New York (1995).

  42. Stanica P., Gangopadhyay S., Chaturvedi A., Gangopadhyay A.K., Maitra S.: Investigations on bent and negabent functions via the negaHadamard transform. IEEE Trans. Inf. Theory 58, 4064–4072 (2012).

    Article  MATH  Google Scholar 

  43. Vaudenay S.: On the need for multipermutations: cryptanalysis of MD4 and SAFER. In: Fast Software Encryption-FSE’94. Lecture Notes Computing Science, vol. 1008. Springer, New York, pp. 286–297 (1994).

  44. Vaudenay S.: On the Lai-Massey scheme. In: Advances in Cryptology-ASIACRYPT-99. Lecture Notes Computing Science, vol. 1716. Springer, New York, pp. 8–19 (1999).

  45. Xu X., Zeng X., Zhang S.: Regular complete permutation polynomials over \({\mathbb{F} }_{2^n}\). Des. Codes Cryptogr. 90, 545–575 (2022).

    Article  MathSciNet  Google Scholar 

  46. Zha Z., Hu L., Cao X.: Constructing permutations and complete permutations over finite fields via subfield-valued polynomials. Finite Fields Appl. 31, 162–177 (2015).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xia Wu.

Additional information

Communicated by P. Charpin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by NSFC (Nos. 11971102, 11801070, 11771007), the Fundamental Research Funds for the Central Universities.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, W., Wu, X., Wang, Y. et al. A general construction of regular complete permutation polynomials. Des. Codes Cryptogr. 91, 2627–2647 (2023). https://doi.org/10.1007/s10623-023-01224-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-023-01224-6

Keywords

Mathematics Subject Classification

Navigation