Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Repurposing degradation pathways for modular metabolite biosynthesis in nematodes

Abstract

Recent studies have revealed that Caenorhabditis elegans and other nematodes repurpose products from biochemical degradation pathways for the combinatorial assembly of complex modular structures that serve diverse signaling functions. Building blocks from neurotransmitter, amino acid, nucleoside and fatty acid metabolism are attached to scaffolds based on the dideoxyhexose ascarylose or glucose, resulting in hundreds of modular ascarosides and glucosides. Genome-wide association studies have identified carboxylesterases as the key enzymes mediating modular assembly, enabling rapid compound discovery via untargeted metabolomics and suggesting that modular metabolite biosynthesis originates from the ‘hijacking’ of conserved detoxification mechanisms. Modular metabolites thus represent a distinct biosynthetic strategy for generating structural and functional diversity in nematodes, complementing the primarily polyketide synthase- and nonribosomal peptide synthetase-derived universe of microbial natural products. Although many aspects of modular metabolite biosynthesis and function remain to be elucidated, their identification demonstrates how phenotype-driven compound discovery, untargeted metabolomics and genomic approaches can synergize to facilitate the annotation of metabolic dark matter.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Modularity of ascarosides in C. elegans and related species.
Fig. 2: GWAS uncovers the enzymes required for modular ascaroside biosynthesis.
Fig. 3: Comparative metabolomics of cest mutants reveals a previously uncharacterized family of modular glucosides.
Fig. 4: Strategies utilized by C. elegans to create structural diversity.

Similar content being viewed by others

References

  1. Da Silva, R. R., Dorrestein, P. C. & Quinn, R. A. Illuminating the dark matter in metabolomics. Proc. Natl Acad. Sci. USA 112, 12549–12550 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Zamboni, N., Saghatelian, A. & Patti, G. J. Defining the metabolome: size, flux and regulation. Mol. Cell 58, 699–706 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Artyukhin, A. B. et al. Metabolomic ‘dark matter’ dependent on peroxisomal β-oxidation in Caenorhabditis elegans. J. Am. Chem. Soc. 140, 2841–2852 (2018). Using comparative metabolomics to study a mutant defective in peroxisomal β‑oxidation, which is required for the biosynthesis of the ascaroside core scaffolds, the authors uncover more than 200 modular ascarosides that integrate diverse building blocks from all major metabolic pathways.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Helf, M. J., Fox, B. W., Artyukhin, A. B., Zhang, Y. K. & Schroeder, F. C. Comparative metabolomics with Metaboseek reveals functions of a conserved fat metabolism pathway in C. elegans. Nat. Commun. 13, 782 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sindelar, M. & Patti, G. J. Chemical discovery in the era of metabolomics. J. Am. Chem. Soc. 142, 9097–9105 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Camilli, A. & Bassler, B. L. Bacterial small-molecule signaling pathways. Science 311, 1113–1116 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Manosalva, P. et al. Conserved nematode signalling molecules elicit plant defenses and pathogen resistance. Nat. Commun. 6, 7795 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Butcher, R. A. Natural products as chemical tools to dissect complex biology in C. elegans. Curr. Opin. Chem. Biol. 50, 138–144 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Johansson, B. G. & Jones, T. M. The role of chemical communication in mate choice. Biol. Rev. 82, 265–289 (2007).

    Article  PubMed  Google Scholar 

  10. Machado, R. A. R. & Reuss, S. Hvon Chemical ecology of nematodes. Chimia 76, 945 (2022).

    Article  CAS  Google Scholar 

  11. Ludewig, A. H. & Schroeder, F. C. Ascaroside signaling in C. elegans. WormBook (The C. elegans Research Community, 2013); https://doi.org/10.1895/wormbook.1.155.1

  12. von Reuss, S. H. Exploring modular glycolipids involved in nematode chemical communication. Chim. Int. J. Chem. 72, 297–303 (2018). This review outlines the chemical diversity, biosynthesis, and species-specificity of ascarosides in several Caenorhabditis species and in P. pacificus. This review also discusses the use of targeted MS-based metabolomics to screen for entire ascaroside profiles across various nematode species.

    Article  CAS  Google Scholar 

  13. Butcher, R. A. Small-molecule pheromones and hormones controlling nematode development. Nat. Chem. Biol. 13, 577–586 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Butcher, R. A. Decoding chemical communication in nematodes. Nat. Prod. Rep. 34, 472–477 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. von Reuss, S. H. & Schroeder, F. C. Combinatorial chemistry in nematodes: modular assembly of primary metabolism-derived building blocks. Nat. Prod. Rep. 32, 994–1006 (2015).

    Article  Google Scholar 

  16. Schroeder, F. C. Modular assembly of primary metabolic building blocks: a chemical language in C. elegans. Chem. Biol. 22, 7–16 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Golden, J. W. & Riddle, D. L. A pheromone influences larval development in the nematode Caenorhabditis elegans. Science 218, 578–580 (1982).

    Article  CAS  PubMed  Google Scholar 

  18. Golden, J. W. & Riddle, D. L. A Caenorhabditis elegans dauer-inducing pheromone and an antagonistic component of the food supply. J. Chem. Ecol. 10, 1265–1280 (1984).

    Article  CAS  PubMed  Google Scholar 

  19. Golden, J. W. & Riddle, D. L. The Caenorhabditis elegans dauer larva: developmental effects of pheromone, food and temperature. Dev. Biol. 102, 368–378 (1984).

    Article  CAS  PubMed  Google Scholar 

  20. Butcher, R. A., Fujita, M., Schroeder, F. C. & Clardy, J. Small-molecule pheromones that control dauer development in Caenorhabditis elegans. Nat. Chem. Biol. 3, 420–422 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Jeong, P. Y. et al. Chemical structure and biological activity of the Caenorhabditis elegans dauer-inducing pheromone. Nature 433, 541–545 (2005). This work provides the first direct evidence that ascarosides are the key small-molecule component of the dauer pheromone in C. elegans. This work springboards the discovery of the entire family of modular ascarosides and is an instructive example of the power of activity-guided fractionation.

    Article  CAS  PubMed  Google Scholar 

  22. Srinivasan, J. et al. A modular library of small molecule signals regulates social behaviors in Caenorhabditis elegans. PLoS Biol. 10, e1001237 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Artyukhin, A. B. et al. Succinylated octopamine ascarosides and a new pathway of biogenic amine metabolism in Caenorhabditis elegans. J. Biol. Chem. 288, 18778–18783 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pungaliya, C. et al. A shortcut to identifying small molecule signals that regulate behavior and development in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 106, 7708–7713 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dong, C., Weadick, C. J., Truffault, V. & Sommer, R. J. Convergent evolution of small molecule pheromones in pristionchus nematodes. eLife 9, e55687 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bose, N. et al. Complex small-molecule architectures regulate phenotypic plasticity in a nematode. Angew. Chem. Int. Ed. 51, 12438–12443 (2012).

    Article  CAS  Google Scholar 

  27. Bose, N. et al. Natural variation in dauer pheromone production and sensing supports intraspecific competition in nematodes. Curr. Biol. 24, 1536–1541 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bergame, C. P., Dong, C., Sutour, S. & Von Reuß, S. H. Epimerization of an ascaroside-type glycolipid downstream of the canonical β-oxidation cycle in the nematode Caenorhabditis nigoni. Org. Lett. 21, 9889–9892 (2019).

    Article  CAS  PubMed  Google Scholar 

  29. Curtis, B. J. et al. Identification of uric acid gluconucleoside-ascaroside conjugates in Caenorhabditis elegans by combining synthesis and MicroED. Org. Lett. 22, 6724–6728 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Burkhardt, R. N. et al. Sex-specificity of the C. elegans metabolome. Nat. Commun. 14, 320 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hoki, J. S. et al. Deep interrogation of metabolism using a pathway-targeted click-chemistry approach. J. Am. Chem. Soc. 142, 18449–18459 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Von Reuss, S. H. et al. Comparative metabolomics reveals biogenesis of ascarosides, a modular library of small-molecule signals in C. elegans. J. Am. Chem. Soc. 134, 1817–1824 (2012).

    Article  Google Scholar 

  33. Choe, A. et al. Ascaroside signaling is widely conserved among nematodes. Curr. Biol. 22, 772–780 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dolke, F. et al. Ascaroside signaling in the bacterivorous nematode Caenorhabditis remanei encodes the growth phase of its bacterial food source. Org. Lett. 21, 5832–5837 (2019).

    Article  CAS  PubMed  Google Scholar 

  35. Panda, O. et al. Biosynthesis of modular ascarosides in C. elegans. Angew. Chem. Int. Ed. 56, 4729–4733 (2017).

    Article  CAS  Google Scholar 

  36. Falcke, J. M. et al. Linking genomic and metabolomic natural variation uncovers nematode pheromone piosynthesis. Cell Chem. Biol. 25, 787–796 (2018). This work demonstrates the potential of GWAS for the discovery of unexpected enzymatic functions in the context of modular metabolite biosynthesis and beyond.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rauwerdink, A. & Kazlauskas, R. J. How the same core catalytic machinery catalyzes 17 different reactions: the serine-histidine-aspartate catalytic triad of α/β-hydrolase fold enzymes. ACS Catal. 5, 6153–6176 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mindrebo, J. T., Nartey, C. M., Seto, Y., Burkart, M. D. & Noel, J. P. Unveiling the functional diversity of the α/β hydrolase superfamily in the plant kingdom. Curr. Opin. Struct. Biol. 41, 233–246 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zheng, Q. et al. An α/β-hydrolase fold protein in the biosynthesis of thiostrepton exhibits a dual activity for endopeptidyl hydrolysis and epoxide ring opening/macrocyclization. Proc. Natl Acad. Sci. USA 113, 14318–14323 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lejon, S., Ellis, J. & Valegård, K. The last step in cephalosporin C formation revealed: crystal structures of deacetylcephalosporin C acetyltransferase from acremonium chrysogenum in complexes with reaction intermediates. J. Mol. Biol. 377, 935–944 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Faghih, N. et al. A large family of enzymes responsible for the modular architecture of nematode pheromones. J. Am. Chem. Soc. 142, jacs.0c04223 (2020). This paper demonstrate that the cest homologs are required for modular ascaroside assembly in C. elegans, specifically for the attachment of 4′-modifications.

    Article  Google Scholar 

  42. Le, H. H. et al. Modular metabolite assembly in Caenorhabditis elegans depends on carboxylesterases and formation of lysosome-related organelles. eLife 9, e61886 (2020). This work demonstrates the power of untargeted metabolomics in determining that the cest enzymes additionally participate in the biosynthesis of modular glucosides (MOGLs).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Piazzesi, A. et al. CEST-2.2 overexpression alters lipid metabolism and extends longevity of mitochondrial mutants. EMBO Rep. 23, e52606 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhou, Y. et al. Biosynthetic tailoring of existing ascaroside pheromones alters their biological function in C. elegans. eLife 7, e33286 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Taylor, S. R. et al. Molecular topography of an entire nervous system. Cell 184, 4329–4347 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Teufel, F. et al. SignalP 6.0 predicts all five types of signal peptides using protein language models. Nat. Biotechnol. 40, 1023–1025 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nyathi, Y., Wilkinson, B. M. & Pool, M. R. Co-translational targeting and translocation of proteins to the endoplasmic reticulum. Biochim. Biophys. Acta 1833, 2392–2402 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Yu, J. et al. Parallel pathways for serotonin biosynthesis and metabolism in C. elegans. Nat. Chem. Biol. 19, 141–150 (2023).

    Article  CAS  PubMed  Google Scholar 

  49. Wrobel, C. J. J. et al. Combinatorial assembly of modular glucosides via carboxylesterases regulates C. elegans starvation survival. J. Am. Chem. Soc. 143, 14676–14683 (2021). This work provides insights into the biological roles of MOGL production, including their association with nutritional status and starvation survival in C. elegans.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Imai, T., Taketani, M., Shii, M., Hosokawa, M. & Chiba, K. Substrate specificity of carboxylesterase isozymes and their contribution to hydrolase activity in human liver and small intestine. Drug Metab. Dispos. 34, 1734–1741 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Martínez-Martínez, M. et al. Determinants and prediction of esterase substrate promiscuity patterns. ACS Chem. Biol. 13, 225–234 (2018).

    Article  PubMed  Google Scholar 

  52. Blaxter, M. Nematodes: the worm and its relatives. PLoS Biol. 9, e1001050 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bargmann, C. I. Comparative chemosensation from receptors to ecology. Nature 444, 295–301 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Kanzaki, N. et al. Biology and genome of a newly discovered sibling species of Caenorhabditis elegans. Nat. Commun. 9, 3216 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Chute, C. D. et al. Co-option of neurotransmitter signaling for inter-organismal communication in C. elegans. Nat. Commun. 10, 3186 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  56. O'Donnell, M. P., Fox, B. W., Chao, P.-H., Schroeder, F. C. & Sengupta, P. A neurotransmitter produced by gut bacteria modulates host sensory behaviour. Nature 583, 415–420 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Coburn, C. et al. Anthranilate fluorescence marks a calcium-propagated necrotic wave that promotes organismal death in C. elegans. PLoS Biol. 11, e1001613 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Stasiuk, S. J. et al. Similarities and differences in the biotransformation and transcriptomic responses of Caenorhabditis elegans and Haemonchus contortus to five different benzimidazole drugs. Int. J. Parasitol. Drugs Drug Resist. 11, 13–29 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Lee, J. H. et al. Indole-associated predator–prey interactions between the nematode Caenorhabditis elegans and bacteria. Environ. Microbiol. 19, 1776–1790 (2017).

    Article  CAS  PubMed  Google Scholar 

  60. Stupp, G. S. et al. Chemical detoxification of small molecules by Caenorhabditis elegans. ACS Chem. Biol. 8, 309–313 (2013).

    Article  CAS  PubMed  Google Scholar 

  61. Ouzzine, M., Gulberti, S., Ramalanjaona, N., Magdalou, J. & Fournel-Gigleux, S. The UDP-glucuronosyltransferases of the blood–brain barrier: their role in drug metabolism and detoxication. Front. Cell. Neurosci. 8, 349 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Lindblom, T. H. & Dodd, A. K. Xenobiotic detoxification in the nematode Caenorhabditis elegans. J. Exp. Zool. A Comp. Exp. Biol. 305A, 720–730 (2006).

    Article  CAS  Google Scholar 

  63. Bock, K. W. The UDP-glycosyltransferase (UGT) superfamily expressed in humans, insects and plants: animal-plant arms-race and co-evolution. Biochem. Pharmacol. 99, 11–17 (2016).

    Article  CAS  PubMed  Google Scholar 

  64. Soukup, S. T. et al. Formation of phosphoglycosides in Caenorhabditis elegans: a novel biotransformation pathway. PLoS ONE 7, e46914 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hosoda, K., Furuta, T. & Ishii, K. Metabolism and disposition of isoflavone conjugated metabolites in humans after ingestion of kinako. Drug Metab. Dispos. 39, 1762–1767 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Lai, Y. et al. High-coverage metabolomics uncovers microbiota-driven biochemical landscape of interorgan transport and gut–brain communication in mice. Nat. Commun. 12, 6000 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Meech, R., Miners, J. O., Lewis, B. C. & MacKenzie, P. I. The glycosidation of xenobiotics and endogenous compounds: versatility and redundancy in the UDP glycosyltransferase superfamily. Pharmacol. Ther. 134, 200–218 (2012).

    Article  CAS  PubMed  Google Scholar 

  68. Dong, D., Ako, R., Hu, M. & Wu, B. Understanding substrate selectivity of human UDP-glucuronosyltransferases through QSAR modeling and analysis of homologous enzymes. Xenobiotica 42, 808–820 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Brown, V., Jonesyb, A. J., Laceya, M. J. & Moorea, B. P. The chemistry of buprestins A and B. Bitter principles of jewel beetles (Coleoptera: Buprestidae). Aust. J. Chem. 38, 197–206 (1985).

    Article  CAS  Google Scholar 

  70. Ryczek, S., Dettner, K. & Unverzagt, C. Synthesis of buprestins D, E, F, G and H; structural confirmation and biological testing of acyl glucoses from jewel beetles (Coleoptera: Buprestidae). Bioorg. Med. Chem. 17, 1187–1192 (2009).

    Article  CAS  PubMed  Google Scholar 

  71. Schramm, S., Dettner, K. & Unverzagt, C. Chemical and enzymatic synthesis of buprestin A and B—bitter acylglucosides from Australian jewel beetles (Coleoptera: Buprestidae). Tetrahedron Lett. 47, 7741–7743 (2006).

    Article  CAS  Google Scholar 

  72. Moore, B. P. & Brown, W. V. The buprestins: bitter principles of jewel bettle (Coleoptera: Buprestidae). Aust. J. Entomol. 24, 81–85 (1985).

    Article  CAS  Google Scholar 

  73. Herrmann, M. et al. The nematode Pristionchus pacificus (Nematoda: Diplogastridae) is associated with the oriental beetle Exomala orientalis (Coleoptera: Scarabaeidae) in Japan. Zoolog. Sci 24, 883–889 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Wegensteiner, R., Wermelinger, B. & Herrmann, M. in Bark Beetles (eds Vega, F. E. & Hofstetter, R. W.) Ch. 7, 247–304 (Elsevier, 2015).

  75. Nordgren, M., Wang, B., Apanasets, O. & Fransen, M. Peroxisome degradation in mammals: mechanisms of action, recent advances and perspectives. Front. Physiol. 4, 145 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Soto-Heredero, G., Baixauli, F. & Mittelbrunn, M. Interorganelle communication between mitochondria and the endolysosomal system. Front. Cell Dev. Biol. 5, 95 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Klecker, T., Böckler, S. & Westermann, B. Making connections: interorganelle contacts orchestrate mitochondrial behavior. Trends Cell Biol. 24, 537–545 (2014).

    Article  CAS  PubMed  Google Scholar 

  78. Du, L. & Li, S. Compartmentalized biosynthesis of fungal natural products. Curr. Opin. Biotechnol. 69, 128–135 (2021).

    Article  CAS  PubMed  Google Scholar 

  79. Evans, K. S., van Wijk, M. H., McGrath, P. T., Andersen, E. C. & Sterken, M. G. From QTL to gene: C. elegans facilitates discoveries of the genetic mechanisms underlying natural variation. Trends Genet. 37, 933–947 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Widmayer, S. J., Evans, K. S., Zdraljevic, S. & Andersen, E. C. Evaluating the power and limitations of genome-wide association studies in Caenorhabditis elegans. G3 (Bethesda) 12, jkac114 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Andersen, E. C. & Rockman, M. V. Natural genetic variation as a tool for discovery in Caenorhabditis nematodes. Genetics 220, iyab156 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Fukunaga, K. et al. Recombinant inbred lines and next-generation sequencing enable rapid identification of candidate genes involved in morphological and agronomic traits in foxtail millet. Sci. Rep. 12, 218 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Nivina, A., Yuet, K. P., Hsu, J. & Khosla, C. Evolution and diversity of assembly-line polyketide synthases. Chem. Rev. 119, 12524–12547 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Süssmuth, R. D. & Mainz, A. Nonribosomal peptide synthesis—principles and prospects. Angew. Chem. Int. Ed. 56, 3770–3821 (2017).

    Article  Google Scholar 

  85. Cane, D. E. & Walsh, C. T. The parallel and convergent universes of polyketide synthases and nonribosomal peptide synthetases. Chem. Biol. 6, R319–R325 (1999).

    Article  CAS  PubMed  Google Scholar 

  86. Keatinge-Clay, A. T. The uncommon enzymology of cis-acyltransferase assembly lines. Chem. Rev. 117, 5334–5366 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Shou, Q. et al. A hybrid polyketide–nonribosomal peptide in nematodes that promotes larval survival. Nat. Chem. Biol. 12, 770–772 (2016). This work elucidated the structure of the hybrid polyketide–nonribosomal peptide nemamide A from C. elegans, one of the few examples of NRPS–PKS pathways in animals exhibiting many of the typical characteristics of microbial assembly-line biosynthesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Feng, L., Gordon, M. T., Liu, Y., Basso, K. B. & Butcher, R. A. Mapping the biosynthetic pathway of a hybrid polyketide–nonribosomal peptide in a metazoan. Nat. Commun. 12, 4912 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank B. Fox and J. Yu for helpful comments on the manuscript. This work was supported, in part, by the National Institutes of Health (R35GM131877) and the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank C. Schroeder.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Biology thanks Stephan von Reuss, Xinxing Zhang, Yue Zhou and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Table 1

List of structures, source species and phenotypic associations for modular ascarosides and MOGLs produced by nematodes.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wrobel, C.J.J., Schroeder, F.C. Repurposing degradation pathways for modular metabolite biosynthesis in nematodes. Nat Chem Biol 19, 676–686 (2023). https://doi.org/10.1038/s41589-023-01301-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41589-023-01301-w

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research