Skip to main content
Log in

Textural and compositional constraints on the origin, thermal history, and REE mobility in the Lakeh Siah iron oxide-apatite deposit—NE Bafq, Iran

  • Discussion
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

The Lakeh Siah iron oxide-apatite deposit occurs within the Cambrian succession of volcanic tuffs and rhyolitic rocks intercalated with dolomites, dolomitic limestones, and evaporites. Magnetite is the dominant ore mineral, accompanied by apatite, amphibole, diopside, calcite, and andradite garnet. Apatite, allanite, and titanite are the main rare earth element (REE)-bearing minerals. Concentrations of minor elements in magnetite and apatite are consistent with those in the magmatic Kiruna-type IOA deposits. The magmatic stage in the Lakeh Siah deposit is recorded in magnetite-rutile symplectites pseudomorphozing pseudobrookite and replaced by titanite-rutile ± ilmenite ± magnetite, titanite + rutile, and finally REE-rich titanite. The pseudobrookite with 28–42 mol% FeTi2O5 was either a primary magmatic mineral or a product of hemoilmenite breakdown at temperatures higher than 810 °C. The titanite-rutile-ilmenite-magnetite symplectites originated between 475 and 700 °C and oxygen fugacities 1.6–1.9 logfO2 units below the hematite-magnetite buffer. Fluorotremolite associated with diopside and fluorapatite crystallized at temperatures between 710 and 780 °C, and high oxygen fugacities, up to 6 logfO2 units above NNO buffer. The oxidizing conditions are reflected in increased ferric iron contents (Fe3+/Fe2+ molar ratios > 1.7) in tremolite, contrasting with the negligible Fe3+ in superimposed actinolite. Hydrothermal alteration of the primary magmatic, REE-bearing fluorapatite resulted in the reprecipitation of REE-depleted fluorapatite, monazite-(Ce), and arsenian xenotime. Epidote-ferriepidote and allanite-ferriallanite with up to 26 wt% REE (0.98 apfu) were also replaced by an unidentified Y–Ce–Nd–concentrating Ca,Fe,REE-hydrosilicate, containing up to 39 wt% Y + REE. Low yttrium contents in the neoformed monazite (< 0.02 apfu) indicate crystallization temperatures below 200 °C, but the monazite-xenotime thermometer based on Gd partitioning returns up to 700 °C. Breakdown textures in magnetite and apatite, increased sulfate contents in monazite (up to 1.5 wt% SO3), and the presence of anhydrite-, calcite-, hematite-, and halite-bearing aqueous inclusions with variable phase ratios in the neoformed apatite reveal metasomatism induced by the interaction with heterogeneous, chloride-sulfate-carbonate brines capable of transporting rare earth elements. The brines were probably mobilized from evaporite-bearing sedimentary strata during the Cambrian volcanism and possibly also during superimposed intrusive episodes coincidental with Silurian and Triassic extension-related magmatism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article (and its supplementary information files).

References

  • Aghanabati SA (2006) Geology of Iran. Geol Surv Iran, 586 (in Persian)

  • Åmli R, Griffin WL (1975) Microprobe analysis of REE minerals using empirical correction factors. Am Mineral 60:599–606

    Google Scholar 

  • Andersen DJ, Lindsley DH (1988) Internally consistent solution models for Fe-Mg-Mn-Ti oxides - Fe-Ti oxides. Am Mineral 73:714–726

    Google Scholar 

  • Angiboust S, Harlov D (2017) Ilmenite breakdown and rutile-titanite stability in metagranitoids: natural observations and experimental results. Am Mineral 102:1696–1708

    Article  Google Scholar 

  • Antignano A, Manning CE (2008) Fluorapatite solubility in H2O and H2O–NaCl at 700 to 900 °C and 0.7 to 2.0 GPa. Chem Geol 251:112–119

    Article  Google Scholar 

  • Bain WM, Steele-Macinnis M, Li K, Li L, Mazdab FK, Marsh EE (2020) A fundamental role of carbonate-sulfate melts in the formation of iron-oxide apatite deposits. Nat Geosci 13:751–757

    Article  Google Scholar 

  • Bain WM, Steele-Macinnis M, Tornos F, Hanchar JM, Creaser EC, Pietruszka DK (2021) Evidence for iron-rich sulfate melt during magnetite(-apatite) mineralization at El Laco, Chile. Geology 49:1044–1048

    Article  Google Scholar 

  • Baioumy HM, Ahmed AH, Khedr MZ (2014) A mixed hydrogenous and hydrothermal origin of the Bahariya iron ores, Egypt: evidences from the trace and rare earth element geochemistry. J Geochem Explor 146:149–162

    Article  Google Scholar 

  • Balan E, De Villiers JP, Eeckhout SG, Glatzel P, Toplis MJ, Fritsch E, Allard T, Galoisy L, Calas G (2006) The oxidation state of vanadium in titanomagnetite from layered basic intrusions. Am Miner 91:953–956

  • Barton MD (2014) Iron oxide(–Cu–Au–REE–P–Ag–U–-Co) systems. In: Holland HD, Turekian KK (eds) Treatise on Geochemistry (2nd edition). Elsevier, pp 515–541

    Chapter  Google Scholar 

  • Belousova EA, Griffin WL, O’Reilly SY, Fisher NI (2002) Apatite as an indicator mineral for mineral exploration: trace-element compositions and their relationship to host rock type. J Geochem Explor 76:45–69

    Article  Google Scholar 

  • Betkowski WB, Harlov DE, Rakovan JF (2016) Hydrothermal mineral replacement reactions for an apatite-monazite assemblage in alkali-rich fluids at 300–600° C and 100 MPa. Am Mineral 101:2620–2637

    Article  Google Scholar 

  • Bischoff JL (1991) Densities of liquids and vapors in boiling NaCl-H2O solutions: a PVTX summary from 300° to 500°C. Am J Sci 291:309–338

    Article  Google Scholar 

  • Bodnar RJ, Burnham CW, Sterner SM (1985) Synthetic fluid inclusions in natural quartz. III. Determination of phase equilibrium properties in the system H2O-NaCl to 1000 °C and 1500 bars. Geochim Cosmochim Ac 49:1861–1873

    Article  Google Scholar 

  • Bolarinwa AT, Bute SI (2016) Petrochemical and tectonogenesis of granitoids in the Wuyo-Gubrunde Horst, Northeastern Nigeria: implication for uranium enrichment. Nat Resour Res 25:197–210

    Article  Google Scholar 

  • Bonyadi Z, Sadeghi R (2020) Hydrothermal alteration associated with magnetite mineralization in the Bafq iron deposits, Iran. J Asian Earth Sci 189:104152

    Article  Google Scholar 

  • Bonyadi Z, Davidson GJ, Mehrabi B, Meffre S, Ghazban F (2011) Significance of apatite REE depletion and monazite inclusions in the brecciated Se–Chahun iron oxide–apatite deposit, Bafq district, Iran: insights from paragenesis and geochemistry. Chem Geol 281:253–269

    Article  Google Scholar 

  • Boomeri M (2012) Rare earth minerals in Esphordi magnetite-apatite ore deposit, Bafq district. Geosci Sci Quart J Geosci 22:71–82 (in Persian)

  • Briggs RA, Sacco A (1993) The oxidation of ilmenite and its relationship to the FeO-Fe2O3-TiO2 phase diagram at 1073 and 1140 K. Metall Materials Trans A 24:1257–1264

    Article  Google Scholar 

  • Buddington AF, Lindsley DH (1964) Iron-titanium oxide minerals and synthetic equivalents. J Petrol 5:310–357

    Article  Google Scholar 

  • Budzyń B, Harlov DE, Williams ML, Jercinovic MJ (2011) Experimental determination of stability relations between monazite, fluorapatite, allanite, and REE-epidote as a function of pressure, temperature, and fluid composition. Am Mineral 96:1547–1567

    Article  Google Scholar 

  • Canil D, Grondahl C, Lacourse T, Pisiak LK (2016) Trace elements in magnetite from porphyry Cu–Mo–Au deposits in British Columbia, Canada. Ore Geol Rev 72:1116–1128

    Article  Google Scholar 

  • Chen WT, Zhou MF (2012) Paragenesis, stable isotopes, and molybdenite Re-Os isotope age of the Lala iron-copper deposit, southwest China. Econ Geol 107:459–480

    Article  Google Scholar 

  • Chiaradia M, Banks D, Cliff R, Marschik R, De Haller A (2006) Origin of fluids in iron oxide–copper–gold deposits: constraints from δ 37Cl, 87Sr/86Sr and Cl/Br. Mineral Deposita 41:565–573

    Article  Google Scholar 

  • Ciobanu CL, Cook NJ (2004) Skarn textures and a case study: the Ocna de Fier-Dognecea orefield, Banat, Romania. Ore Geol Rev 24:315–370

    Article  Google Scholar 

  • Cole CS, James RH, Connelly DP, Hathorne EC (2014) Rare earth elements as indicators of hydrothermal processes within the East Scotia subduction zone system. Geochim Cosmochim Ac 140:20–38

    Article  Google Scholar 

  • Connolly JAD (1990) Multivariable phase-diagrams—an algorithm based on generalized thermodynamics. Am J Sci 290:666–718

    Article  Google Scholar 

  • Connolly JAD (1992) Elementary phase diagrams: principles and methods. Pressure and Temperature Evolution of orogenic belts, 5th Summer School. Geologia e Petrologia dei Basamenti Cristallini. University of Siena and Italian National Research Council, Italy, pp 203–220

    Google Scholar 

  • Corriveau L (2007) Iron oxide copper gold (±Ag ±Nb ±P ±REE ±U) deposits: a Canadian perspective. Geol Assoc Can Mineral Dep Division Spec Pub 5:307–328

    Google Scholar 

  • Craddock PR, Bach W, Seewald JS, Rouxel OJ, Reeves E, Tivey MK (2010) Rare earth element abundances in hydrothermal fluids from the Manus Basin, Papua New Guinea: indicators of sub-seafloor hydrothermal processes in back-arc basins. Geochim Cosmochim Ac 74:5494–5513

    Article  Google Scholar 

  • Daliran F (2002) Kiruna-type iron oxide-apatite ores and apatitites of the Bafq district, Iran, with an emphasis on the REE geochemistry of their apatites. In: Porter TM (ed) Hydrothermal Iron Oxide Copper Gold and Related Deposits: A Global Perspective, vol 2. PGC Publishing. Adelaide, Australia, pp 303–320

    Google Scholar 

  • Daliran F, Stosch H-G, Williams P (2007) Multistage metasomatism and mineralization at hydrothermal Fe oxide-REE-apatite deposits and “apatitites” of the Bafq district, central east Iran. In: Andrew CJ (ed) Proc 9th Biennial Meeting Soc Geol Appl Min Deposits, Dublin, 20–23:1501–1504

  • Daliran F, Stosch H-G, Williams P, Jamali H, Dorri MB, Corriveau L, Mumin AH (2010) Early Cambrian iron oxide-apatite-REE (U) deposits of the Bafq district, east-central Iran. In: Corriveau L, Mumin H (eds) Exploring for Iron Oxide Copper–Gold Deposits: Canada and Global Analogues. Geol Assoc Canada, Short Course Notes 20:143–155

  • Dare SA, Barnes SJ, Beaudoin G (2012) Variation in trace element content of magnetite crystallized from a fractionating sulfide liquid, Sudbury, Canada: implications for provenance discrimination. Geochim Cosmochim Ac 88:27–50

    Article  Google Scholar 

  • Dare SA, Barnes SJ, Beaudoin G, Méric J, Boutroy E, Potvin-Doucet C (2014) Trace elements in magnetite as petrogenetic indicators. Miner Deposita 49:785–796

    Article  Google Scholar 

  • Dare SA, Barnes SJ, Beaudoin G (2015) Did the massive magnetite “lava flows” of El Laco (Chile) form by magmatic or hydrothermal processes? New constraints from magnetite composition by LA-ICP-MS. Miner Deposita 50:607–617

    Article  Google Scholar 

  • Darvish Zadeh A, Al-e-Taha B (1996) Late Precambrian magmatism and tectono-magmatism in Central Iran. J Sci 22:57–78 (in Persian)

  • Deditius AP, Reich M, Simon AC, Suvorova A, Knipping J, Roberts MP, Saunders M (2018) Nanogeochemistry of hydrothermal magnetite. Contrib Mineral Petrol 173:46

    Article  Google Scholar 

  • Dupuis C, Beaudoin G (2011) Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types. Mineral Deposita 46:319–335

    Article  Google Scholar 

  • Ewart A, Griffin WL (1994) Application of proton-microprobe data to trace-element partitioning in volcanic rocks. Chem Geol 117:251–284

    Article  Google Scholar 

  • Fan HR, Xie YH, Wang KY, Tao KJ, Wilde SA (2004) REE daughter minerals trapped in fluid inclusions in the giant Bayan Obo REE-Nb-Fe deposit, Inner Mongolia, China. Int Geol Rev 46:638–645

    Article  Google Scholar 

  • Foley NK, Ayuso RA (2013) Rare earth element mobility in high-alumina altered metavolcanic deposits, South Carolina, USA. J Geochem Explor 133:50–67

    Article  Google Scholar 

  • Förster H-J, Jafarzadeh A (1984) The Bafq mining district in central Iran: a highly mineralized Infracambrian volcanic field. Econ Geol 89:1697–1721

    Article  Google Scholar 

  • Förster H-J, Jafarzadeh A (1994) The Chador Malu iron ore deposit, Bafq district, Central Iran, magnetite filled pipes. Neues Jb Paläont Abh 168:524–534

  • Förster H-J, Harlov DE (1999) Monazite-(Ce)–huttonite solid solutions in granulite-facies metabasites from the Ivrea-Verbano Zone, Italy. Mineral Mag 63:587–594

    Article  Google Scholar 

  • Gholipoor M, Barati M, TaleFazel E (2020) Geochemistry of apatite and host rocks in Lakeh Siah iron±apatite deposit (Northeast Bafq): implications for origin and tectonomagmatic setting. Iran J Petrol 11:73–102

    Google Scholar 

  • Gholipoor M, Barati M, Tale Fazel E, Hurai V (2021) Alteration, geothermometry, Raman spectroscopy and O-H stable isotope study on Lakhsiah 1 deposit, Yazd province, Iran. J Econ Geol 13:327–352 (in Persian)

  • Gratz R, Heinrich W (1997) Monazite-xenotime thermobarometry: experimental calibration of the miscibility gap in the binary system CePO4-YPO4. Am Mineral 82:772–780

    Article  Google Scholar 

  • Gratz R, Heinrich W (1998) Monazite-xenotime thermometry. III. Experimental calibration of the partitioning of gadolinium between monazite and xenotime. Eur J Mineral 10:579–588

    Article  Google Scholar 

  • Guo S, Tang P, Su B, Chen Y, Ye K, Zhang L, Gao Y, Liu J, Yang Y (2017) Unusual replacement of Fe-Ti oxides by rutile during retrogression in amphibolite-hosted veins (Dabie UHP terrane): a mineralogical record of fluid-induced oxidation process in exhumed UHP slabs. Am Mineral 102:2268–2283

    Article  Google Scholar 

  • Haggerty SE (1991) Oxide textures - a mini-atlas. In: Lindsley DH (ed) Oxide Minerals, Petrologic and Magnetic Significance. Rev Mineral Mineral Soc Am 25:129–137‏

  • Haggerty SE, Lindsley DH (1969) Stability of the pseudobrookite (FeTi2O5)-ferropseudobrookite (Fe2TiO5) series. Carnegie Inst Washington Yearb 1968–1969(68):247–249

    Google Scholar 

  • Hammarstrom JM, Zen E (1986) Aluminium in hornblende: and empirical igneous geobarometer. Am Mineral 71:1297–1313

    Google Scholar 

  • Hansen EC, Harlov DE (2007) Whole-rock, phosphate, and silicate compositional trends across an amphibolite-to granulite-facies transition, Tamil Nadu, India. J Petrol 48:1641–1680

    Article  Google Scholar 

  • Harlov DE (2015) Apatite: a fingerprint for metasomatic processes. Elements 11:171–176

    Article  Google Scholar 

  • Harlov DE, Förster H-J (2003) Fluid-induced nucleation of (Y+ REE)-phosphate minerals within apatite: nature and experiment Part II. Fluorapatite. Am Mineral 88:1209–1229

    Article  Google Scholar 

  • Harlov DE, Andersson UB, Förster H-J, Nyström JO, Dulski P, Broman C (2002) Apatite–monazite relations in the Kirunavaara magnetite–apatite ore, northern Sweden. Chem Geol 191:47–72

    Article  Google Scholar 

  • Harlov DE, Wirth R, Förster H-J (2005) An experimental study of dissolution–reprecipitation in fluorapatite: fluid infiltration and the formation of monazite. Contrib Mineral Petrol 150:268–286

    Article  Google Scholar 

  • Heidarian H, Lentz D, Alirezaei S, Peighambari S, Hall D (2016) Using the chemical analysis of magnetite to constrain various stages in the formation and genesis of the Kiruna-type Chadormalu magnetite-apatite deposit, Bafq district, Central Iran. Mineral Petrol 110:927–942

    Article  Google Scholar 

  • Heidarian H, Alirezaei S, Lentz D (2017) Chadormalu Kiruna-type magnetite-apatite deposit, Bafq district, Iran: insights into hydrothermal alteration and petrogenesis from geochemical, fluid inclusion, and sulfur isotope data. Ore Geol Rev 83:43–62

    Article  Google Scholar 

  • Heidarian H, Lentz DR, Alirezaei S, McFarlane CRM, Peighambari S (2018) Multiple stage ore formation in the Chadormalu iron deposit, Bafq Metallogenic Province, Central Iran: evidence from BSE imaging and apatite EPMA and LA-ICP-MS U-Pb geochronology. Minerals 8:87

    Article  Google Scholar 

  • Heinrich W, Andrehs G, Franz G (1997) Monazite-xenotime miscibility gap thermometry. I. An empirical calibration. J Metamorph Geol 15:3–16

    Article  Google Scholar 

  • Henderson P (1984) General geochemical properties and abundances of the rare earth elements. In: Henderson P (ed) Developments in Geochemistry, vol 2. Elsevier. Amsterdam, New York, pp 1–32

    Google Scholar 

  • Herz N, Valentine LB (1970) Rutile in the Harford County, Maryland, serpentine belt. US Geol Surv Prof Pap 700C:43–48

    Google Scholar 

  • Hitzman MW, Oreskes N, Einaudi MT (1992) Geological characteristics and tectonic setting of proterozoic iron oxide (Cu-U-Au-REE) deposits. Precamb Res 58:241–287

    Article  Google Scholar 

  • Holland T, Powell R (1998) An internally consistent thermodynamic dataset for phases of petrological interest. J Metamorph Geol 16:309–343

    Article  Google Scholar 

  • Holtz F, Johannes W (1994) Maximum and minimum water contents of granitic melts: implications fro chemical and physical properties of ascending magmas. Lithos 32:149–159

    Article  Google Scholar 

  • Holtz F, Johannes W, Tamic N, Behrens H (2001) Maximum and minimum water contents of granitic melts generated in the crust: a reevaluation and implications. Lithos 56:1–14

    Article  Google Scholar 

  • Hosseini K, Rajabzadeh MA (2021) Mineralogy, geochemistry, and fluid inclusion microthermometry of apatite and rare earth element minerals in the Esfordi deposit, NE of Bafq, Yazd Province. J Econ Geol 13:57–84 (in Persian with English abstract)

  • Hou T, Zhang Z, Encarnacion J, Huang H, Wang M (2012) Geochronology/geochemistry of the Washan dioritic porphyry associated with Kiruna-type iron ores, middle-lower Yangtze River Valley, eastern China: implications for petrogenesis/mineralization. Int Geol Rev 54:1332–1352

    Article  Google Scholar 

  • Houshmandzadeh A, Sabzehei M, Ghaemi J, Haddadan M (2012) Geological map of Ali Abad, scale 1:25000, Sheet No. 7153 IV SE. Parskani Co (in Persian)

  • Hu H, Lentz D, Li JW, McCarron T, Zhao XF, Hall D (2015) Reequilibration processes in magnetite from iron skarn deposits. Econ Geol 110:1–8

    Article  Google Scholar 

  • Huang XW, Beaudoin G (2019) Textures and chemical compositions of magnetite from iron oxide copper-gold (IOCG) and Kiruna-type iron oxide-apatite (IOA) deposits and their implications for ore genesis and magnetite classification schemes. Econ Geol 114:953–979

    Article  Google Scholar 

  • Huang XW, Zhou MF, Beaudoin G, Gao JF, Qi L, Lyu C (2018) Origin of the volcanic-hosted Yamansu Fe deposit, Eastern Tianshan, NW China: constraints from pyrite Re-Os isotopes, stable isotopes, and in situ magnetite trace elements. Mineral Deposita 53:1039–1060

    Article  Google Scholar 

  • Hughes JM, Rakovan JF (2015) Structurally robust, chemically diverse: apatite and apatite supergroup minerals. Elements 11:165–170

    Article  Google Scholar 

  • Hurai V, Huraiová M, Slobodník M, Thomas R (2015) Geofluids. Developments in Microthermometry, Spectroscopy, Thermodynamics, and Stable Isotopes. Elsevier, Amsterdam, Boston, Heidelberg, London, New York, Oxford, Paris, San Diego, San Francisco, Singapore, Sydney, Tokyo, 489

  • Ilton ES, Eugster HP (1989) Base metal exchange between magnetite and a chloride-rich hydrothermal fluid. Geochim Cosmochim Ac 53:291–301

    Article  Google Scholar 

  • Ismail R, Ciobanu CL, Cook NJ, Teale GS, Giles D, Mumm AS, Wade B (2014) Rare earths and other trace elements in minerals from skarn assemblages, Hillside iron oxide–copper–gold deposit, Yorke Peninsula, South Australia. Lithos 184:456–477

    Article  Google Scholar 

  • James BR (2003) Chromium. In: Stewart BA, Howell B (eds) Encyclopedia of water science. Marcel Dekker Inc. 1:77

  • Jami M (2005) Geology, geochemistry and evolution of the Esfordi phosphate-iron deposit. Bafq area, Central Iran. PhD. Thesis, University of New South Wales

  • Jiang SY, Wang RC, Xu XS, Zhao KD (2005) Mobility of high field strength elements (HFSE) in magmatic-, metamorphic-, and submarine-hydrothermal systems. Phys Chem Earth a/b/c 30:1020–1029

    Article  Google Scholar 

  • Jonsson E, Troll VR, Högdahl K, Harris C, Weis F, Nilsson KP, Skelton A (2013) Magmatic origin of giant ‘Kiruna-type’ apatite-iron-oxide ores in Central Sweden. Sci Rep 3:1644

    Article  Google Scholar 

  • Jonsson E, Harlov DE, Majka J, Högdahl K, Persson-Nilsson K (2016) Fluorapatite-monazite-allanite relations in the Grängesberg apatite-iron oxide ore district, Bergslagen, Sweden. Am Mineral 101:1769–1782

    Article  Google Scholar 

  • Keppler H, Wyllie PJ (1991) Partitioning of Cu, Sn, Mo, W, U, and Th between melt and aqueous fluid in the systems haplogranite-H2O-HCl and haplogranite-H2O-HF. Contrib Mineral Petrol 109:139–150

    Article  Google Scholar 

  • Knipping JL, Bilenker LD, Simon AC, Reich M, Barra F, Deditius AP, Wälle M, Heinrich AH, Holtz F, Munizaga R (2015a) Trace elements in magnetite from massive iron oxide-apatite deposits indicate a combined formation by igneous and magmatic-hydrothermal processes. Geochim Cosmochim Ac 171:15–38

    Article  Google Scholar 

  • Knipping JL, Bilenker LD, Simon AC, Reich M, Barra F, Deditius AP, Lundstrom C, Bindeman I, Munizaga R (2015b) Giant Kiruna-type deposits form by efficient flotation of magmatic magnetite suspensions. Geology 43:591–594

    Article  Google Scholar 

  • Konečný P, Siman P, Holický I, Janák M, Kollárová V (2004) Method of monazite dating by means of the electron microprobe. Mineral Slov 36:225–235

    Google Scholar 

  • Kontonikas-Charos A, Ciobanu CL, Cook NJ (2014) Albitization and redistribution of REE and Y in IOCG systems: insights from Moonta-Wallaroo, Yorke Peninsula, South Australia. Lithos 208:178–201

    Article  Google Scholar 

  • Kryvdik S, Mykhaylov V (2001) The potential of the rare earth mineralization of Islamic republic Iran. Final Report, Geological Survey of Iran

  • Küpeli Ş (2010) Trace and rare-earth element behaviors during alteration and mineralization in the Attepe iron deposits (Feke-Adana, southern Turkey). J Geochem Explor 105:51–74

    Article  Google Scholar 

  • Lafuente B, Downs RT, Yang H, Stone N (2015) The power of databases: the RRUFF project. In: Armbruster T, Danisi RM (eds) Highlights in Mineralogical Crystallography. W. De Gruyter, Berlin, pp 1–30

    Google Scholar 

  • Lentz DR (1999) Carbonatite genesis: a reexamination of the role of intrusion-related pneumatolytic skarn process in limestone melting. Geology 27:335–338

    Article  Google Scholar 

  • Liu PP, Zhou MF, Chen WT, Gao JF, Huang XW (2015) In-situ LA-ICP-MS trace elemental analyses of magnetite: Fe–Ti–(V) oxide-bearing mafic–ultramafic layered intrusions of the Emeishan Large Igneous Province, SW China. Ore Geol Rev 65:853–871

    Article  Google Scholar 

  • Loberg BE, Horndahl AK (1983) Ferride geochemistry of Swedish Precambrian iron ores. Mineral Deposita 18:487–504

    Article  Google Scholar 

  • Loges A, Migdisov AA, Wagner T, Williams-Jones AE, Markl G (2013) An experimental study of the aqueous solubility and speciation of Y (III) fluoride at temperatures up to 250 C. Geochim Cosmochim Ac 123:403–415

    Article  Google Scholar 

  • Mao M, Rukhlov AS, Rowins SM, Spence J, Coogan LA (2016) Apatite trace element compositions: a robust new tool for mineral exploration. Econ Geol 111:1187–1222

    Article  Google Scholar 

  • Majidi SA, Omrani J, Troll VR (2021) Employing geochemistry and geochronology to unravel genesis and tectonic setting of iron oxide-apatite deposits of Bafq-Saghand metallogenic belt, Central Iran. Int J Earth Sci (Geol Rundsch) 110:127–164

  • Migdisov AA, Williams-Jones AE, Wagner T (2009) An experimental study of the solubility and speciation of the rare earth elements (III) in fluoride-and chloride-bearing aqueous solutions at temperatures up to 300 °C. Geochim Cosmochim Ac 73:7087–7109

    Article  Google Scholar 

  • Migdisov AA, Williams-Jones AE, Brugger J, Caporuscio FA (2016) Hydrothermal transport, deposition, and fractionation of the REE: experimental data and thermodynamic calculations. Chem Geol 439:13–42

    Article  Google Scholar 

  • Mokhtari MAA, Zadeh GH, Emami MH (2013) Genesis of iron-apatite ores in Posht-e-Badam Block (Central Iran) using REE geochemistry. J Earth Sys Sci 122:795–807

    Article  Google Scholar 

  • Morisset CE, Scoates JS, Weis D, Sauvé M, Stanaway KJ (2010) Rutile-bearing ilmenite deposits associated with the Proterozoic Saint-Urbain and Lac Allard anorthosite massifs, Grenville Province, Quebec. Can Mineral 48:821–849

    Article  Google Scholar 

  • Mutch EJF, Blundy JD, Tattitch BC, Cooper FJ, Brooker RA (2016) An experimental study of amphibole stability in low-pressure granitic magmas and a revised Al-in-hornblende geobarometer. Contrib Mineral Petrol 171:85

    Article  Google Scholar 

  • Nadoll P, Angerer T, Mauk JL, French D, Walshe J (2014a) The chemistry of hydrothermal magnetite: a review. Ore Geol Rev 61:1–32

    Article  Google Scholar 

  • Nadoll P, Mauk JL, Leveille RA, König AE (2014b) Geochemistry of magnetite from porphyry Cu and skarn deposits in the southwestern United States. Mineral Deposita 50:493–515

    Article  Google Scholar 

  • Naslund HR (2002) Magmatic iron ores and associated mineralisation: examples from the Chilean High Andes and Coastal Cordillera. In: Porter TM (ed) Hydrothermal iron oxide copper-gold and related deposits: a global perspective, vol 2. PGC Publishers, Linden Park, Australia, pp 207–226

  • Nayebi N, Esmaeily D, Chew DM, Lehman B, Modabberi S (2021) Geochronological and geochemical evidence for multi-stage apatite in the Bafq iron metallogenetic belt (Central Iran), with implications for the Chadormalu iron-apatite deposit. Ore Geol Rev 132:104054

    Article  Google Scholar 

  • Ni Y, Hughes JM, Mariano AN (1995) Crystal chemistry of the monazite and xenotime structures. Am Miner 80:21–26

    Article  Google Scholar 

  • Nielsen RL, Forsythe LM, Gallahan WE, Fisk MR (1994) Major- and trace-element magnetite-melt equilibria. Chem Geol 117:167–191

    Article  Google Scholar 

  • Nold JL, Dudley MA, Davidson P (2014) The Southeast Missouri (USA) Proterozoic iron metallogenic province—types of deposits and genetic relationships to magnetite–apatite and iron oxide–copper–gold deposits. Ore Geol Rev 57:154–171

    Article  Google Scholar 

  • Nystroem JO, Henríquez F (1994) Magmatic features of iron ores of the Kiruna type in Chile and Sweden; ore textures and magnetite geochemistry. Econ Geol 89:820–839

  • Palma G, Barra F, Reich M, Simon AC, Romero R (2020) A review of magnetite geochemistry of Chilean iron oxide-apatite (IOA) deposits and its implication for ore-forming processes. Ore Geol Rev 126:103748

    Article  Google Scholar 

  • Pan Y, Fleet ME (2002) Compositions of the apatite-group minerals: substitution mechanisms and controlling factors. Rev Mineral Geochem 48:13–49

    Article  Google Scholar 

  • Pan Y, Fleet ME, MacRae ND (1993) Oriented monazite inclusions in apatite porphyroblasts from the Hemlo gold deposit, Ontario, Canada. Mineral Mag 57:697–707

    Article  Google Scholar 

  • Pang KN, Zhou MF, Lindsley D, Zhao D, Malpas J (2008) Origin of Fe–Ti oxide ores in mafic intrusions: evidence from the Panzhihua intrusion, SW China. J Petrol 49:295–313

    Article  Google Scholar 

  • Pang KN, Zhou MF, Qi L, Shellnutt G, Wang CY, Zhao D (2010) Flood basalt-related Fe–Ti oxide deposits in the Emeishan large igneous province, SW China. Lithos 119:123–136

    Article  Google Scholar 

  • Parente CV, Veríssimo CUV, Botelho NF, Xavier RP, Menez J, de Oliveira LR, da Silva CDA, dos Santos TJS (2019) Geology, petrography and mineral chemistry of iron oxide-apatite occurrences (IOA type), western sector of the neoproterozoic Santa Quiteria magmatic arc, Ceará northeast, Brazil. Ore Geol Rev 112:103024

    Article  Google Scholar 

  • Park CF Jr (1961) A magnetite “flow” in northern Chile. Econ Geol 56:431–441

    Article  Google Scholar 

  • Paster TP, Schauwecker DS, Haskin LA (1974) The behavior of some trace elements during solidification of the Skaergaard layered series. Geochim Cosmochim Ac 38:1549–1577

    Article  Google Scholar 

  • Peters ST, Alibabaie N, Pack A, McKibbin SJ, Raeisi D, Nayebi N, Torab F, Ireland T, Lehmann B (2020) Triple oxygen isotope variations in magnetite from iron-oxide deposits, central Iran, record magmatic fluid interaction with evaporite and carbonate host rocks. Geology 48:211–215

  • Piccoli PM, Candela PA (2002) Apatite in igneous systems. Rev Mineral Geochem 48:255–292

    Article  Google Scholar 

  • Pouchou JL, Pichoir F (1991) Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP.” In: Heinrich KFJ, Newbury DE (eds) Electron Probe Quantification. Plenum Press, New York, pp 31–75

    Chapter  Google Scholar 

  • Putirka K (2016) Amphibole thermometers and barometers for igneous systems and some applications for eruption mechanisms of felsic magmas at arc volcanoes. Am Mineral 101:841–858

    Article  Google Scholar 

  • Putnis A (2002) Mineral replacement reactions: from macroscopic observations to microscopic mechanisms. Mineral Mag 66:689–708

    Article  Google Scholar 

  • Putnis A (2009) Mineral replacement reactions. Rev Mineral Geochem 70:87–124

    Article  Google Scholar 

  • Putnis A, Austrheim H (2013) Mechanisms of metasomatism and metamorphism on the local mineral scale: the role of dissolution-reprecipitation during mineral re-equilibration. In: Harlov DE, Austrheim H (eds) Metasomatism and the Chemical Transformation of Rocks. Springer, Berlin, Heidelberg, pp 141–170

    Chapter  Google Scholar 

  • Putnis A, John T (2010) Replacement processes in the Earth’s crust. Elements 6:159–164

    Article  Google Scholar 

  • Putnis A, Wilson MM (1978) A study of iron-bearing rutiles in the paragenesis TiO2-Al2O3-P2O5-SiO2. Mineral Mag 42:255–263

    Article  Google Scholar 

  • Rahimi E, Maghsoudi A, Hezarkhani A (2016) Geochemical investigation and statistical analysis on rare earth elements in Lakehsiyah deposit, Bafq district. J Afr Earth Sci 124:139–150

    Article  Google Scholar 

  • Ramezani J, Tucker RD (2003) The Saghand region, central Iran: U-Pb geochronology, petrogenesis and implications for Gondwana tectonics. Am J Sci 303:622–665

    Article  Google Scholar 

  • Ridolfi F (2021) Amp-TB2: an updated model for calcic amphibole thermobarometry. Minerals 11:324

    Article  Google Scholar 

  • Ridolfi F, Renzulli A (2012) Calcic amphiboles in calc-alkaline and alkaline magmas: thermobarometric and chemometric empirical equations valid up to 1,130 °C and 2.2 GPa. Contrib Mineral Petrol 163:877–895

    Article  Google Scholar 

  • Righter K, Sutton SR, Newville M, Le L, Schwandt CS, Uchida H, Lavina B, Downs RT (2006) An experimental study of the oxidation state of vanadium in spinel and basaltic melt with implications for the origin of planetary basalt. Am Mineral 91:1643–1656

    Article  Google Scholar 

  • Sabet-Mobarhan-Talab A, Alinia F, Ghannadpour SS, Hezarkhani A (2015) Geology, geochemistry, and some genetic discussion of the Chador-Malu iron oxide-apatite deposit, Bafq District, Central Iran. Arab J Geosci 8:8399–8418

    Article  Google Scholar 

  • Sack RO, Ghiorso MS (1991) An internally consistent model for the thermodynamic properties of Fe–Mg-titanomagnetite-aluminate spinels. Contrib Mineral Petrol 106:474–505

    Article  Google Scholar 

  • Samani B (1988) Metallogeny of the Precambrian in Iran. Precamb Res 39:85–106

    Article  Google Scholar 

  • Schandl ES, Gorton MP (2004) A textural and geochemical guide to the identification of hydrothermal monazite: criteria for selection of samples for dating epigenetic hydrothermal ore deposits. Econ Geol 99:1027–1035

    Article  Google Scholar 

  • Şengör AMC (1990) A new model for the Late Palaeozoic—Mesozoic tectonic evolution of Iran and implications for Oman. Geol Soc London, Spec Pub 49:797–831

    Article  Google Scholar 

  • Sepidbar F, Lucci F, Biabangard H, Zaki Khedr M, Jiantang P (2020) Geochemistry and tectonic significance of the Fannuj-Maskutan SSZ-type ophiolite (Inner Makran, SE Iran). Int Geol Rev 62:2077–2104

    Article  Google Scholar 

  • Sheard ER, Williams-Jones AE, Heiligmann M, Pederson C, Trueman DL (2012) Controls on the concentration of zirconium, niobium, and the rare earth elements in the Thor Lake rare metal deposit, Northwest Territories, Canada. Econ Geol 107:81–104

    Article  Google Scholar 

  • Shekarian Y, Hezarkhani A, Anaraki NN, Hassani AN (2017) Geochemistry and petrography of REE-bearing Fe-oxide assemblages in Choghart iron deposit, Yazd, Iran. Arab J Geosci 10:273

    Article  Google Scholar 

  • Sillitoe RH, Burrows DR (2002) New field evidence bearing on the origin of the El Laco magnetite deposit, northern Chile. Econ Geol 97:1101–1109

    Google Scholar 

  • Simon AC, Pettke T, Candela PA, Piccoli PM, Heinrich CA (2004) Magnetite solubility and iron transport in magmatic-hydrothermal environments. Geochim Cosmochim Ac 68:4905–4914

    Article  Google Scholar 

  • Smith MP, Henderson P, Peishan Z (1999) Reaction relationships in the Bayan Obo Fe-REE-Nb deposit Inner Mongolia, China: implications for the relative stability of rare-earth element phosphates and fluorocarbonates. Contrib Mineral Petrol 134:294–310

    Article  Google Scholar 

  • Smith MP, Storey CD, Jeffries TE, Ryan C (2009) In situ U-Pb and trace element analysis of accessory minerals in the Kiruna district, Norrbotten, Sweden: new constraints on the timing and origin of mineralization. J Petrol 50:2063–2094

    Article  Google Scholar 

  • Song XY, Qi HW, Hu RZ, Chen LM, Zhang JF (2013) Formation of the stratiform Fe-Ti oxide layers in layered intrusion and frequent replenishment of fractionated mafic magma: evidence from Panzhihua intrusion, SW China. Geochem Geophys Geosys 14:712–732

    Article  Google Scholar 

  • Sterner SM, Hall DL, Bodnar RJ (1988) Synthetic fluid inclusions. V. Solubility relations in the system NaCl-KCl-H2O under vapor-saturated conditions. Geochim Cosmochim Ac 52:989–1005

    Article  Google Scholar 

  • Stosch HG, Romer RL, Daliran F, Rhede D (2011) Uranium–lead ages of apatite from iron oxide ores of the Bafq District, East-Central Iran. Mineral Deposita 46:9–21

    Article  Google Scholar 

  • Taghipour S, Kananian A, Harlov D, Oberhänsli R (2015) Kiruna-type iron oxide-apatite deposits, Bafq district, central Iran: fluid-aided genesis of fluorapatite-monazite-xenotime assemblages. Can Mineral 53:479–496

    Google Scholar 

  • Takin M (1972) Iranian geology and continental drift in the Middle East. Nature 235:147–150

    Article  Google Scholar 

  • Tale Fazel E, Rostami M (2020) Geology, geochemistry, fluid inclusions and O-H stable isotope constraints on genesis of the Lake Siah Fe-oxide±apatite, deposit, NE Bafq, Central Iran. Ac Geochim 39:920–946

  • Tan W, Yan Wang C, He H, Xing C, Liang X, Dong H (2015) Magnetite-rutile symplectite derived from ilmenite-hematite solid solution in the Xinjie Fe-Ti oxide-bearing, mafic-ultramafic layered intrusion (SW China). Am Mineral 100:2348–2351

    Article  Google Scholar 

  • Timofeev A, Migdisov AA, Williams-Jones AE (2015) An experimental study of the solubility and speciation of niobium in fluoride-bearing aqueous solutions at elevated temperature. Geochim Cosmochim Ac 158:103–111

    Article  Google Scholar 

  • Timofeev A, Migdisov AA, Williams-Jones AE (2017) An experimental study of the solubility and speciation of tantalum in fluoride-bearing aqueous solutions at elevated temperature. Geochim Cosmochim Ac 197:294–304

    Article  Google Scholar 

  • Torab FM (2008) Geochemistry and metallogeny of magnetite apatite deposits of the Bafq Mining District, central Iran. PhD Thesis, Clausthal University of Technology, Germany

  • Torab FM (2010) Geochemistry and radioisotope studies to determine source of apatite in the Bafq iron-apatite deposits. Iran J Crystallogr Mineral 18:409–418

    Google Scholar 

  • Torab FM, Lehmann B (2007) Magnetite-apatite deposits of the Bafq district, central Iran: apatite geochemistry and monazite geochronology. Mineral Mag 71:347–363

    Article  Google Scholar 

  • Tornos F, Velasco F, Hanchar JM (2016) Iron-rich melts, magmatic magnetite, and superheated hydrothermal systems: the El Laco deposit, Chile. Geology 44:427–430

    Article  Google Scholar 

  • Tornos F, Hanchar JM, Munízaga R, Velasco F, Galindo C (2021) The role of the subducting slab and melt crystallization in the formation of magnetite-(apatite) systems, Coastal Cordillera of Chile. Mineral Deposita 56:253–278

    Article  Google Scholar 

  • Tropper P, Manning CE, Harlov DE (2011) Solubility of CePO4 monazite and YPO4 xenotime in H2O and H2O–NaCl at 800 C and 1 GPa: implications for REE and Y transport during high-grade metamorphism. Chem Geol 282:58–66

    Article  Google Scholar 

  • Tropper P, Manning CE, Harlov DE (2013) Experimental determination of CePO4 and YPO4 solubilities in H2O-NaF at 800 °C and 1 GPa: implications for rare earth element transport in high-grade metamorphic fluids. Geofluids 13:372–380

    Article  Google Scholar 

  • Van Dongen M, Weinberg RF, Tomkins AG (2010) REE-Y, Ti, and P remobilization in magmatic rocks by hydrothermal alteration during Cu-Au deposit formation. Econ Geol 105:763–776

    Article  Google Scholar 

  • Warr LN (2021) IMA-CNMNC approved mineral symbols. Mineral Mag 85:291–320

    Article  Google Scholar 

  • Watenphul A, Scholten L, Beermann O, Kavner A, Alraun P, Falkenberg G, Newville M, Lanzirotti A, Schmidt C (2013) Cu and Ni solubility in high-temperature aqueous fluids. Am Geophys Union Fall Meeting 2013:MR3A-2311

    Google Scholar 

  • Webster JD, Piccoli PM (2015) Magmatic apatite: a powerful, yet deceptive, mineral. Elements 11:177–182

    Article  Google Scholar 

  • Wenzel T, Baumgartner LP, Brügmann GE, Konnikov E, Kislov EV (2002) Partial melting and assimilation of dolomitic xenoliths by mafic magma: the Ioko-Dovyren intrusion (north Baikal region, Russia). J Petrol 43:2049–2074

    Article  Google Scholar 

  • Whitley S, Gertisser R, Halama R, Preece K, Troll VR, Deegan FM (2019) Crustal CO2 contribution to subduction zone degassing recorded through calc-silicate xenoliths in arc lavas. Sci Rep 9:8803

    Article  Google Scholar 

  • Whitney JA, Hemley JJ, Simon FO (1985) The concentration of iron in chloride solutions equilibrated with synthetic granitic compositions; the sulfur-free system. Econ Geol 80:444–460

    Article  Google Scholar 

  • Williams PJ, Barton MD, Johnson DA, Fontboté L, De Haller A, Mark G, Oliver NHS, Marschik R (2005) Iron oxide copper-gold deposits: geology, space-time distribution, and possible modes of origin. Econ Geol 100th Anniversary 371–405.

  • Williams-Jones AE, Migdisov AA, Samson IM (2012) Hydrothermal mobilisation of the rare earth elements–a tale of “ceria” and “yttria.” Elements 8:355–360

    Article  Google Scholar 

  • Williams GJ, Houshmand Zadeh A (1966) A petrological and genetic study of the Choghart iron ore body and the surrounding rocks. Geol Surv Iran 18

  • Zaremotlagh S, Hezarkhani A (2016) A geochemical modeling to predict the different concentrations of REE and their hidden patterns using several supervised learning methods: Choghart iron deposit, Bafq, Iran. J Geochem Explor 165:35–48

    Article  Google Scholar 

  • Zhao D, Essene EJ, Zhang Y (1999) An oxygen barometer for rutile–ilmenite assemblages: oxidation state of metasomatic agents in the mantle. Earth Planet Sci Lett 166:127–137

    Article  Google Scholar 

  • Ziemann A, Förster H-J, Harlov DE, Frei D (2005) Origin of fluorapatite-monazite assemblages in a metamorphosed, sillimanite-bearing pegmatoid, Reinbolt Hills, East Antarctica. Eur J Mineral 17:457–579

    Article  Google Scholar 

Download references

Acknowledgements

This paper is part of the Ph.D. thesis of the first author at the University of Bu-Ali Sina, Hamedan, Iran. The authors are very grateful to Dr. Patrik Konečný from the Geological Survey of Slovakia, Bratislava, for electron probe microanalyses funded by the VEGA project 1/0013/22. Raman spectroscopic facility at the Slovak Academy of Sciences in Bratislava was funded by the European Research Development Fund project ITMS-26210120013, “Completing the Technical Infrastructure for Research in Geodynamic Processes and Global Changes in the Earth History.” The manuscript strongly benefited from critical comments from Drs. Hector Lamadrid and Wyan Bain and handling editor Matthew Steele-MacInnis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehrdad Barati.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Editorial handling: B. Lehmann

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 2579 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gholipoor, M., Barati, M., Tale Fazel, E. et al. Textural and compositional constraints on the origin, thermal history, and REE mobility in the Lakeh Siah iron oxide-apatite deposit—NE Bafq, Iran. Miner Deposita 58, 963–986 (2023). https://doi.org/10.1007/s00126-023-01163-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-023-01163-1

Keywords

Navigation