Skip to main content
Log in

The Principle of Inertia in the History of Classical Mechanics

  • Published:
Foundations of Science Aims and scope Submit manuscript

Abstract

Making a history of the principle of inertia, as of any other principle or concept, is a complex but still possible operation. In this work it has been chosen to make a back story which seemed the most natural way for a reconstruction. On the way back, it has been decided to stop at the 6th century CE with the contribution of Ioannes Philoponus. The principle he stated, although very different from the modern one, is certainly associated with it. Going back in time it is still possible and of course one could proceed to the origins of the homo sapiens who perhaps posed the problem of why a club thrown with his hand could go so far from him. But the similarities that one can find with the modern principle are very vague, too perhaps. Without going so far one could see an embryonic idea of the principle of inertia in the atomistic theory of Democritus in the 5th century BCE. The motion of atoms whirling with no apparent reason can suggest the idea that a body can also move with no reason. But the transition from the atom, a metaphysical being, to the body, an empirical being, is far from immediate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The argument has been considered both from a historical and epistemological points of view. No comprehensive study exists, for what I know, on the history of the principle of inertia, but very interesting suggestions can be found in Koyré (1978), Maier (1982) and Westfall (1971). Interesting epistemological considerations can be found in Nagel (1961) and Mach (1883).

  2. I adopt the same term used by Maier (1982, p. 78).

  3. For an in depth discussion on the logical status of classical mechanics see the still topical text by Nagel (1961).

  4. p. 65.

  5. p. 3.

  6. p. 10.

  7. pp. 1–3.

  8. f. 61r, translation into English in Patrizi and Brickman (1943).

  9. f. 65r-v. English translation in Patrizi and Brickman (1943).

  10. f. 61r.

  11. f. 62r.

  12. f. 62v.

  13. f. 64v.

  14. p. 29.

  15. p. 187.

  16. Dialogue 5, p. 93. My translation.

  17. p. 13. Translation into English in Newton (1999).

  18. p. 530.

  19. p. 18.

  20. pp. 30–35.

  21. Scholium to definitions; p. 6.

  22. Notice that both and Gassendi were influenced by Patrizi, thus one can say Newton derived his ideas on space from Patrizi. The role of Henry More for Newton’s conception of space is discussed in depth in Hall (1990).

  23. p. 528.

  24. p. 2. Translation into English in Newton (1999).

  25. p. 2. Translation into English in Newton (1999).

  26. Footnote 10, pp. 514–515.

  27. Translation into English in Westfall (1971).

  28. p. 82.

  29. p. 54.

  30. p. 55.

  31. p. 85.

  32. pp. 46–47.

  33. p. 53. My translation.

  34. p. 24.

  35. p. 225.

  36. p. 155.

  37. p. 42; II 25.

  38. vol. 5, p. 440.

  39. p. 227.

  40. pp. 55.

  41. p. 254.

  42. p. 256.

  43. pp. 81–82.

  44. p. 94.

  45. Vol. 1, Syntagma philosophicum, Physica, sec. 1, book 3, p. 355a. Translation into English in Charleton (1654).

  46. Vol. 1, Syntagma philosophicum, Physica, sec. 1, book 3, p. 345a. Translation into English in Charleton (1654).

  47. To signal that Gassendi quoted Patrizi and also named Campanella—who was one of his correspondent—and Telesio (Gassendi, 1658), vol. 1, Syntagma philosophicum, Physica, sec. 1, book 3, p. 246a,b.

  48. p. 213.

  49. Vol. 1, Syntagma philosophicum, Physica, sec. 1, book 3, pp. 246v.

  50. pp. 244–245.

  51. Vol. 1, Syntagma philosophicum, Physica, sec. 1, book 3, pp. 183a,b. Translation into English in Capek (1976).

  52. pp. 244–245.

  53. Epistola 1, p. 62; vol. 3, p. 495b.

  54. Epistola 1, pp. 39–40.

  55. Vol. 1, Syntagma philosophicum, Physica, sec. 1, book 3, p. 354a. Translation into English in Charleton (1654).

  56. Vol. 1, Syntagma philosophicum, Physica, sec. 1, book 3, p. 355a.

  57. Vol. 1, Syntagma philosophicum, Physica, sec. 1, book 3, p. 355a. Translation into English in Charleton (1654).

  58. Vol. 1.

  59. pp. 149–152.

  60. p. 264.

  61. Vol. 1, Syntagma philosophicum, Physica, sec. 1, book 3, p. 338a. Translation into English in Lolordo (2007).

  62. p. 75.

  63. Vol. 1, Syntagma philosophicum, Physica, sec. 1, book 3, p. 354a, b. Translation into English in Charleton (1654).

  64. Epistola 1, pp. 141–142; vol. 3, p. 515b.

  65. p. 173. Translation into English in Galilei (1967).

  66. p. 207. Translation into English in Galilei (1974).

  67. p. 236. Translation into English in Galilei (1974).

  68. p. 56. Translation into English in Galilei (1967).

  69. Second day.

  70. p. 180.

  71. Vol. 10, p. 170. Letter of Benedetto Castelli to Galileo, 1st April 1607.

  72. Vol. 5, p. 134. Letter of Galileo to Mark Welser, 14th August 1612.

  73. p. 495.

  74. p. 174.

  75. p. 53.

  76. pp. 154–155

  77. p. 289.

  78. p. 447.

  79. p. 169.

  80. pp. 206–209.

  81. pp. 243–244.

  82. p. 244. Translation into English in Galilei (1974).

  83. Vol. 8, pp. 336–337. Translation into English in Galilei (1974)

  84. p. 57. The letter to Galileo is of 19 August 1639, see Galilei (1890–1909), vol. 18, p. 88.

  85. pp. 154–157. My translation.

  86. p. 201.

  87. Published as a part of Opera geometrica in 1644 but almost certainly based on a manuscript dating at least to 1641.

  88. De motu proiectorum, p. 156.

  89. pp. 80–81.

  90. Book 12, question 9, f. 73r. Translation into English in Maier (1982).

  91. Book 12, question 9, f. 73r. Translation into English in Maier (1982).

  92. p. 180. Translation into English in Clagett (1959).

  93. pp. 96–112.

  94. p. 35.

  95. pp. 235–236.

  96. pp. 505–515.

  97. pp. 22–23.

  98. p. 510. See also Franco (2003).

  99. p. 42.

  100. Book 4, Question 7, f. 73v. Translation into English in Duhem (1985).

  101. Buridan introduced the term impetus only after 1352 in his final reading of the Quaestiones super octo phisicorum libros Aristotelis. This is most probably the reason for the absence of the term in Albertus de Saxonia(and Oresme)’s commentaries on Aristotle’s Physica written before this date (Thijssen, 2004).

  102. Book 8, Question 12, ff. 120v–121r. Translation in Clagett (1959).

  103. Book 8, Question 12, f. 120v. Translation into English in Clagett (1959).

  104. p. 44.

  105. Book 8, Question 12, f. 121r. Translation into English in Clagett (1959).

  106. p. 92, footnote 15.

  107. Book. 8, Question 12, f. 120v–121r. Translation into English in Clagett (1959).

  108. 642-1.

  109. pp. 497–499; 271–293.

  110. See for instance the argumentations of Franciscus de Marchia quoted in Clagett (1959, p. 529).

  111. p. 181.

  112. 693,28, p. 180.

  113. 642-1, 642-10.

  114. 642-10.

  115. 642-20.

  116. p. 517.

  117. p. 125.

  118. p. 269.

  119. 215a.

  120. 644-17, 644-20.

  121. p. 169.

  122. pp. 140–145.

  123. pp. 112–113.

  124. p. 87. Simplicius, commentary on De caelo.

  125. p. 89. Cicero, De finibus.

  126. pp. 93–97.

  127. It should be noticed that according to some interpretations Democritus probably could not conceive atoms immersed in an empty space as a container but rather he thought about an alternation of void and atoms; where void had some form of reality for Democritus, and both atoms and void were in a place (Jammer, 1993; Sedley, 1982), p. 11; pp. 179-182.

  128. Johannes Stobaeus (after 5th century CE) stated however: “And he [Democritus] said that it was possible for an atom to be as big as a world” (Taylor, 1999, p. 88). Note that Democritus did not use the very word atoms, but rather solids, beings, substances; see Pagano and Pagano (2022, p. 7).

  129. pp. 70–71. Simplicius, commentary on De caelo.

  130. 1071b.

  131. p. 89. Simplicius, commentary on De caelo.

  132. p. 91. According to Alfieri there are no reason to believe in atoms embedded in vast empty spaces; atoms could be quite close to each other. That is Democritus’ universe would be not so empty of matter as one is led to think.

  133. pp. 84–85.

References

  • Alfieri, V. E. (1953). Atomos idea. L’origine del Concetto di Atomo Nel Pensiero Greco. Le Monnier.

  • Amato, B. (1997). La nozione di ‘vuoto’ in Giordano Bruno. Bruniana e Campanelliana, 3(2), 209–229.

    Google Scholar 

  • Aristotle. (2018). Metaphysica. The internet classical archive. Translated into English by Ross WD. http://classics.mit.edu/Aristotle/metaphysics.html.

  • Aristotle. (2018). Physica. The internet classical archive. Translated into English by Hardie RP, Gaye RK. http://classics.mit.edu/Aristotle/physics.html.

  • Arnold, V. I. (1989). Mathematical methods of classical mechanics. Springer.

  • Bakker, F. A., Bellis, D., & Palmerino, C. R. (eds.) (2018). Space, imagination and the cosmos from antiquity to the early modern period. Springer.

  • Baliani, G. B. (1646). De motu naturali gravium solidorum. Farroni.

  • Beeckman, I. (1939–1953). Journal tenu par Isaac Beeckman de 1604–1634 (Vol. 4). Nijhoff, The Haye.

  • Bernier, F. (1684). Abrégé de la philosophie de Gassendi. Anisson, Posuel et Rigaud.

  • Biener, Z. (2017). De gravitatione reconsidered: The changing significance of empirical evidence for Newton’s metaphysics of space. Journal of the History of Philosophy, 55(4), 583–608.

    Article  Google Scholar 

  • Biener, Z. (2017). Definitions more geometrarum and Newton’s scholium on space and time. Studies in History and Philosophy of Science Part B, 72, 179–191.

    Article  Google Scholar 

  • Bruno, G. (1584). De L’infinito Universo et Mondi. Charlewood.

  • Bruno, G. (1830). De l’infinito Universo e Mondi. In A. Wagner (Ed.), Opere di giordano bruno (Vol. 2, pp. 1–104). Weidmann.

  • Bruno, G. (1830). La cena de le ceneri. In A. Wagner (Ed.), Opere di giordano bruno (Vol. 1, pp. 111–200). Weidmann.

  • Bruno, G. (1884). De immenso et innumerabilibus. In F. Fiorentino (Ed.), Jordani bruni nolani opera latine conscripta (Vol. 3, pp. 1–318). Morano.

  • Buridan, J. (1509). Subtilissimae quaestiones super octo physicorum libros aristotelis. Roce.

  • Buridan, J. (1518). In metaphysicen aristotelis. Questiones argutissime. Badius.

  • Buridan, J. (1942). Quaestiones super libris quattuor de Caelo et Mundo. Edited by Moody EA. The Mediaeval Academy of America.

  • Capecchi, D. (2014). The problem of motion of bodies. Springer.

  • Capecchi, D. (2021). Epistemology and natural philosophy in the 18th century. Springer.

  • Capecchi, D. (2022). Development of the concept of space up to Newton. Encyclopedia, 72, 179–191.

    Google Scholar 

  • C̆apek, M. (Ed.). (1976). The concepts of space and time: their structure and their development. Reidel.

  • Cavalieri, B. (1632). Lo specchio ustorio, overo trattato delle settioni coniche. Ferroni.

  • Charleton, W. (1654). Physiologia epicuro-gassendo-charltoniana, or a fabrick of science natural upon the hypothesis of atoms. Newcomb.

  • Clagett, M. (1959). The science of mechanics in the middle ages. The University of Wisconsin Press.

  • Cornford, F. (1976). The invention of space. In M. Čapek (Ed.), The concepts of space and time: Their structure and their development (pp. 3–16). Springer.

  • Damerow, P., Freudenthal, G., McLaughlin, P., & Renn, J. (1992). Exploring the limits of preclassical mechanics. Springer.

  • Descartes, R. (1644). Principia philosophiae. Ludovicum Elzevirium.

  • Descartes, R. (1664). Le Monde de Mr. Descartes Ou le traité de la lumiére et des autres. Girard.

  • Descartes, R. (1668). Les principes de la philosophie, ecrits en latin par rené descartes. Girard.

  • Descartes, R. (1964). Oeuvres de Descartes. In C. Adam & T. P. Vrin (Eds.), Nouvelle édition complétée (1896–1913) (Vol. 11).

  • Disalle, R. (2016). Newton’s philosophical analysis of space and time. In R. Iliffe & G. Smith (Eds.), The Cambridge Companion to Newton (pp. 34–60). Cambridge University Press.

  • Duhem, P. (1913). Le système du monde (Vol. 10). Hermann.

  • Duhem, P. (1985). Medieval cosmology. Edited and Translated by Ariew R: The University of Chicago Press.

  • Enriques, F., & Mazziotti, M. (2016). Le dottrine di Democrito d’Abdera. Immanenza.

  • Festa, E., & Roux, S. (2013). La moindre petite force suffit à mouvoir un corps sur l’horizontal L’émergence d’un principe de mécanique et son devenir cosmologique. Galilaelana, 3, 123–147.

    Google Scholar 

  • Fisher, S. (2005). Pierre Gassendi’s philosophy and science. Brill.

  • Franco, A. (2003). Avempace, projectile motion, and impetus theory. Journal of the History of Ideas, 64(4), 521–546.

    Article  Google Scholar 

  • Friedman, M. (1983). Foundation of space-time theories. Princeton University Press.

  • Fritsche, J. (2011). The biological precedents for medieval impetus theory and its Aristotelian character. The British Journal for the History of Science, 44(1), 1–27.

    Article  Google Scholar 

  • Galilei, G. (1590). De motu antiquiora. In A. Favaro, (Ed.), Le opere di Galileo Galilei (National Edition) (Vol. 20, Vol. 1). Barbera.

  • Galilei, G. (1632). Dialogo sopra i due massimi sistemi del mondo. Landini.

  • Galilei, G. (1634). Le mecaniche. In A. Favaro (Ed.) Le opere di Galileo Galilei (National Edition) (Vol. 20, Vol. 2, pp. 147–192). Barbera.

  • Galilei, G. (1638). Discorsi e dimostrazioni matematiche sopra due nuove scienze. Elsevier.

  • Galilei, G. (1890–1909). Le opere di Galileo Galilei (National Edition) (Vol. 20). Edited by Favaro A. Barbera, Florence.

  • Galilei, G. (2002). Le mecaniche. Edited by G. R. Olschki, Florence.

  • Galilei, G. (1967). Dialogue concerning the two chief systems, ptolemaic and copernican. Translated Into English by Drake S. University of California Press.

  • Galilei, G. (1974). Two new sciences. Translated Into English by Drake S. The University of Wisconsin Press.

  • Garber, D. (1992). Descartes’ metaphysical physics. The University of Chicago Press.

  • Garber, D. (2001). Descartes embodied. Cambridge University Press.

  • Gassendi, P. (1642). De Motu impresso a motore translato. Louis de Heuqueville.

  • Gassendi, P. (1658). Petri Gassendi opera omnia in sex tomos divisa (Vol. 6). Anisson and Devenet.

  • Grant, E. (1981). Much ado about nothing: Theories of space and vacuum from the middle ages to the scientific revolution. Cambridge University Press.

  • Hall, R. A. (1990). Henry More and the scientific revolution. Cambridge University Press.

  • Hecht, E. (2015). Origins of Newton’s first law. The Physics Teacher, 53, 80–323.

    Article  Google Scholar 

  • Henry, J. (2020). Newton, the sensorium of God, and the cause of gravity. Science in Context, 33, 329–351.

    Article  Google Scholar 

  • Jammer, M. (1993). Concepts of space: The history of theories of space in physics (3rd ed.). Dover.

  • Jammer, M. (1957). Concepts of force. Cambridge Massachusetts: A study in the foundation of dynamics. Harvard University Press.

  • Koyré, A. (1957). From the closed world to the infinite universe. John Hopkins.

  • Koyré, A. (1978). Galileo studies. Atlantic Highlands.

  • Landau, L., & Lifshitz, E. (1976). Mechanics (3rd ed.). Reed Educational and Professional Publishing.

  • Lolordo, A. (2007). Pierre Gassendi and the birth of early modern philosophy. Cambridge University Press.

  • Lucas, J. (1969). Euclides ab omni naevo vindicatus. The British Journal for the Philosophy of Science, 20(1), 1–11.

    Article  Google Scholar 

  • Mach, E. (1883). Die Mechanik in ihrer Entwicklung historisch-kritisch dargestellt. Brockhaus.

  • Maier, A. (1982). On the threshold of exact science. Selected writings of Annelise Maier. University of Pennsylvania Press.

  • McGuire, J. E. (1978). Existence, actuality and necessity: Newton on space and time. Annals of Science, 35, 463–508.

    Article  Google Scholar 

  • McGuire, J. E. (1978). Newton on place, time, and god: An unpublished source. The British Journal for the History of Science, 11(2), 114–129.

    Article  Google Scholar 

  • McLaughlin, P. (1993). Descartes on mind-body interaction and the conservation of motion. The Philosophical Review, 102(2), 155–182.

    Article  Google Scholar 

  • Nagel, E. (1961). The structure of science. Harcourt.

  • Newton, I. (1684). De motu corporum in medijs regulariter cedentibus. MS Add. 3965.5a. The Newton project. http://www.newtonproject.sussex.ac.uk

  • Newton, I. (1726). Philosophia naturalis principia mathematica (3rd Ed.). Innys.

  • Newton, I. (1962). De gravitatione et aequipondio fluidorum. Translated from Latin into English by Allan B. http://williambarclayallen.com/translationsDe-Gravitatione-et-Aequipondio-Fluidorum-translation.pdf.

  • Newton, I. (1999). The principia. Mathematical principles of natural philosophy. Translated Into English by Cohen IB, Withman A (assisted by Budenz J). University of California Press.

  • Nicotra, L. (2022). The authorship of the principle of inertia. Science & Philosophy, 10(1), 81–110.

    Google Scholar 

  • Pagano, A., & Pagano, E. V. (2022). Democrito: Una rivisitazione del modello meccanico. Quaderni di Storia della Fisica, 26, 3–20.

    Google Scholar 

  • Patrizi, F. (1591). Nova de universis philosophia. Benedetto Mammarello.

  • Patrizi, F., & Brickman, B. (1943). On physical space. Journal of the History of Ideas, 4(2), 224–245.

    Article  Google Scholar 

  • Pav, P. A. (1966). Gassendi’s statement of the principle of inertia. Isis, 57(1), 24–34.

    Article  Google Scholar 

  • Philoponus, J. (2010). Summary of Philoponus’ corollaries on place and void. Edited and translated by Furley D. In R. Sorabji (Ed.), Philoponus & the rejection of Aristotelian science (2nd Ed., pp. 171–180). Institute of Classical Studies. School of Advanced Study. University of London

  • Philoponus, J. (2012). On Aristotle physics 4.6-9. Edited and Translated Into English by Pamela H. Bristol Classical Press.

  • Rossini, P. (2019). Atomism and mathematics in the thought of Giordano Bruno (Ph.D thesis, Scuola Normale Superiore).

  • Roux, S. (2006). Découvrir le principe d’inertie. Recherches sur la Philosophie et le Langage, 24, 453–515.

    Google Scholar 

  • Sadaillan, C. (2022). Le manuscrit “Tempus et locus”. L’espace newtonien et la prisca theologia. Philosophiae Scientiae, 26(2), 195–210.

  • Sambursky, S. (1962). The physical world of the late antiquity. Basic Books.

  • Sarnowsky, J. (2008). Concept of impetus and the theory of mechanics. In W. Laird & S. Roux (Eds.), Mechanics and natural philosophy before the scientific revolution (pp. 121–145). Springer.

  • Schabel, C. (2006). Francis of Marchia’s virtus derelicta and the context of its development. Vivarium, 44(1), 41–80.

    Article  Google Scholar 

  • Schemmel, M. (2001). England’s forgotten Galileo. A view on Thomas Harriot’s ballistic parabolas (Unpublished paper).

  • Schemmel, M. (2008). The English Galileo. Thomas Harriot’s work on motion as an example of preclassical mechanics (Vol. 2). Springer.

  • Schemmel, M. (2016). Historical epistemology of space. Springer.

  • Sedley, D. (2010). Philoponus’ conception of space. In R. Sorabji (Ed.), Philoponus & the rejection of aristotelian science (2nd ed., pp. 181–193). Institute of Classical Studies. School of Advanced Study. University of London.

  • Sedley, D. (1982). Two conceptions of vacuum. Phronesis, 27(2), 175–193.

    Article  Google Scholar 

  • Sklar, L. (1974). Space, time, and spacetime. University of California Press.

  • Slowik, E. (1999). Descartes, spacetime, and relational motion. Philosophy of Science, 66(1), 117–139.

    Article  Google Scholar 

  • Slowik, E. (2005). On the Cartesian ontology of general relativity: Or, conventionalism in the history of the substantival relational debate. Philosophy of Science, 72(5), 1312–1323.

    Article  Google Scholar 

  • Sorabji, R. (Ed.). (1990). Aristotle transformed. The ancient commentators and their influence. Cornell University Press.

  • Sorabji, R. (Ed.). (2010). Philoponus & the rejection of Aristotelian science (2nd ed.). Institute of Classical Studies, School of Advanced Study, University of London.

  • Stein, H. (1967). Newtonian space-time. Texas Quarterly, 10, 174–200.

    Google Scholar 

  • Taylor, C. (1999). The atomists: Leucippus and Democritus: Fragments, a text and translation with a commentary. University of Toronto Press.

  • Thijssen, J. A. (2004). The Buridan school reassessed. John Buridan and Albert of Saxony. Vivarium, 42(1), 18–42.

    Article  Google Scholar 

  • Torricelli, E. (1644). De motu proiectorum. In E. Torricelli (Ed.), Opera geometrica (pp. 154–243). Masse & de Landis.

  • Trifogli, C. (2011). John Buridan on place. In T. Suarez-Nani & M. Rohde (Eds.), Représentations et Conceptions de L’espace dans la Culture Médiévale Repräsentationsformen und Konzeptionen des Raums in der Kultur des Mittelalters (pp. 193–214). De Gruyter.

  • Truesdell, C. A. (1971). A first course in rational continuum mechanics. Academic Press.

  • Verrychen, K. (1990). The development of Philoponus’ thought and its chronology. In R. Sorabji (Ed.), Aristotle transformed. The ancient commentators and their influence (pp. 233–274). Cornell University Press.

  • Weisheipl, J. A. (1985). Galileo and the principle of inertia. In W. E. Carroll (Ed.), Nature and motion in the middle ages (pp. 49–74). Catholic University of America Press. https://doi.org/10.2307/j.ctv1764h

  • Weisheipl, J. A. (1965). The principle omne quod movetur ab alio movetur in medieval physics. Isis, 56(1), 25–45.

    Google Scholar 

  • Westfall, R. (1971). Force in Newton’s physics. The science of dynamics in the seventeenth century. Neal Watson Academic Publications.

  • Wildberg, C. (1999). Impetus theory and the hermeneutics of science in Simplicius and Philoponus’. Iperboreus: Studia Classica, 5(1), 107–124.

    Google Scholar 

  • Wolff, M. (2010). Philoponus and the rise of preclassical dynamics. In R. Sorabji (Ed.), Philoponus & the rejection of aristotelian science (2nd ed., pp. 125–160). Institute of Classical Studies. School of Advanced Study. University of London.

Download references

Funding

The authors have no relevant financial or non-financial interests to disclose.

Author information

Authors and Affiliations

Authors

Contributions

The authors did not receive support from any organization for the submitted work. Contributing author: Danilo Capecchi.

Corresponding author

Correspondence to Danilo Capecchi.

Ethics declarations

Conflict of interest

No conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Capecchi, D. The Principle of Inertia in the History of Classical Mechanics. Found Sci (2023). https://doi.org/10.1007/s10699-023-09902-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10699-023-09902-3

Keywords

Navigation