Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tunable spin and valley excitations of correlated insulators in Γ-valley moiré bands

Abstract

Moiré superlattices formed from transition metal dichalcogenides support a variety of quantum electronic phases that are highly tunable using applied electromagnetic fields. While the valley degree of freedom affects optoelectronic properties in the constituent transition metal dichalcogenides, it has yet to be fully explored in moiré systems. Here we establish twisted double-bilayer WSe2 as an experimental platform to study electronic correlations within Γ-valley moiré bands. Through local and global electronic compressibility measurements, we identify charge-ordered phases at multiple integer and fractional moiré fillings. By measuring the magnetic field dependence of their energy gaps and the chemical potential upon doping, we reveal spin-polarized ground states with spin-polaron quasiparticle excitations. In addition, an applied displacement field induces a metal–insulator transition driven by tuning between Γ- and K-valley moiré bands. Our results demonstrate control over the spin and valley character of the correlated ground and excited states in this system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Γ-valley moiré bands in tdWSe2.
Fig. 2: Magnetic field dependence of correlated insulating ground states and their excitations.
Fig. 3: Displacement field dependence of correlated insulators.

Similar content being viewed by others

Data availability

Source data are provided with this paper. Additional data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

The codes that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Andrei, E. Y. & MacDonald, A. H. Graphene bilayers with a twist. Nat. Mater. 19, 1265–1275 (2020).

    Article  CAS  Google Scholar 

  2. Balents, L., Dean, C. R., Efetov, D. K. & Young, A. F. Superconductivity and strong correlations in moiré flat bands. Nat. Phys. 16, 725–733 (2020).

    Article  CAS  Google Scholar 

  3. Kennes, D. M. et al. Moiré heterostructures as a condensed-matter quantum simulator. Nat. Phys. 17, 155–163 (2021).

    Article  CAS  Google Scholar 

  4. Wu, F., Lovorn, T., Tutuc, E. & MacDonald, A. Hubbard model physics in transition metal dichalcogenide moiré bands. Phys. Rev. Lett. 121, 026402 (2018).

    Article  CAS  Google Scholar 

  5. Zhang, Y., Yuan, N. F. Q. & Fu, L. Moire quantum chemistry: charge transfer in transition metal dichalcogenide superlattices. Phys. Rev. B 102, 201115 (2020).

    Article  CAS  Google Scholar 

  6. Wu, F., Lovorn, T., Tutuc, E., Martin, I. & MacDonald, A. Topological insulators in twisted transition metal dichalcogenide homobilayers. Phys. Rev. Lett. 122, 086402 (2019).

    Article  CAS  Google Scholar 

  7. Angeli, M. & MacDonald, A. H. Γ valley transition metal dichalcogenide moiré bands. Proc. Natl Acad. Sci. USA 118, e2021826118 (2021).

    Article  CAS  Google Scholar 

  8. Zhang, Y., Liu, T. & Fu, L. Electronic structures, charge transfer, and charge order in twisted transition metal dichalcogenide bilayers. Phys. Rev. B 103, 155142 (2021).

    Article  CAS  Google Scholar 

  9. Regan, E. C. et al. Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices. Nature 579, 359–363 (2020).

    Article  CAS  Google Scholar 

  10. Tang, Y. et al. Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices. Nature 579, 353–358 (2020).

    Article  CAS  Google Scholar 

  11. Wang, L. et al. Correlated electronic phases in twisted bilayer transition metal dichalcogenides. Nat. Mater. 19, 861–866 (2020).

    Article  CAS  Google Scholar 

  12. Li, T. et al. Charge-order-enhanced capacitance in semiconductor moiré superlattices. Nat. Nanotechnol. 16, 1068–1072 (2021).

    Article  CAS  Google Scholar 

  13. Li, T. et al. Quantum anomalous Hall effect from intertwined moiré bands. Nature 600, 641–646 (2021).

    Article  CAS  Google Scholar 

  14. Xu, Y. et al. A tunable bilayer Hubbard model in twisted WSe2. Nat. Nanotechnol. 17, 934–939 (2022).

    Article  CAS  Google Scholar 

  15. Xu, Y. et al. Correlated insulating states at fractional fillings of moiré superlattices. Nature 587, 214–218 (2020).

    Article  CAS  Google Scholar 

  16. Chu, Z. et al. Nanoscale conductivity imaging of correlated electronic states in WSe2/WS2 moiré superlattices. Phys. Rev. Lett. 125, 186803 (2020).

    Article  CAS  Google Scholar 

  17. Li, H. et al. Imaging moiré flat bands in three-dimensional reconstructed WSe2/WS2 superlattices. Nat. Mater. 20, 945–950 (2021).

    Article  CAS  Google Scholar 

  18. Huang, X. et al. Correlated insulating states at fractional fillings of the WS2/WSe2 moiré lattice. Nat. Phys. 17, 715–719 (2021).

    Article  CAS  Google Scholar 

  19. Tang, Y. et al. Dielectric catastrophe at the Wigner–Mott transition in a moiré superlattice. Nat. Commun. 13, 4271 (2022).

    Article  CAS  Google Scholar 

  20. Ghiotto, A. et al. Quantum criticality in twisted transition metal dichalcogenides. Nature 597, 345–349 (2021).

    Article  CAS  Google Scholar 

  21. Li, T. et al. Continuous Mott transition in semiconductor moiré superlattices. Nature 597, 350–354 (2021).

    Article  CAS  Google Scholar 

  22. Zhang, M. et al. Tuning quantum phase transitions at half filling in 3L MoTe2/WSe2 moiré superlattices. Phys. Rev. X 12, 041015 (2022).

    CAS  Google Scholar 

  23. Pan, H., Wu, F. & Das Sarma, S. Quantum phase diagram of a Moiré–Hubbard model. Phys. Rev. B 102, 201104 (2020).

    Article  CAS  Google Scholar 

  24. Hu, N. C. & MacDonald, A. H. Competing magnetic states in transition metal dichalcogenide moire materials. Phys. Rev. B 104, 214403 (2021).

    Article  CAS  Google Scholar 

  25. Wang, X. et al. Light-induced ferromagnetism in moiré superlattices. Nature 604, 468–473 (2022).

    Article  CAS  Google Scholar 

  26. Tang, Y. et al. Evidence of frustrated magnetic interactions in a Wigner–Mott insulator. Nat. Nanotechnol. 18, 233–237 (2023).

    Article  CAS  Google Scholar 

  27. Magorrian, S. J. et al. Multifaceted moire superlattice physics in twisted WSe2 bilayers. Phys. Rev. B 104, 125440 (2021).

    Article  CAS  Google Scholar 

  28. Vitale, V., Atalar, K., Mostofi, A. A. & Lischner, J. Flat band properties of twisted transition metal dichalcogenide homo- and heterobilayers of MoS2, MoSe2, WS2, and WSe2. 2D Mater. 8, 045010 (2021).

    Article  CAS  Google Scholar 

  29. Xian, L. et al. Realization of nearly dispersionless bands with strong orbital anisotropy from destructive interference in twisted bilayer MoS2. Nat. Commun. 12, 5644 (2021).

    Article  CAS  Google Scholar 

  30. Shabani, S. et al. Deep moiré potentials in twisted transition metal dichalcogenide bilayers. Nat. Phys. 17, 720–725 (2021).

    Article  CAS  Google Scholar 

  31. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Article  Google Scholar 

  32. Xu, X., Yao, W., Xiao, D. & Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 10, 343–350 (2014).

    Article  CAS  Google Scholar 

  33. Movva, H. C. et al. Tunable Γ − K valley populations in hole-doped trilayer WSe2. Phys. Rev. Lett. 120, 107703 (2018).

    Article  CAS  Google Scholar 

  34. Zhang, S.-S., Zhu, W. & Batista, C. D. Pairing from strong repulsion in triangular lattice Hubbard model. Phys. Rev. B 97, 140507 (2018).

    Article  CAS  Google Scholar 

  35. Morera, I., Bohrdt, A., Ho, W. W. & Demler, E. Attraction from frustration in ladder systems. Preprint at http://arxiv.org/abs/2106.09600 (2021).

  36. Davydova, M., Zhang, Y. & Fu, L. Itinerant spin polaron and metallic ferromagnetism in semiconductor moire superlattices. Preprint at http://arxiv.org/abs/2206.01221 (2023).

  37. Zhu, Z. Y., Cheng, Y. C. & Schwingenschlögl, U. Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors. Phys. Rev. B 84, 153402 (2011).

    Article  Google Scholar 

  38. Shi, Q. et al. Bilayer WSe2 as a natural platform for interlayer exciton condensates in the strong coupling limit. Nat. Nanotechnol. 17, 577–582 (2022).

    Article  CAS  Google Scholar 

  39. Liu, G.-B., Xiao, D., Yao, Y., Xu, X. & Yao, W. Electronic structures and theoretical modelling of two-dimensional group-VIB transition metal dichalcogenides. Chem. Soc. Rev. 44, 2643–2663 (2015).

    Article  CAS  Google Scholar 

  40. Wilson, N. R. et al. Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures. Sci. Adv. 3, e1601832 (2017).

    Article  Google Scholar 

  41. An, L. et al. Interaction effects and superconductivity signatures in twisted double-bilayer WSe2. Nanoscale Horiz. 5, 1309–1316 (2020).

    Article  CAS  Google Scholar 

  42. Aivazian, G. et al. Magnetic control of valley pseudospin in monolayer WSe2. Nat. Phys. 11, 148–152 (2015).

    Article  CAS  Google Scholar 

  43. Gustafsson, M. V. et al. Ambipolar Landau levels and strong band-selective carrier interactions in monolayer WSe2. Nat. Mater. 17, 411–415 (2018).

    Article  CAS  Google Scholar 

  44. Movva, H. C. et al. Density-dependent quantum Hall states and Zeeman splitting in monolayer and bilayer WSe2. Phys. Rev. Lett. 118, 247701 (2017).

    Article  Google Scholar 

  45. Nicholas, R. J., Haug, R. J., Klitzing, K. V. & Weimann, G. Exchange enhancement of the spin splitting in a GaAs-GaxAl1−xAs heterojunction. Phys. Rev. B 37, 1294–1302 (1988).

    Article  CAS  Google Scholar 

  46. Tutuc, E., Melinte, S. & Shayegan, M. Spin polarization and g factor of a dilute GaAs two-dimensional electron system. Phys. Rev. Lett. 88, 036805 (2002).

    Article  CAS  Google Scholar 

  47. Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Negative compressibility of interacting two-dimensional electron and quasiparticle gases. Phys. Rev. Lett. 68, 674–677 (1992).

    Article  CAS  Google Scholar 

  48. Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Compressibility of the two-dimensional electron gas: measurements of the zero-field exchange energy and fractional quantum Hall gap. Phys. Rev. B 50, 1760–1778 (1994).

    Article  CAS  Google Scholar 

  49. Yu, J. et al. Correlated Hofstadter spectrum and flavour phase diagram in magic-angle twisted bilayer graphene. Nat. Phys. 18, 825–831 (2022).

    Article  CAS  Google Scholar 

  50. Shi, Q. et al. Odd- and even-denominator fractional quantum Hall states in monolayer WSe2. Nat. Nanotechnol. 15, 569–573 (2020).

    Article  CAS  Google Scholar 

  51. Peng, H., Yang, Z.-H., Perdew, J. P. & Sun, J. Versatile van der Waals density functional based on a meta-generalized gradient approximation. Phys. Rev. X 6, 041005 (2016).

    Google Scholar 

  52. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge helpful conversations with A.H. MacDonald. We thank T. Heinz, A. O’Beirne and H.B. Ribeiro for their assistance with second-harmonic generation measurements. Experimental work was primarily supported by the National Science Foundation (Grant no. NSF-DMR-2103910). B.E.F. acknowledges an Alfred P. Sloan Foundation Fellowship and a Cottrell Scholar Award. The work at the Massachusetts Institute of Technology is supported by a Simons Investigator Award from the Simons Foundation. L.F. is partly supported by the David and Lucile Packard Foundation. K.W. and T.T. acknowledge support from the Japan Society for the Promotion of Science Grants-in-Aid for Scientific Research (JSPS KAKENHI, Grant nos. 19H05790, 20H00354 and 21H05233). B.A.F. acknowledges a Stanford Graduate Fellowship. Part of this work was performed at the Stanford Nano Shared Facilities, supported by the National Science Foundation (Award no. ECCS-2026822).

Author information

Authors and Affiliations

Authors

Contributions

B.A.F, J.Y. and B.E.F. designed and conducted the scanning SET experiments. B.A.F. and B.E.F. designed and conducted the dual-gate capacitance experiments. T.D., Y.Z. and L.F. conducted theoretical calculations. B.A.F. fabricated the samples, with help from C.R.K. K.W. and T.T. provided hBN crystals. All authors participated in analysis of the data and writing of the paper.

Corresponding author

Correspondence to Benjamin E. Feldman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Emanuel Tutuc and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–13, Figs. 1–22 and Tables 1 and 2.

Source data

Source Data Fig. 1

Source data for Fig. 1.

Source Data Fig. 2

Source data for Fig. 2.

Source Data Fig. 3

Source data for Fig. 3.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Foutty, B.A., Yu, J., Devakul, T. et al. Tunable spin and valley excitations of correlated insulators in Γ-valley moiré bands. Nat. Mater. 22, 731–736 (2023). https://doi.org/10.1038/s41563-023-01534-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-023-01534-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing