Skip to main content
Log in

An improved method for constructing formally self-dual codes with small hulls

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

The hull of a linear code over finite fields is the intersection of the code and its dual code, which has been widely studied due to its wide applications. In this paper, we develop a general method for constructing linear codes with small hulls using the eigenvalues of the generator matrices. Using this method, we construct many optimal Euclidean and Hermitian LCD codes, which improve the previously known lower bound on the largest minimum distance. We also obtain many (near) MDS LCD codes and (near) MDS codes with one-dimensional hull. Furthermore, we give three tables about formally self-dual LCD codes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Our data can be obtained from the authors upon reasonable request.

References

  1. Assmus E.F. Jr., Key J.D.: Affine and projective planes. Discret. Math. 83(2–3), 161–187 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  2. Araya M., Harada M.: On the classification of linear complementary dual codes. Discret. Math. 342(1), 270–278 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  3. Araya M., Harada M.: On the minimum weights of binary linear complementary dual codes. Cryptogr. Commun. 12(2), 285–300 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  4. Araya M., Harada M., Saito K.: On the minimum weights of binary LCD codes and ternary LCD codes. Finite Fields Appl. 76, 101925 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  5. Bhargava M., Zieve M.E.: Factoring Dickson polynomials over finite fields. Finite Fields Appl. 5(2), 103–111 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  6. Bosma W., Cannon J., Playoust C.: The Magma algebra system I: the user language. J. Symbol. Comput. 24, 235–265 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  7. Bouyuklieva S.: Optimal binary LCD codes. Des. Codes Cryptogr. 89(11), 2445–2461 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  8. Carlet C., Guilley S.: Complementary dual codes for counter-measures to side-channel attacks. Adv. Math. Commun. 10(1), 131–150 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  9. Carlet C., Güneri C., Özbudak F., Solé P.: A new concatenated type construction for LCD codes and isometry codes. Discret. Math. 341(3), 830–835 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  10. Carlet C., Li C., Mesnager S.: Linear codes with small hulls in semi-primitive case. Des. Codes Cryptogr. 87(12), 3063–3075 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  11. Carlet C., Mesnager S., Tang C., Qi Y.: New characterization and parametrization of LCD codes. IEEE Trans. Inf. Theory 65(1), 39–49 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  12. Carlet C., Mesnager S., Tang C., Qi Y., Pellikaan R.: Linear codes over \( {\mathbb{F} }_q \) are equivalent to LCD codes for \( q > 3 \). IEEE Trans. Inf. Theory 64(4), 3010–3017 (2018).

    Article  MATH  Google Scholar 

  13. Dougherty S.T., Kim J., Özkaya B., Sok L., Solé P.: The combinatorics of LCD codes: linear programming bound and orthogonal matrices. Int. J. Inf. Coding Theory 4(2–3), 116–128 (2017).

    MathSciNet  MATH  Google Scholar 

  14. Fu Q., Li R., Fu F., Rao Y.: On the construction of binary optimal LCD codes with short length. Int. J. Found. Comput. Sci. 30, 1237–1245 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  15. Galvez L., Kim J.L., Lee N., Roe Y.G., Won B.S.: Some bounds on binary LCD codes. Cryptogr. Commun. 10(4), 719–728 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  16. Grassl M.: Bounds on the minimum distance of linear codes and quantum codes. http://www.codetables.de. Accessed 4 (2021).

  17. Güneri C., Özkaya B., Solé P.: Quasi-cyclic complementary dual codes. Finite Fields Appl. 42, 67–80 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  18. Harada M.: Some optimal entanglement-assisted quantum codes constructed from quaternary Hermitian linear complementary dual codes. Int. J. Quant. Inf. 17, 1950053 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  19. Harada M., Saito K.: Binary linear complementary dual codes. Cryptogr. Commun. 11(4), 677–696 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  20. Kennedy G.T., Pless V.: On designs and formally self-dual codes. Des. Codes Cryptogr. 4(1), 43–55 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  21. Lai C., Ashikhmin A.: Linear programming bounds for entanglement-assisted quantum error-correcting codes by split weight enumerators. IEEE Trans. Inf. Theory 64(1), 622–639 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  22. Leon J.: Permutation group algorithms based on partition I: theory and algorithms. J. Symb. Comput. 12(4–5), 533–583 (1982).

    MathSciNet  MATH  Google Scholar 

  23. Li C., Zeng P.: Constructions of linear codes with one-dimensional hull. IEEE Trans. Inf. Theory 65(3), 1668–1676 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  24. Liu Z., Wang J.: Further results on Euclidean and Hermitian linear complementary dual codes. Finite Fields Appl. 59, 104–133 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  25. Lu L., Zhan X., Yang S., Cao H.: Optimal quaternary Hermitian LCD codes. https://arxiv.org/pdf/2010.10166.pdf.

  26. Massey J.: Linear codes with complementary duals. Discret. Math. 106–107, 337–342 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  27. MacWilliams F.J., Sloane N.J.A.: The Theory of Error Correcting Codes, Amsterdam. North-Holland, The Netherlands (1977).

    MATH  Google Scholar 

  28. Qian L., Cao X., Mesnager S.: Linear codes with one-dimensional hull associated with Gaussian sums. Cryptogr. Commun. 13(2), 225–243 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  29. Qian L., Cao X., Lu W., Solé P.: A new method for constructing linear codes with small hulls. Des. Codes Cryptogr. 90(11), 2663–2682 (2022).

    Article  MathSciNet  MATH  Google Scholar 

  30. Qian L., Shi M., Solé P.: On self-dual and LCD quasi-twisted codes of index two over a special chain ring. Cryptogr. Commun. 11(4), 717–734 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  31. Sendrier N.: Linear codes with complementary duals meet the Gilbert-Varshamov bound. Discret. Math. 285(1), 345–347 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  32. Sendrier N.: Finding the permutation between equivalent codes: the support splitting algorithm. IEEE Trans. Inf. Theory 46(4), 1193–1203 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  33. Sendrier N., Skersys G.: On the computation of the automorphism group of a linear code. In: Proc. IEEE Int. Symp. Inf. Theory, Washington, DC, p. 13 (2001).

  34. Shi M., Huang D., Sok L., Solé P.: Double circulant LCD codes over \({\mathbb{Z} }_4\). Finite Fields Appl. 58, 133–144 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  35. Shi M., Huang D., Sok L., Solé P.: Double circulant self-dual and LCD codes over Galois rings. Adv. Math. Commun. 13(1), 171–183 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  36. Shi M., Li S., Kim J., Solé P.: LCD and ACD codes over a noncommutative non-unital ring with four elements. Cryptogr. Commun. 14(3), 627–640 (2022).

    Article  MathSciNet  MATH  Google Scholar 

  37. Shi M., Özbudak F., Xu L., Solé P.: LCD codes from tridiagonal Toeplitz matrices. Finite Fields Appl. 75, 101892 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  38. Shi M., Qian L., Solé P.: On self-dual negacirculant codes of index two and four. Des. Codes Cryptogr. 86(11), 2485–2494 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  39. Shi M., Xu L., Solé P.: Construction of isodual codes from polycirculant matrices. Des. Codes Cryptogr. 88(12), 2547–2560 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  40. Shi M., Xu L., Solé P.: On isodual double Toeplitz codes. https://arxiv.org/abs/2102.09233.pdf.

  41. Shi M., Zhu H., Qian L., Sok L., Solé P.: On self-dual and LCD double circulant and double negacirculant codes over \({\mathbb{F} }_q+u{\mathbb{F} }_q\). Cryptogr. Commun. 12, 53–70 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  42. Sok L., Shi M., Solé P.: Construction of optimal LCD codes over large finite fields. Finite Fields Appl. 50(1), 138–153 (2018).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would also like to thank the editor and the anonymous referees for helpful comments which have highly improved the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minjia Shi.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Communicated by J.-L. Kim.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research is supported by the National Natural Science Foundation of China (12071001) and 2021 University Graduate Research Project (Y020410077).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Shi, M. & Wang, J. An improved method for constructing formally self-dual codes with small hulls. Des. Codes Cryptogr. 91, 2563–2583 (2023). https://doi.org/10.1007/s10623-023-01210-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-023-01210-y

Keywords

Mathematics Subject Classification

Navigation