Skip to main content
Log in

CuSeO4 and Cu(SeO3OH)2·6H2O, two novel copper–selenium(VI) oxysalts

  • Research
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The two new copper(II) salts Cu(SeO4) and Cu(SeO3OH)2·6H2O were synthesized at low-temperature hydrothermal conditions (220 °C), and room temperature, respectively. Their atomic arrangements were studied based on single-crystal X-ray investigations [P21/n, a = 4.823(1), b = 8.957(2), c = 6.953(1) Å, β = 94.82(1)°, Z = 4; \(P{\overline 1}\), a = 6.133(1), b = 6.303(1), c = 8.648(2) Å, α = 70.45(1), β = 84.60(1), γ = 73.44(1)°, Z = 1]. Cu(SeO4) adopts the MnAsO4 structure type. It exhibits structural as well as topological relations with two formerly known isochemical compounds. They crystallize in the structure type ZnSO4 (mineral name zincosite, Pnma) respectively NiSO4 (Cmcm). The two minerals dravertite, CuMg(SO4)2, and hermannjahnite, CuZn(SO4)2, are isotypic with CuSeO4-P21/n; interestingly, also α-NaCu(PO4) belongs to this structure type: some rotation of the XO4 group allows a supplementary position for the Na atom. — Cu(SeO3OH)2·6H2O represents a new structure type. The protonated selenate group shows an extended Se—Oh bond distance (1.695 Å) as compared to the other Se—O bonds (1.614 to 1.626 Å). One OH dipole of the three independent H2O molecules represents a rather free hydrogen bond. For the other H atoms, the O—H···O lengths vary from 2.585 to 2.799 Å. Interestingly, the distance Ow7···Ow7 of only 2.791 Å does not represent an edge in a coordination polyhedron and it is not preliminary involved in the hydrogen bond scheme. All Cu2+ ions in the two title compounds are in a pronounced [4 + 2] coordination. The Cu2+[4+2] atoms in Cu(SeO4) are linked to chains along [100]; in Cu(SeO3OH)2·6H2O they are not connected among each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not available.

References

  • Aranda MAG, Attfield JP, Bruque S (1993) Study of MnXO4.nH2O (X = P, As) phases and synthesis and structure of simple, novel salt MnAsO4. Inorg Chem 32:1925–1930

    Article  Google Scholar 

  • Aranda MAG, Attfield JP, Batchelor E, Shields GP, Bruque S, Gabás M (1998) Simultaneous antiferromagnetic order and spin-glass-like behavior in MnAsO4. Inorg Chem 37:1329–1335

    Article  Google Scholar 

  • Bergerhoff G, Berndt M, Brandenburg K, Degen T (1999) Concerning inorganic crystal structure types. Acta Cryst B55:147–156

    Article  Google Scholar 

  • Brese NE, O’Keeffe M (1991) Bond-valence parameters for solids. Acta Cryst B47:192–197

    Google Scholar 

  • Bruker (2020) Apex3 suite – Bruker AXS. Karlsruhe, Germany

    Google Scholar 

  • Belsky A, Hellenbrandt M, Karen VL, Luksch P (2002) New developments in the Inorganic Crystal Structure Database (ICSD): accessibility in support of materials research and design. Acta Cryst B58:364–369

    Article  Google Scholar 

  • de la Flor G, Orobengoa D, Tasci E, Perez-Mato JM, Aroyo MI (2016) Comparison of structures applying the tools available at the Bilbao Crystallographic Server. J Appl Cryst 49:653–664

    Article  Google Scholar 

  • Dowty E (2013) ATOMS V6.4.1. A computer program for displaying atomic structures, Kingsport, TN 37663

  • Effenberger H (1986) Die Kristallstrukturen von drei Modifikationen des Cu(SeO3). Z Krist 175:61–72

  • Ferraris G, Ivaldi G (1984) X-OH and O-H...O bond lengths in protonated oxoanions. Acta Cryst B40:1–6

    Article  Google Scholar 

  • Giester G, Talla D, Wildner M (2019) Contributions to the stereochemistry of zirconium oxysalts—part III: syntheses and crystal structures of M2+Zr(SO4)3 with M = Mg, Mn Co, Ni, Zn and Cd, and a note on (Fe3+,2+Zr)2(SO4)3 and Fe2(SO4)3. Monatsh Chem 150:1877–1892

  • Giester G, Wildner M (2018) Contributions to the stereochemistry of zirconium oxysalts—part I: syntheses and crystal structures of novel Zr(SeO4)2·H2O and Zr(SeO4)2·4H2O. Monatsh Chem 149:1321–1325

    Article  Google Scholar 

  • Giester G, Wildner M (2023) Contributions to the stereochemistry of zirconium oxysalts – part V: syntheses and crystal structures of MZr(SeO4)3 (M = Mg, Mn, Co, Ni, Zn, Cd) and Li2Zr(XO4)3 (X = S, Se). Monatsh Chem 154:33–42

  • Griggs DT, Kennedy GC (1956) A simple apparatus for high pressures and temperatures. Amer J Sci 254:722–735

    Article  Google Scholar 

  • Hawthorne FC, Ercit TS, Groat LA (1986) Structures of zinc selenite and copper selenite. Acta Cryst C42:1285–1287

    Google Scholar 

  • Jahn HA, Teller E (1937) Stability of polyatomic molecules in degenerate electronic states. I. Orbital degeneracy. Proc R Soc (London) A161:220–235

  • Kawahara A, Kageyama T, Watanabe I, Yamakawa J (1993) Structure du monophosphate synthétique de cuivre et de sodium. Acta Cryst C49:1275–1277

    Google Scholar 

  • Kohn K, Inoue K, Horie O, Akimoto S (1976) Crystal chemistry of MSeO3 and MTeO3 (M = Mg, Mn, Co, Ni, Cu, and Zn). J Solid State Chem 18:27–37

  • Pekov IV, Zubkova NV, Agakhanov AA, Yapaskurt VO, Chukanov NV, Belakovskiy DI, Sidorov EG, Pushcharovsky DY (2017) Dravertite, CuMg(SO4)2, a new mineral species from the Tolbachik volcano, Kamchatka, Russia. Eur J Miner 29:323–330

  • Quarton M, Kolsi AW (1983) Structure de l’orthophosphate double NaCuPO4-α. Acta Cryst C39:664–667

    Google Scholar 

  • Siidra OI, Nazarchuk EV, Agakhanov AA, Lukina EA, Zaitsev AN, Turner R, Filatov SK, Pekov IV, Karpov GA, Yapaskurt VO (2018) Hermannjahnite, CuZn(SO4)2, a new mineral with chalcocyanite derivative structure from the Naboko scoria cone of the 2012–2013 fissure eruption at Tolbachik volcano, Kamchatka, Russia. Miner Petrol 112:123–134

    Article  Google Scholar 

  • Sheldrick GM (2008) A short history of SHELX. Acta Cryst A64:112–122

    Article  Google Scholar 

  • Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Crystallogr C 71:3–8

    Article  Google Scholar 

  • Snyman HC, Pistorius CWFT (1964) Polymorphism in the selenates of Mg, Mn, Co and Cu at high pressures. Z Krist 120:317–322

    Article  Google Scholar 

  • Wildner M (1990) Crystal structure refinements of CoSO4 and NiSO4: very short interpolyhedral O-O contacts. Z Krist 191:223–229

    Google Scholar 

  • Wildner M (1992) On the geometry of Co(II)O6 polyhedra in inorganic compounds. Z Krist 202:51–70

    Article  Google Scholar 

  • Wildner M, Giester G (1988) Crystal structure refinements of synthetic chalcocyanite (CuSO4) and zincosite (ZnSO4). Miner Petrol 39:201–209

    Article  Google Scholar 

  • Wildner M, Giester G (2019) Contributions to the stereochemistry of zirconium oxysalts—part II: syntheses and crystal structures of Zr(SeO3)(SeO4), Zr4(SeO3)(SeO4)7, and Zr3(SeO3)(SeO4)5·2H2O. Monatsh Chem - Chem Monthly 150:593–603

    Article  Google Scholar 

  • Wildner M, Lengauer CL, Effenberger H, Giester G (2022) Contributions to the stereochemistry of zirconium oxysalts—part IV: syntheses and crystal structures of Zr2(OH)2(XO4)3·4H2O (X = S, Se), Zr(SO4)2·4H2O, and Zr(SeO3)2. Monatsh Chem - Chem Monthly 153:139–151

    Article  Google Scholar 

  • Wilson AJC (editor) (1992) International Tables for Crystallography, Vol. C. Kluver, Dordrecht, The Netherlands

  • Zemann J (1986) The shortest known interpolyhedral O-O distance in a silicate. Z Krist 175:299–303

    Google Scholar 

Download references

Acknowledgements

The article is dedicated to Prof. Dr. Josef Zemann (1923-2022) on the occasion of the 100th anniversary of his birthday. Constructive remarks by two reviewers and editorial handling by Reinhard X. Fischer are gratefully acknowledged. We thank the editor and reviewers for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herta S. Effenberger.

Additional information

Editorial handling: L. Nasdala

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Effenberger, H.S., Giester, G. & Wildner, M. CuSeO4 and Cu(SeO3OH)2·6H2O, two novel copper–selenium(VI) oxysalts. Miner Petrol 117, 307–315 (2023). https://doi.org/10.1007/s00710-022-00809-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-022-00809-8

Keywords

Navigation