Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nature-inspired methylated polyhydroxybutyrates from C1 and C4 feedstocks

Abstract

Polyolefin plastics are widely used due to their low cost and outstanding properties, but their environmental persistence presents a major societal challenge. Polyhydroxyalkanoates (PHA) are biodegradable substitutes for polyolefins, but their high cost and thermal instability are impediments to their widespread application. Here we report a series of methylated polyhydroxybutyrates, poly(3-hydroxy-2-methylbutyrate)s, which are structurally inspired by natural PHAs. The cis homopolymers exhibit tacticity-independent crystallinity, which allows for the discovery of high-melting, thermally stable and mechanically tough copolymers, and a full range of polyolefin-like properties can be further achieved by tailoring the cis/trans ratio of the repeating units. Moreover, these materials can be synthesized from inexpensive carbon monoxide and 2-butene feedstocks, and they can be chemically recycled or upcycled at their end of life. The versatile properties, abundant feedstocks and end-of-life utility of this family of polyesters will enable a powerful platform for the discovery of sustainable alternatives to polyolefin plastics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: General design of methylated polyhydroxyalkanoates and PHMB.
Fig. 2: Polymerization of cis-DMPL by different initiators to give cis-PHMB homopolymers with varied degree of syndiotacticity.
Fig. 3: Synthesis and characterization of PHMB copolymers with different cis content.
Fig. 4: Potential chemical recycling and upcycling of PHMB.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the paper and its Supplementary Information. Crystallographic data for the structure of B-HMDS reported in this Article have been deposited at the Cambridge Crystallographic Data Centre, under deposition no. CCDC-2135622. Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/. Source data are provided with this paper.

References

  1. Elhacham, E. et al. Global human-made mass exceeds all living biomass. Nature 588, 442–444 (2020).

    Article  CAS  PubMed  Google Scholar 

  2. Borrelle, S. B. et al. Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science 369, 1515–1518 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. Geyer, R., Jambeck, J. R. & Law, K. L. Production, use and fate of all plastics ever made. Sci. Adv. 3, e1700782 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Jambeck, J. R. et al. Plastic waste inputs from land into the ocean. Science 347, 768–771 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Müller, H. M. & Seebach, D. Poly(hydroxyalkanoates): a fifth class of physiologically important organic biopolymers? Angew. Chem. Int. Ed. Engl. 32, 477–502 (1993).

    Article  Google Scholar 

  6. Sudesh, K., Abe, H. & Doi, Y. Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog. Polym. Sci. 25, 1503–1555 (2000).

    Article  CAS  Google Scholar 

  7. Ajellal, N. et al. Polymerization of racemic β-butyrolactone using supported catalysts: a simple access to isotactic polymers. Chem. Commun. 46, 1032–1034 (2010).

    Article  CAS  Google Scholar 

  8. Tang, X. & Chen, E. Y.-X. Chemical synthesis of perfectly isotactic and high melting bacterial poly(3-hydroxybutyrate) from bio-sourced racemic cyclic diolide. Nat. Commun. 9, 2345 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Dong, X. & Robinson, J. R. The role of neutral donor ligands in the isoselective ring-opening polymerization of rac-β-butyrolactone. Chem. Sci. 11, 8184–8195 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Westlie, A. H., Quinn, E. C., Parker, C. R. & Chen, E. Y.-X. Synthetic biodegradable polyhydroxyalkanoates (PHAs): recent advances and future challenges. Prog. Poly. Sci. 134, 101608 (2022).

    Article  CAS  Google Scholar 

  11. Noda, I., Lindsey, S. B. & Caraway, D. in Plastics from Bacteria Vol. 14 of Microbiology Monographs (ed. Chen, G.-Q.) 237–255 (Springer, 2010).

  12. Tang, X. et al. Biodegradable polyhydroxyalkanoates by stereoselective copolymerization of racemic diolides: stereocontrol and polyolefin‐like properties. Angew. Chem. Int. Ed. 59, 7881–7890 (2020).

    Article  CAS  Google Scholar 

  13. Tang, X., Shi, C., Zhang, Z. & Chen, E. Y.-X. Toughening biodegradable isotactic poly(3-hydroxybutyrate) via stereoselective copolymerization of a diolide and lactones. Macromolecules 54, 9401–9409 (2021).

    Article  CAS  Google Scholar 

  14. Tang, X., Westlie, A. H., Watson, E. M. & Chen, E. Y.-X. Stereosequenced crystalline polyhydroxyalkanoates from diastereomeric monomer mixtures. Science 366, 754–758 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Jost, V. Packaging related properties of commercially available biopolymers—an overview of the status quo. Express Polym. Lett. 12, 429–435 (2018).

    Article  CAS  Google Scholar 

  16. Kobayashi, T., Yamaguchi, A., Hagiwara, T. & Hori, Y. Synthesis of poly(3-hydroxyalkanoate)s by ring-opening copolymerization of (R)-β-butyrolactone with other four-membered lactones using a distannoxane complex as a catalyst. Polymer 36, 4707–4710 (1995).

    Article  CAS  Google Scholar 

  17. Füchtenbusch, B., Fabritius, D. & Steinbüchel, A. Incorporation of 2-methyl-3-hydroxybutyric acid into polyhydroxyalkanoic acids by axenic cultures in defined media. FEMS Microbiol. Lett. 138, 153–160 (1996).

    Article  Google Scholar 

  18. Watanabe, Y., Ishizuka, K., Furutate, S., Abe, H. & Tsuge, T. Biosynthesis and characterization of novel poly(3-hydroxybutyrate-co-3-hydroxy-2-methylbutyrate): thermal behavior associated with α-carbon methylation. RSC Adv. 5, 58679–58685 (2015).

    Article  CAS  Google Scholar 

  19. Furutate, S. et al. Biosynthesis and characterization of novel polyhydroxyalkanoate copolymers consisting of 3-hydroxy-2-methylbutyrate and 3-hydroxyhexanoate. J. Polym. Res. 24, 221 (2017).

    Article  Google Scholar 

  20. Dong, H., Liffland, S., Hillmyer, M. A. & Chang, M. C. Engineering in vivo production of α-branched polyesters. J. Am. Chem. Soc. 141, 16877–16883 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. Furutate, S., Abe, H. & Tsuge, T. Thermal properties of poly(3-hydroxy-2-methylbutyrate-co-3-hydroxybutyrate) copolymers with narrow comonomer-unit compositional distributions. Polym. J. 53, 1451–1457 (2021).

    Article  CAS  Google Scholar 

  22. Yang, J.-C., Yang, J., Li, W.-B., Lu, X.-B. & Liu, Y. Carbonylative polymerization of epoxides mediated by tri-metallic complexes: a dual catalysis strategy for synthesis of biodegradable polyhydroxyalkanoates. Angew. Chem. Int. Ed. 61, e202116208 (2022).

    CAS  Google Scholar 

  23. Furutate, S. et al. Superior thermal stability and fast crystallization behavior of a novel, biodegradable α-methylated bacterial polyester. NPG Asia Mater. 13, 31 (2021).

    Article  CAS  Google Scholar 

  24. Dunn, E. W. & Coates, G. W. Carbonylative polymerization of propylene oxide: a multicatalytic approach to the synthesis of poly(3-hydroxybutyrate). J. Am. Chem. Soc. 132, 11412–11413 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Dunn, E. W., Lamb, J. R., LaPointe, A. M. & Coates, G. W. Carbonylation of ethylene oxide to β-propiolactone: a facile route to poly(3-hydroxypropionate) and acrylic acid. ACS Catal. 6, 8219–8223 (2016).

    Article  CAS  Google Scholar 

  26. Berndt, T., Kreipl, A. & Lenski, U. Epoxidation of 2-butene from raffinate 2 feedstock. Ind. Eng. Chem. Res. 49, 3957–3960 (2010).

    Article  CAS  Google Scholar 

  27. Bond, J. Q., Alonso, D. M., Wang, D., West, R. M. & Dumesic, J. A. Integrated catalytic conversion of γ-valerolactone to liquid alkenes for transportation fuels. Science 327, 1110–1114 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Lin, L. et al. Quantitative production of butenes from biomass-derived γ-valerolactone catalysed by hetero-atomic MFI zeolite. Nat. Mater. 19, 86–93 (2020).

    Article  CAS  PubMed  Google Scholar 

  29. Kim, T. Y. et al. Gas-phase dehydration of vicinal diols to epoxides: dehydrative epoxidation over a Cs/SiO2 catalyst. J. Catal. 323, 85–99 (2015).

    Article  CAS  Google Scholar 

  30. Song, C. W., Park, J. M., Chung, S. C., Lee, S. Y. & Song, H. Microbial production of 2,3-butanediol for industrial applications. J. Ind. Microbiol. Biotechnol. 46, 1583–1601 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Mahadevan, V., Getzler, Y. D. Y. L. & Coates, G. W. [Lewis Acid]+[Co(CO)4] complexes: a versatile class of catalysts for carbonylative ring expansion of epoxides and aziridines. Angew. Chem. Int. Ed. 41, 2781–2784 (2002).

    Article  CAS  Google Scholar 

  32. Schmidt, J. A. R., Mahadevan, V., Getzler, Y. D. Y. L. & Coates, G. W. A readily synthesized and highly active epoxide carbonylation catalyst based on a chromium porphyrin framework: expanding the range of available β-lactones. Org. Lett. 6, 373–376 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Schmidt, J. A. R., Lobkovsky, E. B. & Coates, G. W. Chromium (III) octaethylporphyrinato tetracarbonylcobaltate: a highly active, selective, and versatile catalyst for epoxide carbonylation. J. Am. Chem. Soc. 127, 11426–11435 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Rowley, J. M., Lobkovsky, E. B. & Coates, G. W. Catalytic double carbonylation of epoxides to succinic anhydrides: catalyst discovery, reaction scope and mechanism. J. Am. Chem. Soc. 129, 4948–4960 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Pavlov, O. S., Karsakov, S. A. & Pavlov, S. Y. 1-Butene and 2-butenes production using the positional isomerization of butenes catalyzed by sulfonic acid cation exchangers. Theor. Found. Chem. Eng. 44, 531–535 (2010).

    Article  CAS  Google Scholar 

  36. Amgoune, A., Thomas, C. M., Ilinca, S., Roisnel, T. & Carpentier, J.-F. Highly active, productive and syndiospecific yttrium initiators for the polymerization of racemic β‐butyrolactone. Angew. Chem. Int. Ed. 45, 2782–2784 (2006).

    Article  CAS  Google Scholar 

  37. Ajellal, N. et al. Syndiotactic-enriched poly(3-hydroxybutyrate)s via stereoselective ring-opening polymerization of racemic β-butyrolactone with discrete yttrium catalysts. Macromolecules 42, 987–993 (2009).

    Article  CAS  Google Scholar 

  38. Carpentier, J.-F. Rare-earth complexes supported by tripodal tetradentate bis(phenolate) ligands: a privileged class of catalysts for ring-opening polymerization of cyclic esters. Organometallics 34, 4175–4189 (2015).

    Article  CAS  Google Scholar 

  39. Kramer, J. W. et al. Polymerization of enantiopure monomers using syndiospecific catalysts: a new approach to sequence control in polymer synthesis. J. Am. Chem. Soc. 131, 16042–16044 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Rieth, L. R., Moore, D. R., Lobkovsky, E. B. & Coates, G. W. Single-site β-diiminate zinc catalysts for the ring-opening polymerization of β-butyrolactone and β-valerolactone to poly(3-hydroxyalkanoates). J. Am. Chem. Soc. 124, 15239–15248 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Ebrahimi, T., Aluthge, D. C., Hatzikiriakos, S. G. & Mehrkhodavandi, P. Highly active chiral zinc catalysts for immortal polymerization of β-butyrolactone form melt processable syndio-rich poly(hydroxybutyrate). Macromolecules 49, 8812–8824 (2016).

    Article  CAS  Google Scholar 

  42. Schofield, A. D., Barros, M. L., Cushion, M. G., Schwarz, A. D. & Mountford, P. Sodium, magnesium and zinc complexes of mono(phenolate) heteroscorpionate ligands. Dalton Trans. 7, 85–96 (2009).

    Article  Google Scholar 

  43. Ruiz de Ballesteros, O. et al. Thermal and structural characterization of poly(methylene-1,3-cyclopentane) samples of different microstructures. Macromolecules 28, 2383–2388 (1995).

    Article  CAS  Google Scholar 

  44. Lee, L.-B. W. & Register, R. A. Hydrogenated ring-opened polynorbornene: a highly crystalline atactic polymer. Macromolecules 38, 1216–1222 (2005).

    Article  CAS  Google Scholar 

  45. Corradini, P., Auriemma, F. & De Rosa, C. Crystals and crystallinity in polymeric materials. Acc. Chem. Res. 39, 314–323 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Shi, C. et al. High-performance pan-tactic polythioesters with intrinsic crystallinity and chemical recyclability. Sci. Adv. 6, eabc0495 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kafle, N. et al. Roles of conformational flexibility in the crystallization of stereoirregular polymers. Macromolecules 54, 5705–5718 (2021).

    Article  CAS  Google Scholar 

  48. Abe, H. Thermal degradation of environmentally degradable poly(hydroxyalkanoic acid)s. Macromol. Biosci. 6, 469–486 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Nishida, H., Shirai, Y. & Hassan, M. A. Highly selective transformation of poly[(R)-3-hydroxybutyric acid] into trans-crotonic acid by catalytic thermal degradation. Polym. Degrad. Stab. 95, 1375–1381 (2010).

    Article  Google Scholar 

  50. Bigley, D. B. Studies in decarboxylation. Part I. The mechanism of decarboxylation of unsaturated acids. J. Chem. Soc 1964, 3897–3899 (1964).

    Article  Google Scholar 

Download references

Acknowledgements

We thank S. N. MacMillan (Cornell University) for help with X-ray crystallography. This work was supported by the Department of Energy (no. DE-FOA-0002414) and ExxonMobil. This work made use of the Cornell Center for Materials Research and the NMR Facility at Cornell University, which are supported by the NSF under awards DMR-1719875 and CHE-1531632, respectively. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Z.Z. and A.M.L. designed and performed all experiments. G.W.C. directed the research. All authors prepared the manuscript.

Corresponding author

Correspondence to Geoffrey W. Coates.

Ethics declarations

Competing interests

Z.Z., A.M.L. and G.W.C. are inventors on US provisional patent application 63/220,301, submitted by Cornell University, which covers the synthesis and characterization of PHMB. T.D.S. declares no competing interests.

Peer review

Peer review information

Nature Chemistry thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary materials and methods, synthetic procedures, Figs. 1–46 and Tables 1–16.

Supplementary Data 1

Crystallographic data for B-HMDS; CCDC no. 2135622.

Supplementary Data 2

Raw Excel data for the PXRD data of cis-PHMB with varied syndiotacticity.

Supplementary Data 3

Raw Excel data for the tensile measurements of all PHMB samples.

Source data

Source Data Fig. 3

Source data for the tensile measurements of PHMB copolymers and commercial polyolefins (Fig. 3c).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Z., LaPointe, A.M., Shaffer, T.D. et al. Nature-inspired methylated polyhydroxybutyrates from C1 and C4 feedstocks. Nat. Chem. 15, 856–861 (2023). https://doi.org/10.1038/s41557-023-01187-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-023-01187-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing