Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter March 17, 2023

Multiscale theory

  • Miroslav Grmela EMAIL logo

Abstract

Boltzmann kinetic equation is put into the form of an abstract time evolution equation representing links connecting autonomous mesoscopic dynamical theories involving varying amount of details. In the chronological order we present results that led to the abstract time equation evolution in both state space and the space of vector fields. In the final section we list some open problems.


Corresponding author: Miroslav Grmela, École Polytechnique de Montréal, C.P. 6079 Suc. Centre-Ville, Montréal, H3C 3A7, QC, Canada, E-mail:

Acknowledgment

I would like to thank Oǧul Esen, Václav Klika, Hans Christian Öttinger, Michal Pavelka, and Henning Struchtrup for stimulating discussions.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] L. Boltzmann, Vorlesungen Über Gastheorie, I Teil, Leipzig, Germany, R. Barth, 1896.Search in Google Scholar

[2] H. Callen, Thermodynamics: An Introduction to the Physical Theories of Equilibrium Thermostatics and Irreversible Thermodynamics, New York, Wiley, 1960.10.1115/1.3644060Search in Google Scholar

[3] J. W. Gibbs, Collected Works, New York, NY, USA, Longmans Green and Co., 1984.Search in Google Scholar

[4] I. Prigogine, Introduction to Thermodynamics of Irreversible Processes, New York, NY, USA, John Wiley and Sons, 1955.Search in Google Scholar

[5] S. R. de Groot and P. Mazur, Non-Equilibrium Thermodynamics, New York, NY, USA, Dover, 1964.Search in Google Scholar

[6] S. K. Godunov, “An interesting class of quasilinear systems,” Sov. Math. Dokl., vol. 2, p. 947, 1961.Search in Google Scholar

[7] S. K. Godunov and E. Romenski, “Chapter Thermodynamics, conservation laws and symmetric forms of differential equations in mechanics of continuous media,” in Computational Fluid Dynamics Review, New York, NY, USA, Wiley, 1995, pp. 19–31.Search in Google Scholar

[8] A. Clebsch, “Über die Integration der hydrodynamische Gleichungen,” J. Reine Angew. Math., vol. 56, pp. 1–10, 1859.10.1515/crll.1859.56.1Search in Google Scholar

[9] V. I. Arnold, “Sur la géometrie différentielle des groupes de Lie de dimension infini et ses applications dans l’hydrodynamique des fluides parfaits,” Ann. Inst. Fourier, vol. 16, pp. 319–361, 1966. https://doi.org/10.5802/aif.233.Search in Google Scholar

[10] M. Grmela, “Particle and bracket formulations of kinetic equations,” Contemp. Math., vol. 28, pp. 125–132, 1984.10.1090/conm/028/751978Search in Google Scholar

[11] M. Grmela, “Bracket formulation of diffusion-convection equations,” Physica D, vol. 21, pp. 179–212, 1986. https://doi.org/10.1016/0167-2789(86)90001-1.Search in Google Scholar

[12] M. Grmela and H. C. Öttinger, “Dynamics and thermodynamics of complex fluids: general formulation,” Phys. Rev. E, vol. 56, pp. 6620–6632, 1997. https://doi.org/10.1103/physreve.56.6620.Search in Google Scholar

[13] H. C. Öttinger and M. Grmela, “Dynamics and thermodynamics of complex fluids: illustration of the general formalism,” Phys. Rev. E, vol. 56, pp. 6633–6655, 1997. https://doi.org/10.1103/physreve.56.6633.Search in Google Scholar

[14] A. N. Beris and B. J. Edwards, Thermodynamics of Flowing Systems; Oxford Engineering Science Series, New York, NY, USA, Oxford University Press, 1994.Search in Google Scholar

[15] M. Grmela, “Multiscale equilibrium and nonequilibrium thermodynamics in chemical engineering,” Adv. Chem. Eng., vol. 39, p. 75, 2010.10.1016/S0065-2377(10)39002-8Search in Google Scholar

[16] H. C. Öttinger, Beyond Equilibrium Thermodynamics, Hoboken, NJ, USA, John Wiley and Sons, Inc., 2005.10.1002/0471727903Search in Google Scholar

[17] M. Pavelka, V. Klika, and M. Grmela, Multiscale Thermo-Dynamics, Berlin, Germany, De Gruyter, 2018.10.1515/9783110350951Search in Google Scholar

[18] P. J. Morrison, “Bracket formulation for irreversible classical fields,” Phys. Lett. A, vol. 100, pp. 423–427, 1984. https://doi.org/10.1016/0375-9601(84)90635-2.Search in Google Scholar

[19] P. J. Morrison, “A paradigm for joined Hamiltonian and dissipative systems,” Physica D, vol. 18, pp. 410–419, 1986. https://doi.org/10.1016/0167-2789(86)90209-5.Search in Google Scholar

[20] A. N. Kaufman, “Dissipative Hamiltonian systems: a unifying principle,” Phys. Lett. A, vol. 100, pp. 419–422, 1984. https://doi.org/10.1016/0375-9601(84)90634-0.Search in Google Scholar

[21] S. C. Chapman and T. C. Cowling, The Marhemafical Theory of Non-Uniform Gases, Cambridge, UK, Cambridge University Press, 1961.Search in Google Scholar

[22] H. Grad, Handbuch der Physik, Principles of Kinetic Theory of Gases, vol. 12, Berli, Springer Verlag, 1958.10.1007/978-3-642-45892-7_3Search in Google Scholar

[23] A. N. Gorban and I. V. Karlin, InvariantManifolds for Physical and Chemical Kinetics; Lecture Notes in Physics, Berlin, Heidelberg, Germany, Springer, 2005.10.1007/b98103Search in Google Scholar

[24] V. Klika, M. Pavelka, P. Vágner, and M. Grmela, “Dynamic maximum entropy reduction,” Entropy, vol. 21, p. 715, 2019. https://doi.org/10.3390/e21070715.Search in Google Scholar PubMed PubMed Central

[25] M. Pavelka, V. Klika, and M. Grmela, “Ehrenfest regularization of Hamiltonian systems,” Physica D, vol. 399, pp. 193–210, 2019. https://doi.org/10.1016/j.physd.2019.06.006.Search in Google Scholar

[26] M. Pavelka, V. Klika, and M. Grmela, “Generalization of the dynamical lack-of-fit reduction from GENERIC to GENERIC,” J. Stat. Phys., vol. 181, pp. 19–52, 2020. https://doi.org/10.1007/s10955-020-02563-7.Search in Google Scholar

[27] B. Turkington, “An optimization principle for deriving nonequilibrium statistical models of Hamiltonian dynamics,” J. Stat. Phys., vol. 152, pp. 569–597, 2013. https://doi.org/10.1007/s10955-013-0778-9.Search in Google Scholar

[28] L. Rayleigh, “XLIV. On the vibrations of approximately simple systems,” Proc. Math. Soc. London, vol. 4, pp. 357–361, 1873. https://doi.org/10.1080/14786447308640955.Search in Google Scholar

[29] L. Onsager, “Reciprocal relations in irreversible processes I, II,” Phys. Rev., vol. 37, no. 4, pp. 405–426, 1931. https://doi.org/10.1103/physrev.37.405.Search in Google Scholar

[30] L. Onsager and S. Machlup, “Fluctuations and irreversible processes,” Phys. Rev., vol. 91, no. 6, pp. 1505–1512, 1953. https://doi.org/10.1103/physrev.91.1505.Search in Google Scholar

[31] O. Esen, M. Grmela, and M. Pavelka, “On the role of geometry in statistical mechanics and thermodynamics I: geometrical perspective,” J. Math. Phys., vol. 63, no. 12, p. 122902, 2022. https://doi.org/10.1063/5.0099923.Search in Google Scholar

[32] O. Esen, M. Grmela, and M. Pavelka, “On the role of geometry in statistical mechanics and thermodynamics II: thermodynamic perspective,” J. Math. Phys., vol. 63, no. 12, p. 123305, 2022. https://doi.org/10.1063/5.0099930.Search in Google Scholar

[33] M. Doi, “Onsager’s variational principle in soft matter,” J. Phys. Condens. Matter, vol. 23, p. 284118, 2011. https://doi.org/10.1088/0953-8984/23/28/284118.Search in Google Scholar PubMed

[34] H. Struchtrup and W. Weiss, “Maximum of the local entropy production becomes minimal in stationary processes,” Phys. Rev. Lett., vol. 80, pp. 5048–5051, 1998. https://doi.org/10.1103/physrevlett.80.5048.Search in Google Scholar

[35] M. Grmela, I. V. Karlin, and V. B. Zmievski, “Boundary layer variational principle: a case study,” Phys. Rev. E, vol. 66, p. 011201, 2002. https://doi.org/10.1103/physreve.66.011201.Search in Google Scholar

[36] J. Casas-Vazquez and D. Jou, “Temperature in nonequilibrium steady states: a review of open problems and current proposals,” Rep. Prog. Phys., vol. 66, pp. 1937–2023, 2003. https://doi.org/10.1088/0034-4885/66/11/r03.Search in Google Scholar

[37] M. Grmela and L. Restucia, “Nonequilibrium temperature in the multiscale dynamics and thermodynamics,” AAPP – Atti della Accad. Peloritana dei Pericolanti, vol. 97, p. No81 A8, 2019.Search in Google Scholar

[38] U. Lucia and G. Grisolia, “Nonequilibrium temperature: an approach from irreversibility,” Materials, vol. 14, p. 2021, 2021. https://doi.org/10.3390/ma14082004.Search in Google Scholar PubMed PubMed Central

[39] L. D. Landau, “On the theory of phase transitions,” Zh. Eksp. Teor. Fiz., vol. 7, pp. 19–32, 1937.Search in Google Scholar

[40] V. Arnold, Catastrophe Theory, Berlin, Springer Verlag, 1986.10.1007/978-3-642-96937-9Search in Google Scholar

[41] K. G. Wilson, “Renormalization group and critical phenomena. I. Renormalization group and the kadanoff scaling picture,” Phys. Rev. B, vol. 4, pp. 3174–3184, 1971. https://doi.org/10.1103/physrevb.4.3174.Search in Google Scholar

[42] M. Grmela, “Renormalization of the Van der Waals theory of critical phenomena,” Phys. Rev. A, vol. 14, pp. 1781–1789, 1976. https://doi.org/10.1103/physreva.14.1781.Search in Google Scholar

[43] M. Grmela, V. Klika, and M. Pavelka, “Dynamic and renormalization-group extensions of the Landau theory of critical phenomena,” Entropy, vol. 22, p. 978, 2020. https://doi.org/10.3390/e22090978.Search in Google Scholar PubMed PubMed Central

[44] M. Grmela, “Complex fluids subjected to external influences,” J. Non-Newtonian Fluid Mech., vol. 96, pp. 221–254, 2001. https://doi.org/10.1016/s0377-0257(00)00186-5.Search in Google Scholar

[45] M. Grmela, L. Hong, D. Jou, G. Lebon, and M. Pavelka, “Hamiltonian and Godunov structures of the Grad hierarchy,” Phys. Rev. E, vol. 95, no. 033121, 2017, Art. no. 033121. https://doi.org/10.1103/physreve.95.033121.Search in Google Scholar

[46] O. Esen, M. Grmela, H. Gümral, and M. Pavelka, “Lifts of symmetric tensors: fluids, plasma, and Grad hierarchy,” Entropy, vol. 21, p. 907, 2019. https://doi.org/10.3390/e21090907.Search in Google Scholar

[47] G. Kirkwood, “The statistical mechanical theory of transport processes I. General theory,” J. Chem. Phys., vol. 14, pp. 180–201, 1946. https://doi.org/10.1063/1.1724117.Search in Google Scholar

[48] G. Kirkwood, “The statistical mechanical theory of transport processes II. Transport in gases,” J. Chem. Phys., vol. 15, pp. 72–76, 1947. https://doi.org/10.1063/1.1746292.Search in Google Scholar

[49] R. B. Bird, C. F. Curtiss, R. C. Armstrong, and D. Hassager, Dynamics of Polymer Liquids, 2nd ed., vol. 2, New York, NY, USA, Wiley, 1987.Search in Google Scholar

[50] C. Cattaneo, “Sulla conduzione del calore,” Atti Semin. Mat. Fis. Univ. Modena, vol. 3, p. 83, 1948.Search in Google Scholar

[51] M. Grmela and J. Teichmann, “Lagrangian formulation of the Maxwell–Cattaneo hydrodynamics,” Int. J. Eng. Sci., vol. 21, pp. 297–313, 1983. https://doi.org/10.1016/0020-7225(83)90115-5.Search in Google Scholar

[52] T. Ruggeri and M. Sugiyama, Rational Extended Thermodynamics Beyond the Monoatomic Gas, Berlin, Germany, Springer, 2015.10.1007/978-3-319-13341-6Search in Google Scholar

Received: 2022-11-18
Accepted: 2023-02-25
Published Online: 2023-03-17
Published in Print: 2023-04-28

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 10.5.2024 from https://www.degruyter.com/document/doi/10.1515/jnet-2022-0092/html
Scroll to top button