Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Coupling and interactions across the Martian whole atmosphere system

Abstract

The Martian surface environment today is cold and dry, but evidence suggests the planet may have hosted more habitable conditions in the past. Open questions about the evolution of the Martian atmosphere and climate motivate much Mars exploration and science. Recent global-scale observations of the Martian atmosphere combined with models reveal intriguing connections between the lower and upper atmospheres. Here we review the role of atmospheric waves, dust storms and atmospheric loss and discuss how these processes are coupled within the Martian whole atmosphere system. Atmospheric gravity (buoyancy) waves are globally present at all altitudes. The effects of planet-encircling dust storms in the lower atmosphere propagate to the upper atmosphere. The Martian hydrological cycle in which water is exchanged between the surface and atmosphere is coupled to dynamical and radiative processes operating across atmospheric layers. The thermal escape of atomic hydrogen to space, which is thought to be the primary mechanism for the long-term loss of water on Mars, is influenced by atmospheric waves and dust storms. Understanding the coupling among atmospheric waves, dust storms and atmospheric loss processes, and thus a unified understanding of the Martian whole atmosphere system, is essential to understand past and current climate on Mars.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Global GW-induced zonal wind perturbations at three representative altitudes in the troposphere and mesosphere.
Fig. 2: Images of Mars during a global dust storm.
Fig. 3: Water flux in the upper atmosphere of Mars during a global dust storm.

Similar content being viewed by others

Data availability

The high-resolution Martian general circulation model simulation data used in Fig. 1 are freely available at https://doi.org/10.5281/zenodo.2578740. The Martian general circulation model simulation data used in Fig. 3 are freely available at https://doi.org/10.5281/zenodo.5749676.

References

  1. Krasnopolsky, V. A. & Feldman, P. D. Detection of molecular hydrogen in the atmosphere of Mars. Science 294, 1914–1917 (2001).

    Article  Google Scholar 

  2. Webster, C. R. et al. Background levels of methane in Mars’ atmosphere show strong seasonal variations. Science 360, 1093–1096 (2018).

    Article  Google Scholar 

  3. Jakosky, B. M. & Phillips, R. J. Mars’ volatile and climate history. Nature 412, 237–244 (2001).

    Article  Google Scholar 

  4. Kite, E. S., Williams, J.-P., Lucas, A. & Aharonson, O. Low palaeopressure of the Martian atmosphere estimated from the size distribution of ancient craters. Nat. Geosci. 7, 335–339 (2014).

    Article  Google Scholar 

  5. Warren, A. O., Kite, E. S., Williams, J.-P. & Horgan, B. Through the thick and thin: new constraints on Mars paleopressure history 3.8–4 Ga from small exhumed craters. J. Geophys. Res. Planets 124, 2793–2818 (2019).

    Article  Google Scholar 

  6. Kliore, A. et al. Occultation experiment: results of the first direct measurement of Mars’s atmosphere and ionosphere. Science 149, 1243–1248 (1965).

    Article  Google Scholar 

  7. Seiff, A. & Kirk, D. B. Structure of Mars’ atmosphere up to 100 kilometers from the entry measurements of Viking 2. Science 194, 1300–1303 (1976).

    Article  Google Scholar 

  8. Bougher, S. W., Cravens, T. E., Grebowsky, J. & Luhmann, J. The aeronomy of Mars: characterization by MAVEN of the upper atmosphere reservoir that regulates volatile escape. Space Sci. Rev. 195, 423–456 (2015).

    Article  Google Scholar 

  9. Vago, J. et al. ESA ExoMars program: the next step in exploring Mars. Solar Syst. Res. 49, 518–528 (2015).

    Article  Google Scholar 

  10. Yiğit, E. & Medvedev, A. S. Obscure waves in planetary atmospheres. Phys. Today 6, 40–46 (2019).

    Article  Google Scholar 

  11. Creasey, J. E., Forbes, J. M. & Hinson, D. P. Global and seasonal distribution of gravity wave activity in Mars’ lower atmosphere derived from MGS radio occultation data. Geophys. Res. Lett. 33, L01803 (2006).

    Article  Google Scholar 

  12. Medvedev, A. S., Yiğit, E., Kuroda, T. & Hartogh, P. General circulation modeling of the Martian upper atmosphere during global dust storms. J. Geophys. Res. Planets 118, 2234–2246 (2013).

    Article  Google Scholar 

  13. Withers, P. & Pratt, R. An observational study of the response of the upper atmosphere of Mars to lower atmospheric dust storms. Icarus 225, 378–389 (2013).

    Article  Google Scholar 

  14. González Galindo, F. et al. Variability of the Martian thermosphere during eight Martian years as simulated by a ground-to-exosphere global circulation model. J. Geophys. Res. Planets 120, 2020–2035 (2015).

    Article  Google Scholar 

  15. Kass, D. M., Kleinböhl, A., McCleese, D. J., Schofield, J. T. & Smith, M. D. Interannual similarity in the Martian atmosphere during the dust storm season. Geophys. Res. Lett. 43, 6111–6118 (2016).

    Article  Google Scholar 

  16. Heavens, N. G., Kass, D. M., Shirley, J. H., Piqueux, S. & Cantor, B. A. An observational overview of dusty deep convection in Martian dust storms. J. Atmos. Sci. 76, 3299–3326 (2019).

    Article  Google Scholar 

  17. Elrod, M. K., Bougher, S. W., Roeten, K., Sharrar, R. & Murphy, J. Structural and compositional changes in the upper atmosphere related to the PEDE 2018 dust event on Mars as observed by MAVEN NGIMS. Geophys. Res. Lett. 47, e2019GL084378 (2020).

    Article  Google Scholar 

  18. Ando, H., Imamura, T. & Tsuda, T. Vertical wavenumber spectra of gravity waves in the Martian atmosphere obtained from Mars Global Surveyor radio occultation data. J. Atmos. Sci. 69, 2906–2912 (2012).

    Article  Google Scholar 

  19. Medvedev, A. S., Yiğit, E. & Hartogh, P. Estimates of gravity wave drag on Mars: indication of a possible lower thermosphere wind reversal. Icarus 211, 909–912 (2011).

    Article  Google Scholar 

  20. Parish, H. F., Schubert, G., Hickey, M. & Walterscheid, R. L. Propagation of tropospheric gravity waves into the upper atmosphere of Mars. Icarus 203, 28–37 (2009).

    Article  Google Scholar 

  21. Hickey, M. P. & Cole, K. D. A numerical model for gravity wave dissipation in the thermosphere. J. Atmos. Terr. Phys. 50, 689–697 (1988).

    Article  Google Scholar 

  22. Hickey, M. P., Walterscheid, R. L. & Schubert, G. A full-wave model for a binary gas thermosphere: effects of thermal conductivity and viscosity: full-wave model for a binary gas. J. Geophys. Res. Space Phys. 120, 3074–3083 (2015).

    Article  Google Scholar 

  23. Yiğit, E. & Medvedev, A. S. Internal wave coupling processes in Earth’s atmosphere. Adv. Space Res. 55, 983–1003 (2015).

    Article  Google Scholar 

  24. Moudden, Y. & Forbes, J. M. Effects of vertically propagating thermal tides on the mean structure and dynamics of Mars’ lower thermosphere. Geophys. Res. Lett. 35, L23805 (2008).

    Article  Google Scholar 

  25. Yiğit, E., Medvedev, A. S. & Hartogh, P. Gravity waves and high-altitude CO2 ice cloud formation in the Martian atmosphere. Geophys. Res. Lett. 42, 4294–4300 (2015).

    Article  Google Scholar 

  26. Barnes, J. R. Possible effects of breaking gravity waves on the circulation of the middle atmosphere of Mars. J. Geophys. Res. 95, 1401–1421 (1990).

    Article  Google Scholar 

  27. Joshi, M. M., Lawrence, B. N. & Lewis, S. R. Gravity wave drag in three-dimensional atmospheric models of Mars. J. Geophys. Res. 100, 21235–21245 (1995).

    Article  Google Scholar 

  28. Yiğit, E., Aylward, A. D. & Medvedev, A. S. Parameterization of the effects of vertically propagating gravity waves for thermosphere general circulation models: sensitivity study. J. Geophys. Res. 113, D19106 (2008).

    Article  Google Scholar 

  29. Medvedev, A. S., Yiğit, E., Hartogh, P. & Becker, E. Influence of gravity waves on the Martian atmosphere: general circulation modeling. J. Geophys. Res. 116, E10004 (2011).

    Article  Google Scholar 

  30. Medvedev, A. S. & Yiğit, E. Thermal effects of internal gravity waves in the Martian upper atmosphere. Geophys. Res. Lett. 39, L05201 (2012).

    Article  Google Scholar 

  31. Medvedev, A. S. et al. Cooling of the Martian thermosphere by CO2 radiation and gravity waves: an intercomparison study with two general circulation models. J. Geophys. Res. Planets 120, 913–927 (2015).

    Article  Google Scholar 

  32. Kuroda, T., Medvedev, A. S., Yiğit, E. & Hartogh, P. A global view of gravity waves in the Martian atmosphere inferred from a high-resolution general circulation model: gravity waves on Mars. Geophys. Res. Lett. 42, 9213–9222 (2015).

    Article  Google Scholar 

  33. Kuroda, T., Yiğit, E. & Medvedev, A. S. Annual cycle of gravity wave activity derived from a high-resolution Martian general circulation model. J. Geophys. Res. Planets 124, 1618–1632 (2019).

    Article  Google Scholar 

  34. Spiga, A., González-Galindo, F., López-Valverde, M.-A. & Forget, F. Gravity waves, cold pockets and CO2 clouds in the Martian mesosphere. Geophys. Res. Lett. 39, L02201 (2012).

    Article  Google Scholar 

  35. Walterscheid, R. L., Hickey, M. P. & Schubert, G. Wave heating and Jeans escape in the Martian upper atmosphere. J. Geophys. Res. Planets 118, 2169–9402 (2013).

    Article  Google Scholar 

  36. Fritts, D. C. & Alexander, M. J. Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys. 41, 1003 (2003).

    Article  Google Scholar 

  37. Genio, A. D. D., Schubert, G. & Straus, J. M. Characteristics of acoustic-gravity waves in a diffusively separated atmosphere. J. Geophys. Res. Space Phys. 84, 1865–1879 (1979).

    Article  Google Scholar 

  38. Walterscheid, R. L. & Hickey, M. P. Gravity wave propagation in a diffusively separated gas: effects on the total gas. J. Geophys. Res. https://doi.org/10.1029/2011JA017451 (2012).

  39. Cui, J., Lian, Y. & Müller-Wodarg, I. C. F. Compositional effects in Titan’s thermospheric gravity waves. Geophys. Res. Lett. 40, 43–47 (2013).

    Article  Google Scholar 

  40. Yiğit, E. et al. High-altitude gravity waves in the Martian thermosphere observed by MAVEN/NGIMS and modeled by a gravity wave scheme. Geophys. Res. Lett. 42, 8993–9000 (2015).

    Article  Google Scholar 

  41. England, S. L. et al. MAVEN NGIMS observations of atmospheric gravity waves in the Martian thermosphere. J. Geophys. Res. Space Phys. 122, 2310–2335 (2017).

    Article  Google Scholar 

  42. Siddle, A., Mueller-Wodarg, I., Stone, S. & Yelle, R. Global characteristics of gravity waves in the upper atmosphere of Mars as measured by MAVEN/NGIMS. Icarus 333, 12–21 (2019).

    Article  Google Scholar 

  43. Li, Y., Liu, J. & Jin, S. Horizontal internal gravity waves in the Mars upper atmosphere from MAVEN ACC and NGIMS measurements. J. Geophys. Res. Space Phys. 126, e2020JA028378 (2021).

    Google Scholar 

  44. Tellmann, S., Pätzold, M., Häusler, B., Hinson, D. P. & Tyler, G. L. The structure of Mars lower atmosphere from Mars Express Radio Science (MaRS) occultation measurements. J. Geophys. Res. Planets 118, 306–320 (2013).

    Article  Google Scholar 

  45. Heavens, N., Kass, D. M., Kleinböhl, A. & Schofield, J. T. A multiannual record of gravity wave activity in Mars’s lower atmosphere from on-planet observations by the Mars Climate Sounder. Icarus 341, 113630 (2020).

    Article  Google Scholar 

  46. Saunders, W. R., Person, M. J. & Withers, P. Observations of gravity waves in the middle atmosphere of Mars. Astrophys. J. 161, 280 (2021).

    Google Scholar 

  47. Yiğit, E., Medvedev, A. S., Benna, M. & Jakosky, B. Dust storm-enhanced gravity wave activity in the Martian thermosphere observed by MAVEN and implication for atmospheric escape. Geophys. Res. Lett. 48, e2020GL092095 (2021).

    Article  Google Scholar 

  48. Jesch, D., Medvedev, A. S., Castellini, F., Yiğit, E. & Hartogh, P. Density fluctuations in the lower thermosphere of Mars retrieved from the ExoMars Trace Gas Orbiter (TGO) aerobraking. Atmosphere 10, 620 (2019).

    Article  Google Scholar 

  49. Leelavathi, V., Venkateswara Rao, N. & Rao, S. V. B. Interannual variability of atmospheric gravity waves in the Martian thermosphere: effects of the 2018 planet-encircling dust event. J. Geophys. Res. Planets 125, e2020JE006649 (2020).

    Article  Google Scholar 

  50. Williamson, H. N., Johnson, R. E., Leclercq, L. & Elrod, M. K. Large amplitude perturbations in the Martian exosphere seen in MAVEN NGIMS data. Icarus 331, 110–115 (2019).

    Article  Google Scholar 

  51. England, S. L. et al. Simultaneous observations of atmospheric tides from combined in situ and remote observations at Mars from the MAVEN spacecraft. J. Geophys. Res. Planets 121, 594–607 (2016).

    Article  Google Scholar 

  52. Liu, G. et al. Longitudinal structures in Mars’ upper atmosphere as observed by MAVEN/NGIMS. J. Geophys. Res. Space Phys. 122, 1258–1268 (2017).

    Article  Google Scholar 

  53. Forbes, J. M., Zhang, X., Forget, F., Millour, E. & Kleinböhl, A. Solar tides in the middle and upper atmosphere of Mars. J. Geophys. Res. Space Phys. 125, e2020JA028140 (2020).

    Article  Google Scholar 

  54. Pang, K. & Hord, C. W. Mariner 9 ultraviolet spectrometeer experiment: 1971 Mars’ dust storm. Icarus 18, 481–488 (1973).

    Article  Google Scholar 

  55. Gierasch, P. J. Martian dust storms. Rev. Geophys. 12, 730–734 (1974).

    Article  Google Scholar 

  56. Leovy, C. B. The atmosphere of Mars. Scientific American (1 July 1977).

  57. Kass, D. M. et al. Mars Climate Sounder observation of Mars’ 2018 global dust storm. Geophys. Res. Lett. 47, e2019GL083931 (2020).

    Article  Google Scholar 

  58. Haberle, R. M., Leovy, C. B. & Pollack, J. B. Some effects of global dust storms on the atmospheric circulation of Mars. Icarus 50, 322–367 (1982).

    Article  Google Scholar 

  59. Cantor, B. A. MOC observations of the 2001 Mars planet-encircling dust storm. Icarus 186, 60–96 (2007).

    Article  Google Scholar 

  60. Clancy, R. T. et al. Extension of atmospheric dust loading to high altitudes during the 2001 Mars dust storm: MGS TES limb observations. Icarus 207, 98–109 (2010).

    Article  Google Scholar 

  61. Heavens, N. et al. Structure and dynamics of the Martian lower and middle atmosphere as observed by the Mars Climate Sounder: 2. Implications of the thermal structure and aerosol distributions for the mean meridional circulation. J. Geophys. Res. Planets https://doi.org/10.1029/2010JE003677 (2011).

  62. Jain, S. K. et al. Martian thermospheric warming associated with the planet encircling dust event of 2018. Geophys. Res. Lett. 47, e2019GL085302 (2020).

    Article  Google Scholar 

  63. Wu, Z., Li, T., Zhang, X., Li, J. & Cui, J. Dust tides and rapid meridional motions in the Martian atmosphere during major dust storms. Nat. Commun. 11, 614 (2020).

    Article  Google Scholar 

  64. Cantor, B. A. et al. Martian dust storm activity near the Mars 2020 candidate landing sites: MRO-MARCI observations from Mars years 28–34. Icarus 321, 161–170 (2019).

    Article  Google Scholar 

  65. Shirley, J. H. et al. Rapid expansion and evolution of a regional dust storm in the Acidalia Corridor during the initial growth phase of the Martian global dust storm of 2018. Geophys. Res. Lett. 47, e2019GL084317 (2020).

    Article  Google Scholar 

  66. Withers, P., Weiner, S. & Ferreri, N. R. Recovery and validation of Mars ionospheric electron density profiles from Mariner 9. Earth Planets Space 67, 194 (2015).

    Article  Google Scholar 

  67. Girazian, Z. et al. Variations in the ionospheric peak altitude at Mars in response to dust storms: 13 years of observations from the Mars Express Radar Sounder. J. Geophys. Res. Planets 125, e2019JE006092 (2020).

    Article  Google Scholar 

  68. Lee, Y. et al. Effects of global and regional dust storms on the Martian hot O corona and photochemical loss. J. Geophys. Res. Space Phys. 125, e2019JA027115 (2020).

    Article  Google Scholar 

  69. Mukundan, V., Thampi, S. V., Bhardwaj, A. & Fang, X. Impact of the 2018 Mars global dust storm on the ionospheric peak: a study using a photochemical model. J. Geophys. Res. Planets 126, e2021JE006823 (2021).

    Article  Google Scholar 

  70. Ordonez-Etxeberria, I., Hueso, R., Sánchez-Lavega, A. & Vicente-Retortillo, A. Characterization of a local dust storm on Mars with REMS/MSL measurements and MARCI/MRO images. Icarus 338, 113521 (2020).

    Article  Google Scholar 

  71. Bell, J. M., Bougher, S. W. & Murphy, J. R. Vertical dust mixing and the interannual variations in the Mars thermosphere. J. Geophys. Res. https://doi.org/10.1029/2006JE002856 (2007).

  72. Haberle, R. M. et al. Mars atmospheric dynamics as simulated by the NASA Ames general circulation model: 1. The zonal-mean circulation. J. Geophys. Res. Planets 98, 3093–3123 (1993).

    Article  Google Scholar 

  73. Kleinböhl, A. et al. Diurnal variations of dust during the 2018 global dust storm observed by the Mars Climate Sounder. J. Geophys. Res. Planets 125, e2019JE006115 (2020).

    Article  Google Scholar 

  74. Luginin, M. et al. Properties of water ice and dust particles in the atmosphere of Mars during the 2018 global dust storm as inferred from the atmospheric chemistry suite. J. Geophys. Res. Planets 125, e2020JE006419 (2020).

    Article  Google Scholar 

  75. Neary, L. et al. Explanation for the increase in high-altitude water on Mars observed by NOMAD during the 2018 global dust storm. Geophys. Res. Lett. 47, e2019GL084354 (2020).

    Article  Google Scholar 

  76. Heavens, N. G., Kass, D. M. & Shirley, J. H. Dusty deep convection in the Mars year 34 planet-encircling dust event. J. Geophys. Res. Planets 124, 2863–2892 (2019).

    Article  Google Scholar 

  77. Shaposhnikov, D. S., Medvedev, A. S., Rodin, A. V., Yiğit, E. & Hartogh, P. Martian dust storms and gravity waves: disentangling water transport to the upper atmosphere. J. Geophys. Res. Planets 127, e2021JE007102 (2022).

    Article  Google Scholar 

  78. Kuroda, T., Medvedev, A. S. & Yiğit, E. Gravity wave activity in the atmosphere of Mars during the 2018 global dust storm: simulations with a high resolution model. J. Geophys. Res. Planets 125, e2020JE006556 (2020).

    Article  Google Scholar 

  79. Carr, M. H. Channels and valleys on Mars: cold climate features formed as a result of a thickening cryosphere. Planet. Space Sci. 44, 1411–1423 (1996).

    Article  Google Scholar 

  80. Alemanno, G., Orofino, V. & Mancarella, F. Global map of Martian fluvial systems: age and total eroded volume estimations. Earth Space Sci. 5, 560–577 (2018).

    Article  Google Scholar 

  81. Dundas, C. M. et al. Granular flows at recurring slope lineae on Mars indicate a limited role for liquid water. Nat. Geosci. 10, 903–907 (2017).

    Article  Google Scholar 

  82. Brown, A. J., Calvin, W. M., Becerra, P. & Byrne, S. Martian north polar cap summer water cycle. Icarus 277, 401–415 (2016).

    Article  Google Scholar 

  83. McEwen, A. S. et al. Recurring slope lineae in equatorial regions of Mars. Nat. Geosci. 7, 53–58 (2014).

    Article  Google Scholar 

  84. Smith, M. D. The annual cycle of water vapor on Mars as observed by the Thermal Emission Spectrometer. J. Geophys. Res. Planets 107 (2002).

  85. Titov, D. V. Water vapour in the atmosphere of Mars. Adv. Space Res. 29, 183–191 (2002).

    Article  Google Scholar 

  86. Maltagliati, L. et al. Evidence of water vapor in excess of saturation in the atmosphere of Mars. Science 333, 1868–1871 (2011).

    Article  Google Scholar 

  87. Shaposhnikov, D. S., Medvedev, A. S., Rodin, A. V. & Hartogh, P. Seasonal water “pump" in the atmosphere of Mars: vertical transport to the thermosphere. Geophys. Res. Lett. 46, 4161–4169 (2019).

    Article  Google Scholar 

  88. Haberle, R. M. et al. Documentation of the NASA/Ames Legacy Mars Global Climate Model: simulations of the present seasonal water cycle. Icarus 333, 130–164 (2019).

    Article  Google Scholar 

  89. Chaffin, M. S., Deighan, J., Schneider, N. M. & Stewart, A. I. F. Elevated atmospheric escape of atomic hydrogen from Mars induced by high-altitude water. Nat. Geosci. 10, 174–178 (2017).

    Article  Google Scholar 

  90. Krasnopolsky, V. A. Photochemistry of water in the Martian thermosphere and its effect on hydrogen escape. Icarus 321, 62–70 (2019).

    Article  Google Scholar 

  91. Stoney, G. J. Of atmospheres upon planets and satellites. Astrophys. J. 7, 25–55 (1898).

    Article  Google Scholar 

  92. Chamberlain, J. W. Planetary coronae and atmospheric evaporation. Planet. Space Sci. 11, 901–960 (1963).

    Article  Google Scholar 

  93. Lammer, H. et al. Atmospheric escape and evolution of terrestrial planets and satellites. Space Sci. Rev. 139, 399–436 (2008).

    Article  Google Scholar 

  94. Lammer, H. in Origin and Evolution of Planetary Atmospheres: Implications for Habitability (ed. Lammer, H.) 25–74 (Springer, 2013).

  95. Öpik, E. J. & Singer, S. F. Distribution of density in a planetary exosphere. II. Phys. Fluids 4, 221–233 (1961).

    Article  Google Scholar 

  96. Watson, A. J., Donahue, T. M. & Walker, J. C. G. The dynamics of a rapidly escaping atmosphere: applications to the evolution of Earth and Venus. Icarus 48, 150–166 (1981).

    Article  Google Scholar 

  97. Heavens, N. G. et al. Hydrogen escape from Mars enhanced by deep convection in dust storms. Nat. Astron. 2, 126–132 (2018).

    Article  Google Scholar 

  98. Stone, S. W. et al. Hydrogen escape from Mars is driven by seasonal and dust storm transport of water. Science 370, 824–831 (2020).

    Article  Google Scholar 

  99. Jakosky, B. et al. Loss of the Martian atmosphere to space: present-day loss rates determined from MAVEN observations and integrated loss through time. Icarus 315 (2018).

  100. Chaufray, J. Y. et al. Study of the hydrogen escape rate at Mars during Martian years 28 and 29 from comparisons between SPICAM/Mars express observations and GCM-LMD simulations. Icarus 353 (2021).

  101. Chaffin, M. S. et al. Unexpected variability of Martian hydrogen escape. Geophys. Res. Lett. 41, 314–320 (2014).

    Article  Google Scholar 

  102. Chaffin, M. S. et al. Mars H escape rates derived from MAVEN/IUVS Lyman alpha brightness measurements and their dependence on model assumptions. J. Geophys. Res. Planets 123, 2192–2210 (2018).

    Article  Google Scholar 

  103. Mayyasi, M. et al. Significant space weather impact on the escape of hydrogen from Mars. Geophys. Res. Lett. 45, 8844–8852 (2018).

    Article  Google Scholar 

  104. Krasnopolsky, V. A. Solar activity variations of thermospheric temperatures on Mars and a problem of CO in the lower atmosphere. Icarus 207, 638–647 (2010).

    Article  Google Scholar 

  105. Yiğit, E. Martian water escape and internal waves. Science 374, 1323–1324 (2021).

    Article  Google Scholar 

  106. Mayyasi, M. et al. Significant space weather impact on the escape of hydrogen from Mars. Geophys. Res. Lett. 45, 8844–8852 (2018).

    Article  Google Scholar 

  107. Dong, C. et al. Solar wind interaction with Mars upper atmosphere: results from the one-way coupling between the multifluid MHD model and the MTGCM model. Geophys. Res. Lett. 41, 2708–2715 (2014).

    Article  Google Scholar 

  108. Lillis, R. J. et al. An improved crustal magnetic field map of Mars from electron reflectometry: highland volcano magmatic history and the end of the Martian dynamo. Icarus 194, 575–596 (2008).

    Article  Google Scholar 

  109. Bougher, S. W. et al. Mars Global Ionosphere–Thermosphere Model: solar cycle, seasonal, and diurnal variations of the Mars upper atmosphere. J. Geophys. Res. Planets 120, 311–342 (2015).

    Article  Google Scholar 

  110. Gronoff, G. et al. Atmospheric escape processes and planetary atmospheric evolution. J. Geophys. Res. Space Phys. 125, e2019JA027639 (2020).

    Article  Google Scholar 

  111. Liuzzi, G. et al. Strong variability of Martian water ice clouds during dust storms revealed from ExoMars Trace Gas Orbiter/NOMAD. J. Geophys. Res. Planets 125, e2019JE006250 (2020).

    Article  Google Scholar 

  112. Vandaele, A. C. et al. Martian dust storm impact on atmospheric H2O and D/H observed by ExoMars Trace Gas Orbiter. Nature 568, 521–525 (2019).

    Article  Google Scholar 

  113. Fedorova, A. A. et al. Stormy water on Mars: the distribution and saturation of atmospheric water during the dusty season. Science 367, 297–300 (2020).

    Article  Google Scholar 

  114. Garcia, R. F., Drossart, P., Piccioni, G., López Valverde, M. & Occhipinti, G. Gravity waves in the upper atmosphere of Venus revealed by CO2 nonlocal thermodynamic equilibrium emissions. J. Geophys. Res. Planets 114 (2009).

  115. Forbes, J. M., Bruinsma, S. L., Doornbos, E. & Zhang, X. Gravity wave-induced variability of the middle thermosphere. J. Geophys. Res. Space Phys. 121, 6914–6923 (2016).

    Article  Google Scholar 

  116. Young, L. A., Yelle, R. V., Young, R., Seiff, A. & Kirk, D. B. Gravity waves in Jupiter’s thermosphere. Science 276, 108–111 (1997).

    Article  Google Scholar 

  117. Matcheva, K. I. & Barrow, D. J. Small-scale variability in Saturn’s lower ionosphere. Icarus 221, 525–543 (2012).

    Article  Google Scholar 

  118. Harada, Y., Gurnett, D. A., Kopf, A. J., Halekas, J. S. & Ruhunusiri, S. Ionospheric irregularities at Mars probed by MARSIS topside sounding. J. Geophys. Res. Space Phys. 123, 1018–1030 (2018).

    Article  Google Scholar 

  119. Clarke, J. T. Dust-enhanced water escape. Nat. Astron. 2, 114–115 (2018).

    Article  Google Scholar 

  120. Stevens, M. H. et al. Martian mesospheric cloud observations by IUVS on MAVEN: thermal tides coupled to the upper atmosphere. Geophys. Res. Lett. 44, 4709–4715 (2017).

    Article  Google Scholar 

  121. Peter, K. et al. The lower dayside ionosphere of Mars from 14 years of MaRS radio science observations. Icarus 359, 114213 (2021).

    Article  Google Scholar 

  122. Mendillo, M. et al. Sources of ionospheric variability at Mars. J. Geophys. Res. Space Physics 122, 9670–9684 (2017).

    Article  Google Scholar 

  123. Mayyasi, M., Narvaez, C., Benna, M., Elrod, M. & Mahaffy, P. Ion-neutral coupling in the upper atmosphere of Mars: a dominant driver of topside ionospheric structure. J. Geophys. Res. Space Phys. 124, 3786–3798 (2019).

    Article  Google Scholar 

  124. Zurek, R. W. in Mars (ed. Kieffer, H. et al.) 799–817 (Univ. Arizona Press, 1992).

  125. Yiğit, E., Knížová, P. K., Georgieva, K. & Ward, W. A review of vertical coupling in the atmosphere–ionosphere system: effects of waves, sudden stratospheric warmings, space weather, and of solar activity. J. Atmos. Sol. Terr. Phys. 141, 1–12 (2016).

    Article  Google Scholar 

  126. Zurek, R. W. et al. Mars thermosphere as seen in MAVEN accelerometer data. J. Geophys. Res. Space Phys. 122, 3798–3814 (2017).

  127. Fu, M., Cui, J., Wu, X., Wu, Z. & Li, J. The variations of the Martian exobase altitude. Earth Planet. Phys. 4, 4–10 (2020).

    Article  Google Scholar 

  128. Nagy, A. F. et al. The plasma environment of Mars. Space Sci. Rev. 111, 82 (2004).

    Article  Google Scholar 

  129. Dubinin, E. et al. Expansion and shrinking of the Martian topside ionosphere. J. Geophys. Res. Space Phys. 124, 9725–9738 (2019).

    Article  Google Scholar 

  130. Bougher, S. W. et al. The structure and variability of Mars dayside thermosphere from MAVEN NGIMS and IUVS measurements: seasonal and solar activity trends in scale heights and temperatures. J. Geophys. Res. Space Phys. 122, 1296–1313 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

E.Y. was partially funded by NASA (grants 80NSSC22K0016 and 80NSSC20K0941).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erdal Yiğit.

Ethics declarations

Competing interests

The author declares no competing interests.

Peer review

Peer review information

Nature Geoscience thanks Nicholas Heavens and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Tamara Goldin, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yiğit, E. Coupling and interactions across the Martian whole atmosphere system. Nat. Geosci. 16, 123–132 (2023). https://doi.org/10.1038/s41561-022-01118-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-022-01118-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing