Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synthesis of planar chiral ferrocenes via enantioselective remote C–H activation

Abstract

Planar chiral ferrocenes are widely studied structures in asymmetric catalysis, materials science and medicinal chemistry. Although synthetic methods for 1,2-disubstituted planar chiral ferrocenes are well known, methods for the direct construction of 1,3-disubstituted planar chiral ferrocenes remain elusive. Here we report a modular platform for the construction of planar chirality in 1,3-disubstituted ferrocenes/ruthenocenes via an enantioselective relay remote C–H activation strategy. This method demonstrates a mechanism for remote enantiocontrol via enantiodetermining initial C‒H activation at the C2 position, enabled by a chiral mono-N-protected natural amino-acid ligand, and subsequent relay to the remote C3 position by a bridgehead-substituted norbornene mediator. A wide variety of 1,3-disubstituted planar chiral metallocenes are prepared with high enantioselectivity (96‒99% e.e.). The reaction shows good functional-group tolerance and high step-economy, and aryl iodides/bromides are compatible as coupling partners. The resulting metallocenes can be readily derivatized to yield planar chiral ligands and catalysts for asymmetric catalysis as well as building blocks for other applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Strategies to access planar chiral ferrocenes.
Fig. 2: Proposed reaction mechanism and initial investigation.
Fig. 3: Transformations of products and applications.
Fig. 4: Preliminary mechanistic studies.

Similar content being viewed by others

Data availability

Crystallographic data for the structures reported in this Article have been deposited at the Cambridge Crystallographic Data Centre, under deposition nos. CCDC 2116139 (3a-2), 2117209 (3b) and 2116140 (8). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/. All other characterization data and detailed experimental procedures are available in the Supplementary Information.

References

  1. Carreira, E. M. & Kvaerno, L. Classics in Stereoselective Synthesis (Wiley, 2009).

  2. Lopez, R. & Palomo, C. Planar chirality: a mine for catalysis and structure discovery. Angew. Chem. Int. Ed. 61, e202113504 (2021).

    Google Scholar 

  3. Ogasawara, M. Enantioselective preparation of planar-chiral transition metal complexes by asymmetric olefin-metathesis reactions in metal coordination spheres. Chem. Rec. 21, 3509–3519 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. Gagnon, C. et al. Biocatalytic synthesis of planar chiral macrocycles. Science 367, 917–921 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. Zhou, Q.-L. Privileged Chiral Ligands and Catalysts (Wiley, 2011).

  6. Ye, B. & Cramer, N. Chiral cyclopentadienyl ligands as stereocontrolling element in asymmetric C-H functionalization. Science 338, 504–506 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Togni, A. & Hayashi, T. Ferrocenes (Wiley, 1995).

  8. Dai, L.-X. & Hou, X.-L. Chiral Ferrocenes in Asymmetric Catalysis (Wiley, 2010).

  9. Fu, G. C. Applications of planar-chiral heterocycles as ligands in asymmetric catalysis. Acc. Chem. Res. 39, 853–860 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Caniparoli, U., Escofet, I. & Echavarren, A. M. Planar chiral 1,3-disubstituted ferrocenyl phosphine gold(I) catalysts. ACS Catal. 12, 3317–3322 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Štěpnička, P. Ferrocenes (Wiley, 2008).

  12. Muraoka, T., Kinbara, K., Kobayashi, Y. & Aida, T. Light-driven open-close motion of chiral molecular scissors. J. Am. Chem. Soc. 125, 5612–5613 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Muraoka, T., Kinbara, K. & Aida, T. Mechanical twisting of a guest by a photoresponsive host. Nature 440, 512–515 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Chuard, T. et al. Planar chirality: a fascinating symmetry breaking which leads to ferroelectricity in ferrocenyl liquid crystals. Chem. Commun. 2000, 2109–2110 (2000).

    Article  Google Scholar 

  15. Brettar, J. et al. Ferrocene-containing optically active liquid-crystalline side-chain polysiloxanes with planar chirality. Adv. Funct. Mater. 16, 260–267 (2006).

    Article  CAS  Google Scholar 

  16. Patra, M. & Gasser, G. The medicinal chemistry of ferrocene and its derivatives. Nat. Rev. Chem. 1, 0066 (2017).

    Article  CAS  Google Scholar 

  17. Ogasawara, M., Arae, S., Watanabe, S., Nakajima, K. & Takahashi, T. Kinetic resolution of planar-chiral ferrocenylphosphine derivatives by molybdenum-catalyzed asymmetric ring-closing metathesis and their application in asymmetric catalysis. ACS Catal. 6, 1308–1315 (2016).

    Article  CAS  Google Scholar 

  18. Ogasawara, M., Watanabe, S., Nakajima, K. & Takahashi, T. Enantioselective synthesis of planar-chiral phosphaferrocenes by molybdenum-catalyzed asymmetric interannular ring-closing metathesis. J. Am. Chem. Soc. 132, 2136–2137 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Zhu, D.-Y., Chen, P. & Xia, J.-B. Synthesis of planar chiral ferrocenes by transition-metal-catalyzed enantioselective C-H activation. ChemCatChem 8, 68–73 (2016).

    Article  CAS  Google Scholar 

  20. Gao, D.-W., Gu, Q., Zheng, C. & You, S.-L. Synthesis of planar chiral ferrocenes via transition-metal-catalyzed direct C-H bond functionalization. Acc. Chem. Res. 50, 351–365 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Liu, C.-X., Gu, Q. & You, S.-L. Asymmetric C-H bond functionalization of ferrocenes: new opportunities and challenges. Trends Chem. 2, 737–749 (2020).

    Article  CAS  Google Scholar 

  22. Steurer, M., Tiedl, K., Wang, Y. & Weissensteiner, W. Stereoselective synthesis of chiral, non-racemic 1,2,3-tri- and 1,3-disubstituted ferrocene derivatives. Chem. Commun. 2005, 4929–4931 (2005).

    Article  Google Scholar 

  23. Ferber, B., Top, S., Welter, R. & Jaouen, G. A new efficient route to chiral 1,3-disubstituted ferrocenes: application to the syntheses of (Rp)- and (Sp)-17α-[(3′-formylferrocenyl)ethynyl]estradiol. Chem. Eur. J. 12, 2081–2086 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Steurer, M., Wang, Y., Mereiter, K. & Weissensteiner, W. Bromide-mediated ortho-deprotonation in the synthesis of chiral, nonracemic ferrocene derivatives. Organometallics 26, 3850–3859 (2007).

    Article  CAS  Google Scholar 

  25. Leow, D., Li, G., Mei, T.-S. & Yu, J.-Q. Activation of remote meta-C–H bonds assisted by an end-on template. Nature 486, 518–522 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang, X.-C. et al. Ligand-enabled meta-C−H activation using a transient mediator. Nature 519, 334–338 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bisht, R., Hoque, M. E. & Chattopadhyay, B. Amide effects in C-H activation: noncovalent interactions with L-shaped ligand for meta borylation of aromatic amides. Angew. Chem. Int. Ed. 57, 15762–15766 (2018).

    Article  CAS  Google Scholar 

  28. Meng, G. et al. Achieving site-selectivity for C-H activation processes based on distance and geometry: a carpenter’s approach. J. Am. Chem. Soc. 142, 10571–10591 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chaturvedi, J., Haldar, C., Bisht, R., Pandey, G. & Chattopadhyay, B. Meta selective C-H borylation of sterically biased and unbiased substrates directed by electrostatic interaction. J. Am. Chem. Soc. 143, 7604–7611 (2021).

    Article  CAS  PubMed  Google Scholar 

  30. Dutta, U., Maiti, S., Bhattacharya, T. & Maiti, D. Arene diversification through distal C(sp2)-H functionalization. Science 372, eabd5992 (2021).

    Article  CAS  PubMed  Google Scholar 

  31. Catellani, M., Frignani, F. & Rangoni, A. A complex catalytic cycle leading to a regioselective synthesis of o,o′-disubstituted vinylarenes. Angew. Chem. Int. Ed. Engl. 36, 119–122 (1997).

    Article  CAS  Google Scholar 

  32. Wang, J. & Dong, G. Palladium/norbornene cooperative catalysis. Chem. Rev. 119, 7478–7528 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shi, H., Herron, A. N., Shao, Y., Shao, Q. & Yu, J.-Q. Enantioselective remote meta-C−H arylation and alkylation via a chiral transient mediator. Nature 558, 581–585 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hill, D. E., Yu, J.-Q. & Blackmond, D. G. Insights into the role of transient chiral mediators and pyridone ligands in asymmetric Pd-catalyzed C-H functionalization. J. Org. Chem. 85, 13674–13679 (2020).

    Article  CAS  PubMed  Google Scholar 

  35. Genov, G. R., Douthwaite, J. L., Lahdenpera, A. S. K., Gibson, D. C. & Phipps, R. J. Enantioselective remote C-H activation directed by a chiral cation. Science 367, 1246–1251 (2020).

    Article  CAS  PubMed  Google Scholar 

  36. Gaunt, J. C. & Shaw, B. L. Transition metal-carbon bonds: XL. Palladium(II) complexes of [(dimethylamino)methyl]-ferrocene. J. Organometal. Chem. 102, 511–516 (1975).

    Article  CAS  Google Scholar 

  37. Sokolov, V. I., Troitskaya, L. L. & Reutov, O. A. Asymmetric induction in the course of internal palladation of enantiomeric 1-dimethylaminoethylferrocene. J. Organometal. Chem. 133, C28–C30 (1977).

    Article  CAS  Google Scholar 

  38. Sokolov, V. I., Troitskaya, L. L. & Reutov, O. A. Asymmetric cyclopalladation of dimethylaminomethylferrocene. J. Organometal. Chem. 182, 537–546 (1979).

    Article  CAS  Google Scholar 

  39. Sokolov, V. I., Troitskaya, L. L. & Khrushchova, N. S. Asymmetric cyclopalladation in the ferrocene series as a tool for enantioselective synthesis. Preparation of some analogues of natural products. J. Organometal. Chem. 250, 439–446 (1983).

    Article  CAS  Google Scholar 

  40. Shi, B.-F., Maugel, N., Zhang, Y.-H. & Yu, J.-Q. Pd(II)-catalyzed enantioselective activation of C(sp2)-H and C(sp3)-H bonds using monoprotected amino acids as chiral ligands. Angew. Chem. Int. Ed. 47, 4882–4886 (2008).

    Article  CAS  Google Scholar 

  41. Shao, Q., Wu, K., Zhuang, Z., Qian, S. & Yu, J.-Q. From Pd(OAc)2 to chiral catalysts: the discovery and development of bifunctional mono-N-protected amino acid ligands for diverse C-H functionalization reactions. Acc. Chem. Res. 53, 833–851 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang, J., Li, R., Dong, Z., Liu, P. & Dong, G. Complementary site-selectivity in arene functionalization enabled by overcoming the ortho constraint in palladium/norbornene catalysis. Nat. Chem. 10, 866–872 (2018).

    Article  CAS  PubMed  Google Scholar 

  43. Li, R. & Dong, G. Structurally modified norbornenes: a key factor to modulate reaction selectivity in the palladium/norbornene cooperative catalysis. J. Am. Chem. Soc. 142, 17859–17875 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shen, P.-X., Wang, X.-C., Wang, P., Zhu, R.-Y. & Yu, J.-Q. Ligand-enabled meta-C-H alkylation and arylation using a modified norbornene. J. Am. Chem. Soc. 137, 11574–11577 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ding, Q. et al. Ligand-enabled meta-selective C-H arylation of nosyl-protected phenethylamines, benzylamines and 2-aryl anilines. J. Am. Chem. Soc. 139, 417–425 (2017).

    Article  CAS  PubMed  Google Scholar 

  46. Pi, C. et al. Redox of ferrocene controlled asymmetric dehydrogenative Heck reaction via palladium-catalyzed dual C-H bond activation. Chem. Sci. 4, 2675–2679 (2013).

    Article  CAS  Google Scholar 

  47. Gao, D.-W., Shi, Y.-C., Gu, Q., Zhao, Z.-L. & You, S.-L. Enantioselective synthesis of planar chiral ferrocenes via palladium-catalyzed direct coupling with arylboronic acids. J. Am. Chem. Soc. 135, 86–89 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Delacroix, O., Picart-Goetgheluck, S., Maciejewski, L. & Brocard, J. Synthesis of chiral ferrocenyl aminoalcohols involving a diastereospecific oxidation: use in asymmetric catalysis. Tetrahedron Asymmetry 10, 4417–4425 (1999).

    Article  CAS  Google Scholar 

  49. Gao, D.-W., Gu, Q. & You, S.-L. An enantioselective oxidative C-H/C-H cross-coupling reaction: highly efficient method to prepare planar chiral ferrocenes. J. Am. Chem. Soc. 138, 2544–2547 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This paper is dedicated to the 130th anniversary of Wuhan University. We thank H. Cong (WHU), X.-G. Meng (CCNU) and Y.-Q. Zhou (SCU) for X-ray crystallographic analysis assistance. We gratefully acknowledge D. Ma (SIOC), L.-Q. Lu (CCNU), W.-B. Liu, G. Yin and Q. Lu (WHU) for helpful discussions, X. Qi (WHU) for calculation studies, W. Reid (J-STAR Research Inc.) for assistance with the preparation of the manuscript and H. Li (ZMU) for technical assistance. This work was supported by the National Key Research and Development Program of China (no. 2022YFA1503703), National Natural Science Foundation of China (nos. 21801193, 21871213 and 22071189), Natural Science Foundation of Jiangsu Province (grant no. BK20210119, H.-G.C.), the Fundamental Research Funds for the Central Universities (2042021kf0214 and 2042020kf0039) and start-up funding from Wuhan University.

Author information

Authors and Affiliations

Authors

Contributions

L.Z., L.L., J.H., C.J. and Z.L. prepared the substrates and NBE mediators, performed the reaction optimization, substrate scope exploration and synthetic applications under the supervision of H.-G.C., J.-Q.Y. and Q.Z. S.D. performed the density functional theory calculations. H.-G.C., K.W., J.-Q.Y. and Q.Z. co-wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Hong-Gang Cheng, Jin-Quan Yu or Qianghui Zhou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–9 and Tables 1–11.

Supplementary Data 1

Crystallographic data for compound 3a-2. CCDC reference 2116139.

Supplementary Data 2

Crystallographic data for compound 3b. CCDC reference 2117209.

Supplementary Data 3

Crystallographic data for compound 8. CCDC reference 2116140.

Supplementary Data 4

Cartesian coordinates (Å) and energies of optimized structures.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, L., Cheng, HG., Li, L. et al. Synthesis of planar chiral ferrocenes via enantioselective remote C–H activation. Nat. Chem. 15, 815–823 (2023). https://doi.org/10.1038/s41557-023-01176-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-023-01176-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing