Skip to main content

Advertisement

Log in

Germanium- and gallium-rich sphalerite in Mississippi Valley–type deposits: the San Vicente district and the Shalipayco deposit, Peru

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

Sphalerite in Mississippi Valley–type (MVT) deposits hosts significant resources of both germanium and gallium. Here, we provide a survey on the distribution of Ge, Ga, and other minor and trace elements in sphalerite from MVT deposits in the Eastern Cordillera and sub-Andean regions of Peru, including the San Vicente deposit and the nearby Chilpes and Huacrash prospects, and the Shalipayco deposit. We present also a micro- and nano-scale textural characterization of Ge-rich sphalerite. In situ laser ablation-inductively coupled plasma-mass spectrometry analyses yielded Ge contents (inter-quartile range [IQR] = 164–36 ppm for the San Vicente district and IQR = 425–101 ppm for the Shalipayco deposit) that overlap with the range reported for sphalerite from other MVT deposits elsewhere. The highest Ge contents (IQR = 1207–375 ppm, up to 1861 ppm) were found in Fe-poor orange sphalerite deposited during a volumetrically minor second mineralization step in the San Vicente deposit located mainly in steep veins that crosscut the main first-step mineralization dominated by darker sphalerite. Reddish-brown sphalerite from Chilpes (IQR = 445–22 ppm, up to 1745 ppm) and brownish orange sphalerite from Huacrash (IQR = 650–34 ppm, up to 855 ppm) also yielded remarkably high Ge values. In Shalipayco, the highest Ge contents were analyzed in late Fe-poor yellow sphalerite (IQR = 375–267 ppm, up to 1119 ppm). The highest Ga contents were determined in reddish-brown sphalerite from the Chilpes prospect (IQR = 1156–0.26 ppm, up to 3943 ppm), although Ga contents are, in general, much lower than those of Ge in most analyzed sphalerite (IQR = 27–0.22 ppm in the San Vicente district and IQR = 2.8–0.081 ppm in the Shalipayco deposit). These figures place some of the analyzed sphalerite types among the Ge- and Ga-richest samples ever reported. Linkage of textural and compositional data points to light-colored, chiefly orange and yellow sphalerite generations crystallizing at lower temperatures and relatively late in the paragenetic sequences as those with the highest Ge contents. In contrast, the paragenetic control on Ga enrichment is unclear. Focused ion beam and high-resolution transmission electron microscopy (FIB-HRTEM) investigation combined with trace element content correlations reveal selective partitioning of Ge and Ga into sphalerite as structurally bound elements and their incorporation via substitution mostly coupled to monovalent cations triggering polytypism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Awadh SM (2009) Iron content variations in sphalerite and their effects on reflectance and internal reflections under reflected light. Arab J Geosci 2:139–142

    Article  Google Scholar 

  • Baby P, Calderón Y, Hurtado C, Louterbach M, Espurt N, Brusset S, Roddaz M, Brichau S, Eude A, Calvès G (2019) The Peruvian sub-Andean foreland basin system: structural overview, geochronologic constraints, and unexplored plays. In: Zamora G, McClay KR, Ramos VA (eds) Memoir 117: petroleum basins and hydrocarbon potential of the Andes of Peru and Bolivia. American Association of Petroleum Geologists Special Volumes 117:87–116

  • Badoux V, Moritz R, Fontboté L (2001) The Mississippi Valley-type Zn-Pb deposit of San Vicente, Central Peru: an Andean syntectonic deposit. Proceedings of the Joint 6th Biennial SGA-SEG Meeting, Mineral deposits at the beginning of the 21th Century, Krakow, pp 191–195

  • Bastian LM (2021) Fluid and metal sources of Zn-Pb sulfides of San Vicente, Peru. Ms.C. Dissertation, ETH Zürich

  • Bauer ME, Burisch M, Ostendorf J, Krause J, Frenzel M, Seifert T, Gutzmer J (2019) Trace element geochemistry of sphalerite in contrasting hydrothermal fluid systems of the Freiberg district, Germany: insights from LA-ICP-MS analysis, near-infrared light microthermometry of sphalerite-hosted fluid inclusions, and sulfur isotope geochemistry. Miner Deposita 54:237–262

    Article  Google Scholar 

  • Baumgartner RJ, Van Kranendonk MJ, Pagès A, Fiorentini ML, Wacey D, Ryan C (2020) Accumulation of transition metals and metalloids in sulfidized stromatolites of the 3.48 billion–year–old Dresser Formation, Pilbara Craton. Precambrian Res 337:105534

    Article  Google Scholar 

  • Belissont R, Boiron MC, Luais B, Cathelineau M (2014) LA-ICP-MS analyses of minor and trace elements and bulk Ge isotopes in zoned Ge-rich sphalerites from the Noailhac - Saint-Salvy deposit (France): insights into incorporation mechanisms and ore deposition processes. Geochim Cosmochim Ac 126:518–540

    Article  Google Scholar 

  • Belissont R, Muñoz M, Boiron MC, Luais B, Mathon O (2016) Distribution and oxidation state of Ge, Cu and Fe in sphalerite by μ-XRF and K-edge μ-XANES: insights into Ge incorporation, partitioning and isotopic fractionation. Geochim Cosmoch Ac 177:298–314

    Article  Google Scholar 

  • Belissont R (2016) Germanium and related elements in sulphide minerals: crystal chemistry, incorporation and isotope fractionation. Ph.D. Dissertation, Université de Lorraine

  • Benavides-Cáceres V (1999) Orogenic evolution of the Peruvian Andes: the Andean cycle. In: Skinner BJ (ed) Geology and mineral deposits of the central Andes. Society of Economic Geologists Special Publication 7:61–107

  • Benites D, Torró L, Vallance J, Laurent O, Valverde PE, Kouzmanov K, Chelle-Michou C, Fontboté L (2021) Distribution of indium, germanium, gallium and other minor and trace elements in polymetallic ores from a porphyry system: the Morococha District, Peru. Ore Geol Rev 136:104236

    Article  Google Scholar 

  • Benites D, Torró L, Vallance J, Laurent O, Quispe P, Rosas S, Uzieda MF, Holm-Denoma H, Pianoski LS, Camprubí A, Colás V, Fernández-Baca A, Giraldo L, Chelle-Michou C, Sáez J, Kouzmanov K, Fontboté L (2022) Geology, mineralogy, and cassiterite geochronology of the Ayawilca Zn-Pb-Ag-In-Sn-Cu deposit, Pasco, Peru. Miner Deposita 57:481–507

    Article  Google Scholar 

  • Bente K, Wagner G, Lazar M, Lange U, Doering Th, Rao KV, Zehnder Th, Luck I, Lewerenz K-J (1998) Thin films of semiconducting ZnS-CuInS2 alloys, their characterization and use for solar cells. In: Tomlinson RD, Hill AE, Pilkington RD (eds) Ternary and multinary compounds: Proceedings, ICTMC-11, University of Salford, Institute of Physics Conference Series Volume 152, 935–938

  • Bernstein LR (1985) Germanium: geochemistry and mineralogy. Geochim Cosmochim Ac 49:2409–2422

    Article  Google Scholar 

  • Berrospi-Rodríguez R, Fiestas J, Alvarado A, Leach D, Sempere T (2018) Role of Jurassic salt tectonics in the structural shaping of MVT Pb-Zn deposits and hydrocarbon traps in Peru, and implications for exploration. Abstracts of the SEG Conference, Colorado, #SP2.06

  • Bonnet J, Mosser-Ruck R, Caumon MC, Rouer O, Andre-Mayer AS, Cauzid J, Peiffert C (2016) Trace element distribution (Cu, Ga, Ge, Cd, and Fe) in sphalerite from the Tennessee MVT deposits, USA, by combined EMPA, LA-ICP-MS, Raman spectroscopy, and crystallography. Can Mineral 54:1261–1284

    Article  Google Scholar 

  • Boussingault JB (1830) Analyse de la blende noire de Marmato, province de Popayán. Ann Chim Phys 42:312–316

    Google Scholar 

  • Bradbury JC (1961) Mineralogy and the question of zoning, Northwestern Illinois zinc-lead district. Econ Geol 56:132–148

    Article  Google Scholar 

  • Bradley DC, Leach DL (2003) Tectonic controls of Mississippi Valley-type lead-zinc mineralization in orogenic forelands. Miner Deposita 38:652–667

    Article  Google Scholar 

  • Capdevila R, Mégard F, Paredes J, Vidal P (1977) Le batholite de San Ramón, Cordillére Orientale du Pérou central. Geol Rundsch 66:434–446

    Article  Google Scholar 

  • Carlotto V, Quispe J, Acosta H, Rodríguez R, Romero D, Cerpa L, Mamani M, Díaz-Martínez E, Navarro P, Jaimes F (2009) Dominios geotectónicos y metalogénesis del Perú. Boletín de la Sociedad Geológica del Perú 103:1–89

    Google Scholar 

  • Carrillo E, Barragán R, Hurtado C, Calderón Y, Martín G, Marino E, Sarmiento L, Rivera A, Fontboté L, Rosas S (2022) Sedimentary evolution of an Upper Triassic salt giant and a synchronous carbonate unit between the Peruvian Andean Cordillera and the Brazilian Amazonian foreland. AAPG Bull 107, in press. https://doi.org/10.1306/08072221104

  • Cave B, Lilly R, Hong W (2020) The effect of co-crystallising sulphides and precipitation mechanisms on sphalerite. Geochemistry: a case study from the Hilton Zn-Pb (Ag) deposit, Australia. Minerals 10:797

    Article  Google Scholar 

  • Chew DM, Schaltegger U, Kosler J, Whitehouse MJ, Gutjahr M, Spikings RA, Mišković A (2007) U-Pb geochronologic evidence for the evolution of the Gondwanan margin of the north-central Andes. Geol Soc Am Bull 119:697–711

    Article  Google Scholar 

  • Chew DM, Pedemonte G, Corbett E (2016) Proto-Andean evolution of the Eastern Cordillera of Peru. Gondwana Res 35:59–78

    Article  Google Scholar 

  • Chiaradia M, Fontboté L (2003) Separate lead isotope analyses of leachate and residue rock fractions: implications for metal source tracing in ore deposit studies. Miner Deposita 38:185–195

    Article  Google Scholar 

  • Chirico R, Mondillo N, Boni M, Joachimski MM, Ambrosino M, Buret Y, Mormone A, Beteta Leigh LEN, Huaman Flores W, Balassone G (2022) Genesis of the Florida Canyon nonsulfide Zn ores (Northern Peru): new insights into the supergene mineralizing events of the Bongará District. Econ Geol 117:1339–1366

    Article  Google Scholar 

  • Çiftçi E (2009) Mercurian sphalerite from Akoluk deposit (Ordu, NE Turkey): Hg as a cathodoluminescence activator. Mineral Mag 73:257–267

    Article  Google Scholar 

  • Ciobanu CL, Cook NJ, Utsunomiya S, Pring A, Green L (2011) Focussed ion beam—transmission electron microscopy applications in ore mineralogy: bridging micro- and nanoscale observations. Ore Geol Rev 42:6–31

    Article  Google Scholar 

  • Cook NJ, Ciobanu CL, Pring A, Skinner W, Shimizu M, Danyushevsky L, Saini-Eidukat B, Melcher F (2009) Trace and minor elements in sphalerite: a LA-ICPMS study. Geochim Cosmochim Ac 73:4761–4791

    Article  Google Scholar 

  • Cook NJ, Etschmann B, Ciobanu CL, Geraki K, Howard DL, Williams T, Rae N, Pring A, Chen G, Johannessen B, Brugger J (2015a) Distribution and substitution mechanism of Ge in a Ge-(Fe)-bearing sphalerite. Minerals 5:117–132

    Article  Google Scholar 

  • Cook NJ, Etschmann B, Ciobanu CL, Howard D, Williams T, Rae N, Pring A, Geraki K, Chen GR, Brugger J (2015b) Synchrotron XANES study of a Ge-(Fe)-bearing sphalerite. Minerals 5:117–132

    Article  Google Scholar 

  • Craig JR, Vaughan DJ (1994) Ore microscopy and ore petrography. Wiley, New York

    Google Scholar 

  • Dana ES (1892) System of mineralogy. Wiley, New York

    Google Scholar 

  • Dávila D, Febres O, Fontboté L, Oldham L (2000) Exploración y geología del yacimiento San Vicente. In: Yacimientos minerales peruanos. Instituto Ingenieros de Minas del Perú, 1, 305–328

  • Dávila D, Huyhua G, Flores C (2014) Estilo y geometría de mineralización MVT en la mina San Vicente. Congreso Geológico Peruano, Resúmenes Extendidos, p 4

  • de Oliveira SB, Leach DL, Juliani C, Monteiro LVS, Johnson CA (2019) The Zn–Pb mineralization of Florida Canyon, an evaporite-related Mississippi Valley-type deposit in the Bongará district, Northern Peru. Econ Geol 114:1621–1647

    Article  Google Scholar 

  • de Oliveira SB, Juliani C, Monteiro LVS, Tassinari CCG (2020) Structural control and timing of evaporite-related Mississippi Valley-type Zn–Pb deposits in Pucará Group, Northern Central Peru. J S Am Earth Sci 103:102736

    Article  Google Scholar 

  • de Oliveira SB, Johnson CA, Juliani C, Monteiro LVS, Leach DL, Caran MGN (2021) Geology and genesis of the Shalipayco evaporite-related Mississippi Valley-type Zn–Pb deposit, Central Peru: 3D geological modeling and C-O–S–Sr isotope constraints. Miner Deposita 56:1543–1563

    Article  Google Scholar 

  • Di Benedetto F, Bernardini GP, Costagliola P, Plant D, Vaughan DJ (2005) Compositional zoning in sphalerite crystals. Am Mineral 90:1384–1392

    Article  Google Scholar 

  • European Commission (2020) Study on the EU’s list of Critical Raw Materials (final report). European Commission, Brussels, pp 1–158

  • Foley N, Jaskula B, Kimball B, Schulte F (2017) Gallium. In: Critical mineral resources of the United States: economic and environmental geology and prospects for future supply, U.S. Geological Survey, Virginia, pp 1–26

  • Fontboté L (2018) Ore deposits of the Central Andes. Elements 14:257–261

    Article  Google Scholar 

  • Fontboté L, Gorzawski H (1990) Genesis of the Mississippi Valley-type Zn-Pb deposit of San Vicente, Central Peru; geologic and isotopic (Sr, O, C, S, Pb) evidence. Econ Geol 85:1402–1437

    Article  Google Scholar 

  • Fontboté L, Gunnesch KA, Baumann A (1990) Metal sources in stratabound ore deposits in the Andes (Andean cycle) - lead isotopic constraints. In: Fontboté L, Amstutz GC, Cardozo M, Cedillo E, Frutos J (eds) Stratabound ore deposits in the Andes. Special Publication 8 of the Society for Geology Applied to Mineral Deposits. Springer, Heidelberg, pp 759–773

    Google Scholar 

  • Fontboté L, Spangenberg J, Oldham L, Dávila D, Febres O (1995) The Mississippi Valley-type zinc-lead mine of San Vicente, Eastern Pucará basin, Peru. Extended Abstracts of the International Field Conference on Carbonate Hosted Lead-Zinc Deposits, St. Louis, pp 83–86

  • Fontboté L (1993) Self-organization fabrics in carbonate-hosted ore deposits: the example of diagenetic crystallization rhythmites (DCRs). In: Fenoll Hach-Ali P, Torres-Ruiz J, Gervilla F (eds) Current research in geology applied to ore deposits. Proceedings of the Second Biennial SGA Meeting, Granada, pp 11–14

  • Frenzel M, Hirsch T, Gutzmer J (2016) Gallium, germanium, indium, and other trace and minor elements in sphalerite as a function of deposit type — a meta-analysis. Ore Geol Rev 76:52–78

    Article  Google Scholar 

  • Gómez-Fernández F, Both RA, Mangas J, Arribas A (2000) Metallogenesis of Zn-Pb carbonate-hosted mineralization in the southeastern region of the Picos de Europa (Central Northern Spain) Province: geologic, fluid inclusion, and stable isotope studies. Econ Geol 95:19–40

    Article  Google Scholar 

  • Guillong M, Hametner K, Reusser E, Wilson SA, Günther D (2005) Preliminary characterisation of new glass reference materials (GSA-1G, GSC-1G, GSD-1G and GSE-1G) by laser ablation-inductively coupled plasma-mass spectrometry using 193 nm, 213 nm and 266 nm wavelengths. Geostand Geoanal Res 29:315–331

    Article  Google Scholar 

  • Guillong M, Wotzlaw JF, Looser N, Laurent O (2020) New analytical and data evaluation protocols to improve the reliability of U-Pb LA-ICP-MS carbonate dating. Geochronology. https://doi.org/10.5194/gchron-2019-20

  • Guillong M, Meier DL, Allan MM, Heinrich CA, Yardley BWD (2008) SILLS: a matlab-based program for the reduction of laser ablation ICP–MS data of homogeneous materials and inclusions. In: Sylvester P (ed) Laser ablation ICP-MS in the Earth sciences: current practices and outstanding issues. Mineralogical Association of Canada Short Course 40:328–333

  • Gunnesch KA, Baumann A, Gunnesch M (1990) Lead isotope variations across the Central Peruvian Andes. Econ Geol 85:1384–1401

    Article  Google Scholar 

  • Hofmann C, Henn U (1985) Green sphalerite from Zaire. J Gemmol 19:416–418

    Article  Google Scholar 

  • Höll R, Kling M, Schroll E (2007) Metallogenesis of germanium - a review. Ore Geol Rev 30:145–180

    Article  Google Scholar 

  • Hulse DE, Malhotra D, Mortimer S (2021) NI 43–101 technical report on resources. Florida Canyon zinc project, Amazonas Department, Peru. Gustavson Associates for Solitario Zinc Corp., p 165

  • Jenks WF (1951) Triassic to Tertiary stratigraphy near Cerro de Pasco, Peru. Geol Soc Am Bull 62:202–220

    Article  Google Scholar 

  • Jochum KP, Weis U, Stoll B, Kuzmin D, Yang Q, Raczek I, Jacob DE, Stracke A, Birbaum K, Frick DA, Günther D, Enzweiler J (2011) Determination of reference values for NIST SRM 610–617 glasses following ISO guidelines. Geostand Geoanal Res 35:397–429

    Article  Google Scholar 

  • Johan Z (1988) Indium and germanium in the structure of sphalerite: an example of coupled substitution with copper. Miner Petrol 39:211–229

    Article  Google Scholar 

  • Jolly JL, Heyl AV (1964) Mineral paragenesis and zoning in the Central Kentucky Mineral district. Econ Geol 59:596–624

    Article  Google Scholar 

  • Katsev S, L’Heureux I, Fowler A (2001) Mechanism and duration of banding in Mississippi Valley-type sphalerite. Geophys Res Lett 28:4643–4646

    Article  Google Scholar 

  • Kelka U, Veveakis M, Koehn D, Beaudoin N (2017) Zebra rocks: compaction waves create ore deposits. Sci Rep 7:14260

    Article  Google Scholar 

  • Kelley KD, Leach DL, Johnson CA, Clark JL, Fayek M, Slack JF, Anderson VM, Ayuso RA, Ridley WI (2004) Textural, compositional, and sulfur isotope variations of sulfide minerals in the Red Dog Zn-Pb-Ag deposits, Brooks Range, Alaska: implications for ore formation. Econ Geol 99:1509–1532

    Article  Google Scholar 

  • Knorsch M, Nadoll P, Klemd R (2020) Trace elements and textures of hydrothermal sphalerite and pyrite in Upper Permian (Zechstein) carbonates of the North German Basin. J Geochem Explor 209:106416

    Article  Google Scholar 

  • Kontak DJ, Clark AH, Farrar E, Strong DF (1985) The rift associated Permo-Triassic magmatism of the Eastern Cordillera: a precursor of the Andean orogeny. In: Atherton WS, Pitcher MP, Cobbing EJ, Beckinsale RD (eds) Magmatism at a plate edge. The Peruvian Andes. Wiley, New York, pp 36–44

    Chapter  Google Scholar 

  • Lancelot JR, Laubacher G, Marocco R, Renaud U (1978) U/Pb radiochronology of two granitic plutons from the Eastern Cordillera (Peru) - extent of Permian magmatic activity and consequences. Geol Rundsch 67:236–243

    Article  Google Scholar 

  • Leach DL, Sangster DF, Kelley KD, Large RR, Garven G, Allen CR, Gutzmer J, Walters S (2005) Sediment-hosted lead-zinc deposits: a global perspective. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (eds) One hundredth anniversary volume. Society of Economic Geologists, Littleton, pp 561–607

    Google Scholar 

  • Leach DL, Taylor RD, Fey DL, Diehl SF, Saltus RW (2010) A deposit model for Mississippi Valley-type lead-zinc ores. In: Chapter A of mineral deposit models for resource assessment. U.S Geological Survey Scientific Investigations Report 2010–5070–A. https://doi.org/10.3133/sir20105070A

  • Li M, Barnes HL (2019) Orbitally forced sphalerite growth in the Upper Mississippi Valley district. Geochem Perspect Lett 12:18–22

    Article  Google Scholar 

  • Liu W, Mei Y, Etschmann B, Glenn M, MacRae C, Spinks SC, Ryan CG, Brugger J, Paterson DJ (2022) Germanium speciation in experimental and natural sphalerite: implications for critical metal enrichment in hydrothermal Zn-Pb ores. Geochim Cosmochim Ac. https://doi.org/10.1016/j.gca.2022.11.031. (in Press)

    Article  Google Scholar 

  • Loughman DL, Hallam A (1982) A facies analysis of the Pucará Group (Norian to Toarcian carbonates, organic-rich shale and phosphate) of Central and Northern Peru. Sediment Geol 32:161–194

    Article  Google Scholar 

  • Luo K, Cugerone A, Zhou MF, Zhou JX, Sun GT, Xu J, He KJ, Lu MD (2022) Germanium enrichment in sphalerite with acicular and euhedral textures: an example from the Zhulingou carbonate-hosted Zn(-Ge) deposit, South China. Miner Deposita 57:1343–1365

    Article  Google Scholar 

  • McLaughlin DH (1924) Geology and physiography of the Peruvian Cordillera, Departments of Junin and Lima. Geol Soc Am Bull 35:591–632

    Article  Google Scholar 

  • Mégard F (1978) Etude géologique des Andes du Pérou Central, contribution à l’étude géologique des Andes. Office de la Recherche Scientifique et Technique. Institut français d’études andines, Paris, p 310

    Book  Google Scholar 

  • Melcher F, Buchholz P (2014) Germanium. In: Gunn G (ed) Critical metals handbook. Wiley, Chichester, pp 177–203

    Google Scholar 

  • Merino E, Canals A (2011) Self-accelerating dolomite-for-calcite replacement: self-organized dynamics of burial dolomitization and associated mineralization. Am J Sci 311:573–607

    Article  Google Scholar 

  • Möller P, Dulski P (1996) Germanium and gallium distribution in sphalerite: a key to the genesis of sediment-hosted sulphide mineralizations. Z Geol Wiss 24:527–538

    Google Scholar 

  • Mondillo N, Arfè G, Boni M, Balassone G, Boyce A, Joachimski M, Kang JS, Villa IM (2018a) The Cristal Zinc prospect (Amazonas region, Northern Peru). Part I: new insights on the sulfide mineralization in the Bongará province. Ore Geol Rev 94:261–276

    Article  Google Scholar 

  • Mondillo N, Arfè G, Herrington R, Boni M, Wilkinson C, Mormone A (2018b) Germanium enrichment in supergene settings: evidence from the Cristal nonsulfide Zn prospect, Bongará district, Northern Peru. Miner Deposita 53:155–169

    Article  Google Scholar 

  • Moritz R, Fontboté L, Spangenberg J, Rosas S, Sharp Z, Fontignie D (1996) Sr, C and O isotope systematics in the Pucará basin, Central Peru. Miner Deposita 31:147–162

    Article  Google Scholar 

  • Moskalyk RR (2003) Gallium: the backbone of the electronic induestry. Miner Eng 16:921–929

    Article  Google Scholar 

  • Muñoz C, Farfán C, López G, Rosas S (2000) Vulcanismo asociado a los carbonatos del Grupo Pucará (Triásico Superior – Liásico) en el área de Shalipayco, Junín – Perú Central. Resúmenes X Congreso Peruano de Geología, Sociedad Geológica del Perú, Lima, Publicación Especial 2:42

  • Noble DC, Silberman ML, Mégard F, Bowman HP (1978) Comendite (peralkaline rhyolite) and basalt in the Mitu Group, Peru: evidence for Permian-Triassic lithospheric extension in the Central Andes. J Res US Geol Surv 6:453–457

    Google Scholar 

  • Oldham L, Dávila D, Flores W, Mamani W, Minaya J, Cano P (2017) Reporte annual de exploraciones. Proyecto Shalipayco. Propietary Report

  • Ostendorf J, Henjes-Kunst F, Mondillo N, Boni M, Schneider J, Gutzmer J (2015) Formation of Mississippi Valley-type deposits linked to hydrocarbon generation in extensional tectonic settings: evidence from the Jabali Zn-Pb-(Ag) deposit (Yemen). Geology 43:1055–1058

    Google Scholar 

  • Ostendorf J, Henjes-Kunst F, Schneider J, Melcher F, Gutzmer J (2017) Genesis of the carbonate-hosted Tres Marias Zn-Pb-(Ge) deposit, Mexico: constraints from Rb-Sr sphalerite geochronology and Pb isotopes. Econ Geol 112:1075–1087

    Article  Google Scholar 

  • Palache C, Berman H, Frondel C (1944) The system of mineralogy of James Dwight Dana and Edward Salisbury Dana Yale University 1837-1892, volume I: elements, sulfides, sulfosalts, oxides. Wiley, New York

    Google Scholar 

  • Paradis S (2015) Indium, germanium and gallium in volcanic- and sediment-hosted base-metal sulphide deposits. In: Simandl GJ, Neetz M (eds) Symposium on Strategic and Critical Materials Proceedings. British Columbia. British Columbia Geological Survey Paper, Victoria, 2015-3:23–29

  • Paton C, Hellstrom J, Paul B, Woodhead J, Hergt J (2011) Iolite: freeware for the visualisation and processing of mass spectrometric data. J Anal at Spectrom 26:2508–2518

    Article  Google Scholar 

  • Pósfai M, Dódony I, Soós M (1988) Stacking disorder in the ZnS from Gyöngyösoroszi, Hungary. Neues Jb Miner Monat 10:438–445

    Google Scholar 

  • Rager H, Amthauer G, Bernroider M, Schürmann K (1996) Colour, crystal chemistry, and mineral association of a green sphalerite from Steinperf, Dill syncline, FRG. Eur J Mineral 8:1191–1198

    Article  Google Scholar 

  • Ramdohr P (1980) The ore minerals and their intergrowths. Pergamon Press, Oxford

    Google Scholar 

  • Ramírez J, Torró L, Quispe P, Benites D, Vallance J, Rosas S, Guzmán L, Fernández-Baca A, Spangenberg JE, Vennemann T, Chiaradia M, Kouzmanov K, Fontboté L (2022) Isotopic compositions of sulfides (S) and anhydrite (S, O, Sr) from the Ayawilca polymetallic deposit, Pasco, Peru. In: Christie AB (ed) Proceedings of the 16th SGA Biennial Meeting 1:336–339

  • Ritterbush KA, Rosas S, Corsetti FA, Bottjer DJ, West AJ (2015) Andean sponges reveal long-term benthic ecosystem shifts following the end-Triassic mass extinction. Palaeogeogr Palaeocl 420:193–209

    Article  Google Scholar 

  • Robson D, Carlsson J, Altman K, Theben S (2017) NI 43–101 Technical report on the preliminary economic assessment of the Shalipayco project, Junín Region, Peru. RPA, Toronto, p 194

  • Roedder E, Dwornik EJ (1968) Sphalerite color banding. Lack of correlation with iron content, Pine Point, Northwest Territories, Canada. Am Mineral 53:1523–1529

    Google Scholar 

  • Rosas S, Fontboté L, Tankard A (2007) Tectonic evolution and paleogeography of the Mesozoic Pucará basin, Central Peru. J S A Earth Sci 24:1–24

    Article  Google Scholar 

  • Rosas S, Fontboté L (1995) Evolución sedimentológica del Grupo Pucará (Triásico Superior – Jurásico Inferior) en un perfil SW-NE en el Centro del Perú. Volumen Jubilar Alberto Benavides, Sociedad Geológica del Perú, Lima, p 279–309

  • Rosas S (2016) Profundización sedimentaria solo en la parte de la cuenca Pucará (Perú Central) durante el Hetangiano Sinemuriano. Resúmenes del XVIII Congreso Peruano de Geología, Sociedad Geológica del Perú, Lima, p 1–4

  • Saini-Eidukat B, Melcher F, Lodziak J (2009) Zinc-germanium ores of the Tres Marias mine, Chihuahua, Mexico. Miner Deposita 44:363–370

    Article  Google Scholar 

  • Saintilan NJ, Spangenberg JE, Chiaradia M, Chelle-Michou C, Stephens MB, Fontboté L (2019) Petroleum as source and carrier of metals in epigenetic sediment-hosted mineralization. Sci Rep 9:1–8

    Article  Google Scholar 

  • Saintilan NJ, Sproson AD, Selby D, Rottier B, Casanova V, Creaser RA, Kouzmanov K, Fontboté L, Piecha M, Gereke M, Zambito JJ IV (2021) Osmium isotopic constraints on sulphide formation in the epithermal environment of magmatic-hydrothermal mineral deposits. Chem Geol 564:120053

    Article  Google Scholar 

  • Sanabria R, García-Álvarez JR (2005) Les sphalérites d’Aliva, Picos de Europa (Espagne). Le Règne Minéral 63:6–27

    Google Scholar 

  • Sangster DF (1995) Mississippi Valley-type lead-zinc. In: Eckstrand OR, Sinclair WD, Thorpe RI (eds) Geology of Canadian mineral deposit types. Geological Survey of Canada, Geology of Canada 8:253–261

  • Sapalski C, Gómez F (1992) Estudio de la esfalerita de la mina de Ávila, Santander. Boletín del Instituto Gemológico Español 34:28–39

    Google Scholar 

  • Schaltegger U, Guex J, Bartolini A, Schoene B, Ovtcharova M (2008) Precise U-Pb age constraints for end-Triassic mass extinction, its correlation to volcanism and Hettangian post-extinction recovery. Earth Planet Sc Lett 267:266–275

    Article  Google Scholar 

  • Schutfort EG (2001) The genesis of the San Vicente lead-zinc rhythmites deposit, Peru: a petrologic, geochemical, and sulfur isotope study. Dissertation, Oregon State University

  • Scott SD, Barnes HL (1972) Sphalerite-wurtzite equilibria and stoichiometry. Geochim Cosmochim Ac 36:1275–1295

    Article  Google Scholar 

  • Sempere TPA, Cotrina J (2018) An overlooked giant salt basin in Peru. Proceedings of the 9th INGEPET, Lima, paper GEO-EX-TS-10-N, p 18

  • Shanks III WCP, Kimball BE, Tolcin AC, Guberman DE (2017) Germanium and indium. In: Schulz KJ, DeYoung JH, Seal II RR, Bradley DC (eds) Critical mineral resources of the United States—economic and environmental geology and prospects for future supply: US Geological Survey Professional Paper, 1802 I1–I27

  • SIMSA (2021) Companía Minera San Ignacio de Morococha S.A.A.: Memoria Annual 2021, Lima. https://www.simsa.com.pe/assets/pdf/Memoria_Anual_2021.pdf. Accessed 30 May 2022

  • Slack GA, Ham FS, Chrenko RM (1966) Optical absorption of tetrahedral Fe2+ (3d6) in cubic ZnS, CdTe, and MgAl2O4. Phys Rev 152:376–402

    Article  Google Scholar 

  • Slack GA, Roberts S, Ham FS (1967) Far-infrared optical absorption of Fe2+ in ZnS. Phys Rev 155:170–177

    Article  Google Scholar 

  • Sokol EV, Kokh SN, Seryotkin YV, Deviatiiarova AS, Goryainov SV, Sharygin VV, Khoury HN, Karmanov NS, Danilovsky VA, Artemyev DA (2020) Ultrahigh-temperature sphalerite from Zn-Cd-Se-Rich combustion metamorphic marbles, Daba Complex, Central Jordan: paragenesis, chemistry, and structure. Minerals 10:822

    Article  Google Scholar 

  • Spangenberg JE, Macko SA (1998) Organic geochemistry of the San Vicente zinc-lead district, eastern Pucará Basin, Peru. Chem Geol 146:1–23

    Article  Google Scholar 

  • Spangenberg JE, Fontboté L, Sharp ZD, Hunziker J (1996) Carbon and oxygen isotope study of hydrothermal carbonates in the zinc-lead deposits of the San Vicente district, Central Peru: a quantitative modeling on mixing processes and CO2 degassing. Chem Geol 133:289–315

    Article  Google Scholar 

  • Spangenberg JE, Fontboté L, Macko SA (1999) An evaluation of the inorganic and organic geochemistry of the San Vicente Mississippi Valley-type zinc-lead district, Central Peru; implications for ore fluid composition, mixing processes, and sulfate reduction. Econ Geol 94:1067–1092

    Article  Google Scholar 

  • Spangenberg JE (1995) Geochemical (elemental and isotopic) constraints on the genesis of the Mississippi Valley-type zinc-lead deposit of San Vicente, Central Peru. Dissertation, Université de Genève

  • Spikings R, Reitsma MJ, Boekhout F, Mišković A, Ulianov A, Chiaradia M, Gerdes A, Schaltegger U (2016) Characterisation of Triassic rifting in Peru and implications for the early disassembly of western Pangaea. Gondwana Res 35:124–143

    Article  Google Scholar 

  • Šrot V, Rečnik A, Scheu C, Šturm S, Mirtič B (2003) Stacking faults and twin boundaries in sphalerite crystals from the Trepča mines in Kosovo. Am Mineral 88:1809–1816

    Article  Google Scholar 

  • Stipetich S, Vallance J, Torró L, Rosas S, Benites D, Valverde P, Zorrilla A, Valencia E, Zárate J, Díaz R, Huamantalla J, Spangenberg JE, Vennemann T, Kouzmanov K, Chiaradia M, Fontboté L (2022) Role of massive anhydrite bodies in the Cordilleran-type polymetallic mineralization of Morococha district, Peru: 3D geological modeling and Sr-S-O isotope constraints. In: Christie AB (ed) Proceedings of the 16th SGA Biennial Meeting 1:372–375

  • Szekely TS, Grose LT (1972) Stratigraphy of the carbonate, black shale, and phosphate of the Pucará Group (Upper Triassic-Lower Jurassic), Central Andes, Peru. Geol Soc Am Bull 83:407–428

    Article  Google Scholar 

  • Ujaczki E, Courtney R, Cusack P, Krishna Chinnam R, Clifford S, Curtin T, O’Donoghue L (2019) Recovery of gallium from bauxite residue using combined oxalic acid leaching with adsorption onto zeolite HY. J Sustain Metall 5:262–274

    Article  Google Scholar 

  • Wei C, Ye L, Hu Y, Danyushevskiy L, Li Z, Huang Z (2019) Distribution and occurrence of Ge and related trace elements in sphalerite from the Lehong carbonate-hosted Zn-Pb deposit, Northeastern Yunnan, China: insights from SEM and LA-ICP-MS studies. Ore Geol Rev 115:103175

    Article  Google Scholar 

  • Wei C, Ye L, Hu Y, Huang Z, Danyushevsky L, Wang H (2021) LA-ICP-MS analyses of trace elements in base metal sulfides from carbonate-hosted Zn-Pb deposits, South China: a case study of the Maoping deposit. Ore Geol Rev 130:103945

    Article  Google Scholar 

  • Wilkinson JJ (2014) Sediment-hosted zinc-lead mineralization. In: Holland H, Turekian K (eds) Treatise on Geochemistry 13:219–249

  • Wilson SA, Ridley WI, Koenig AE (2002) Development of sulfide calibration standards for the laser ablation inductively-coupled plasma mass spectrometry technique. J Anal Atom Spectrom 17:406–409

    Article  Google Scholar 

  • Wood GD, Groves JR, Wahlman GP, Brenckle PL, Alemán AM (2002) The paleogeographic and biostratigraphic significance of fusulinacean and smaller foraminifers, and palynomorphs from the Copacabana Formation (Pennsylvanian-Permian), Madre de Dios Basin, Peru. In: Hills LV, Henderson CM, Bamber EW (eds) Carboniferous and Permian of the World. Canadian Society of Petroleum Geologist, Memoirs 19:630–664

  • Xu J, Ciobanu CL, Cook NJ, Slattery A, Li X, Kontonikas-Charos A (2022) Phase relationships in the system ZnS-CuInS2: insights from a nanoscale study of indium-bearing sphalerite. Am Mineral. https://doi.org/10.2138/am-2020-7488

    Article  Google Scholar 

  • Ye L, Cook NJ, Ciobanu CL, Yuping L, Qian Z, Tiegeng L, Wei G, Yulong Y, Danyushevskiy L (2011) Trace and minor elements in sphalerite from base metal deposits in South China: a LA-ICPMS study. Ore Geol Rev 39:188–217

    Article  Google Scholar 

  • Ye L, Li Z, Hu Y, Huang Z, Zhou J, Fan H, Danyushevsky LV (2016) Trace elements in sulfide from the Tianbaoshan Pb-Zn deposit, Sichuan province, China: a LA-ICPMS study. Acta Petrol Sin 32:3377–3393

    Google Scholar 

  • Yuan B, Zhang C, Yu H, Yang Y, Zhao Y, Zhu C, Ding Q, Zhou Y, Yang J, Xu Y (2018) Element enrichment characteristics: insights from element geochemistry of sphalerite in Daliangzi Pb-Zn deposit, Sichuan, Southwest China. J Geochem Explor 186:187–201

    Article  Google Scholar 

Download references

Acknowledgements

We want to thank the staff of SIMSA-Unidad Minera San Vicente for the help and hospitality during sampling tasks and the Minera Nexa Resources for providing samples from the Shalipayco deposit. We appreciate the technical support by Xavier Llovet (CCiT-UB) during the acquisition of EMPA data and by Pete Tollan (ETH) during the acquisition of LA-ICP-MS data. Finally, we also would like to thank Alejandro Vargas (BIZALAB.SAC) for the SEM analyses. We are grateful to Frank Melcher, Associate Editor Hartwig Frimmel, and Editor-in-Chief Bernd Lehmann for their constructive comments which significantly improved the manuscript.

Funding

This study was economically supported by the Peruvian CONCYTEC-FONDECYT-World Bank project 107–2018-FONDECYT-BM-IADT-AV managed through the PROCIENCIA agency, and logistically suported by the project 2021 SGR 00239 of the Agència de Gestió d'Ajuts Universitaris i de Recerca de Catalunya.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisard Torró.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Editorial handling: B. Lehmann

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 8736 KB)

Supplementary file2 (XLSX 643 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torró, L., Millán-Nuñez, A.J., Benites, D. et al. Germanium- and gallium-rich sphalerite in Mississippi Valley–type deposits: the San Vicente district and the Shalipayco deposit, Peru. Miner Deposita 58, 853–880 (2023). https://doi.org/10.1007/s00126-023-01160-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-023-01160-4

Keywords

Navigation