Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter January 24, 2023

Energy production in one-qubit quantum Agrawal machines

  • Julio J. Fernández ORCID logo EMAIL logo

Abstract

We obtain the power and Ω-function of one-qubit Agrawal quantum heat engines solving the Lindbland equation and using the tools of Finite Time Thermodynamics. We prove that these two thermodynamic functions have their maximum values for efficiencies different to zero and the Carnot efficiency. Finally, analyzing the high temperature limit of AQHEs we discover the range of temperatures for which the quantum behaviour is valid.


Corresponding author: J. J. Fernández, Fundamental Physics, UNED, Madrid, Spain, E-mail:

Funding source: Ministerio de Ciencia e Innovación

Award Identifier / Grant number: PID-2019-105182GB-I00

Acknowledgement

The author thanks to the UNED for providing its computational facilities to carry out the work.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The author acknowledges to the Ministerio de Ciencia e Innovación for financial support through the research project PID-2019-105182GB-I00.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] J. P. Pekola, “Towards quantum thermodynamics in electronic circuits,” Nat. Phys., vol. 11, pp. 118–123, 2015. https://doi.org/10.1038/nphys3169.Search in Google Scholar

[2] F. Binder, S. Vinjanampathy, and J. Goold, “Enhancing the charging power of quantum batteries,” Phys. Rev. E, vol. 91, p. 032119, 2015. https://doi.org/10.1103/physreve.91.032119.Search in Google Scholar

[3] S. Su, Y. Ma, J. Chen, and C. Sun, “The heat and work of quantum thermodynamic processes with quantum coherence,” Chin. Phys. B, vol. 27, p. 060502, 2018. https://doi.org/10.1088/1674-1056/27/6/060502.Search in Google Scholar

[4] H. T. Quan, Y.-x. Liu, C. P. Sun, and F. Nori, “Quantum thermodynamic cycles and quantum heat engines,” Phys. Rev. E, vol. 76, p. 031105, 2007. https://doi.org/10.1103/physreve.76.031105.Search in Google Scholar PubMed

[5] H. T. Quan, “Quantum thermodynamic cycles and quantum heat engines. II,” Phys. Rev. E, vol. 79, p. 041129, 2009. https://doi.org/10.1103/physreve.79.041129.Search in Google Scholar

[6] M. O. Scully, M. S. Zubairy, G. S. Agarwal, and H. Walther, “Extracting work from a single heat bath via vanishing quantum coherence,” Science, vol. 299, pp. 862–864, 2003. https://doi.org/10.1126/science.1078955.Search in Google Scholar PubMed

[7] M. O. Scully, K. R. Chapin, K. E. Dorfman, M. B. Kim, and A. Svidzinsky, “Quantum heat engine power can be increased by noise-induced coherence,” Proc. Natl. Acad. Sci. U. S. A., vol. 108, pp. 15097–15100, 2011. https://doi.org/10.1073/pnas.1110234108.Search in Google Scholar PubMed PubMed Central

[8] K. E. Dorfman, D. V. Voronine, S. Mukamel, and M. O. Scully, “Photosynthetic reaction center as a quantum heat engine,” Proc. Natl. Acad. Sci. U. S. A., vol. 110, pp. 2746–2751, 2013. https://doi.org/10.1073/pnas.1212666110.Search in Google Scholar PubMed PubMed Central

[9] W. Niedenzu, V. Mukherjee, A. Ghosh, A. G. Kofman, and G. Kurizki, “Quantum engine efficiency bound beyond the second law of thermodynamics,” Nat. Commun., vol. 9, p. 165, 2018. https://doi.org/10.1038/s41467-017-01991-6.Search in Google Scholar PubMed PubMed Central

[10] X. L. Huang, T. Wang, and X. X. Yi, “Effects of reservoir squeezing on quantum systems and work extraction,” Phys. Rev. E, vol. 86, p. 051105, 2012. https://doi.org/10.1103/physreve.86.051105.Search in Google Scholar

[11] M. Polettini, G. Verley, and M. Esposito, “Efficiency statistics at all times: Carnot limit at finite power,” Phys. Rev. Lett., vol. 114, p. 050601, 2015. https://doi.org/10.1103/physrevlett.114.050601.Search in Google Scholar

[12] J. Klaers, S. Faelt, A. Imamoglu, and E. Togan, “Squeezed thermal reservoirs as a resource for a nanomechanical engine beyond the Carnot limit,” Phys. Rev. X, vol. 7, p. 031044, 2017. https://doi.org/10.1103/physrevx.7.031044.Search in Google Scholar

[13] R. T. Paéz-Hernández, J. C. Chimal-Eguía, N. Sánchez-Salas, and D. Ladino-Luna, “General properties for an agrawal thermal engine,” J. Non-Equilibrium Thermodyn., vol. 43, pp. 131–139, 2018. https://doi.org/10.1515/jnet-2017-0051.Search in Google Scholar

[14] P. Chambadal, Les Centrales Nucléaires, Paris, France, Armand Colin, 1957, pp. 41–48.Search in Google Scholar

[15] F. L. Curzon and B. Ahlborn, “Efficiency of a Carnot engine at maximum power output,” Am. J. Phys., vol. 43, pp. 22–24, 1975. https://doi.org/10.1119/1.10023.Search in Google Scholar

[16] A. De Vos, Endoreversible Thermodynamics of Solar Energy Conversion, Oxford, Oxford University Press, 1982.Search in Google Scholar

[17] F. Angulo-Brown, “An ecological optimization criterion for finite-time heat engines,” J. Appl. Phys., vol. 69, pp. 7465–7469, 1991. https://doi.org/10.1063/1.347562.Search in Google Scholar

[18] S. Velasco, J. M. M. Rocco, A. Medina, and A. Calvo-Hernández, “New performance bounds for a finite-time Carnot refrigerator,” Phys. Rev. Lett., vol. 78, pp. 3241–3244, 1997. https://doi.org/10.1103/physrevlett.78.3241.Search in Google Scholar

[19] L. Chen, C. Wu, and F. Sun, “Finite time thermodynamic optimization or entropy generation minimization of energy systems,” J. Non-Equilibrium Thermodyn., vol. 24, no. 4, p. 327, 1999. https://doi.org/10.1515/jnet.1999.020.Search in Google Scholar

[20] A. Bejan, “Entropy generation minimization: the new thermodynamics of finite size and finite time processes,” J. Appl. Phys., vol. 79, pp. 1191–1218, 1997. https://doi.org/10.1063/1.362674.Search in Google Scholar

[21] A. Calvo-Hernández, J. M. M. Rocco, S. Velasco, and A. Medina, “Irreversible Carnot cycle under per-time unit efficiency optimization,” Appl. Phys. Lett., vol. 73, pp. 853–855, 1998. https://doi.org/10.1063/1.122023.Search in Google Scholar

[22] F. Angulo-Brown, L. A. Arias-Hernández, and R. Páez Hernández, “A general property of non-endoreversible thermal cycles,” J. Phys. D: Appl. Phys., vol. 32, pp. 1415–1420, 1999. https://doi.org/10.1088/0022-3727/32/12/319.Search in Google Scholar

[23] D. Jou, J. J. Casas-Vazquez, and G. Lebon, Extended Irreversible Thermodynamics, Berlin, Germany, Springer Verlag, 2000.10.1007/978-3-642-56565-6Search in Google Scholar

[24] S. Velasco, J. M. M. . Roco, A. Medina, J. A. White, and A. Calvo-Hernandez, “Optimization of heat engines including the saving of natural resources and the reduction of thermal pollution,” J. Phys. D: Appl. Phys., vol. 33, pp. 355–359, 2000. https://doi.org/10.1088/0022-3727/33/4/307.Search in Google Scholar

[25] A. C. Hernández, A. Medina, J. M. M. Roco, J. A. White, and S. Velasco, “Unified optimization criterion for energy converters,” Phys. Rev. E, vol. 63, no. 3, p. 037102, 2001. https://doi.org/10.1103/physreve.63.037102.Search in Google Scholar PubMed

[26] D. Ladino Luna, “Efficiency of a curzov ahlborn engine with dulong and petit heat transfer law,” Rev. Mex. Fis., vol. 48, no. 6, p. 86, 2002.Search in Google Scholar

[27] R. P. F. Angulo-Brown and M. Santillán, “Dynamic robustness and thermodynamic optimization in a non-endoreversible Curzon–Ahlborn engine,” J. Non-Equilibrium Thermodyn., vol. 31, no. 2, p. 173, 2006.10.1515/JNETDY.2006.008Search in Google Scholar

[28] M. Feidt, “Optimal use of energy systems and processes,” Int. J. Exergy, vol. 5, nos. 5/6, p. 500, 2008. https://doi.org/10.1504/ijex.2008.020823.Search in Google Scholar

[29] M. A. Barranco, N. Sánchez Salas, and F. Angulo Brown, “On the optimum operation conditions of and endoreversible heat engine with different heat transfer laws in the thermal couplings,” Rev. Mex. Fis., vol. 54, no. 4, p. 284, 2008.Search in Google Scholar

[30] S. Sieniutycz and S. Jezowsky, Energy Optimization in Process Systems, Oxford, UK, Elsevier, 2009.Search in Google Scholar

[31] M. Feidt, “Thermodynamics applied to reverse cycle machines, a review,” Int. J. Refrig., vol. 33, no. 7, pp. 1327–1342, 2010. https://doi.org/10.1016/j.ijrefrig.2010.07.016.Search in Google Scholar

[32] N. Sánchez-Salas, L. López-Palacios, S. Velasco, and A. Calvo Hernández, “Optimization criteria, bounds, and efficiencies of heat engines,” Phys. Rev. E, vol. 82, p. 051101, 2010. https://doi.org/10.1103/physreve.82.051101.Search in Google Scholar PubMed

[33] B. Andresen, “Current trends in finite-time thermodynamics,” Angew. Chem. Int. Ed. Engl., vol. 50, no. 12, pp. 2690–2704, 2011. https://doi.org/10.1002/anie.201001411.Search in Google Scholar PubMed

[34] S. Sieniutycz and S. Jezowsky, Energy Optimization in Process Systems and Fuel Cells, Oxford, UK, Elsevier, 2013.Search in Google Scholar

[35] J. Gonzalez-Ayala, F. Angulo-Brown, A. Calvo-Hernández, and S. Velasco, “On reversible, endoreversible, and irreversible heat device cycles versus the Carnot cycle: a pedagogical approach to account for losses,” Eur. J. Phys., vol. 37, p. 045103, 2016. https://doi.org/10.1088/0143-0807/37/4/045103.Search in Google Scholar

[36] J. Du, W. Shen, X. S. ZhangSu, and J. Chen, “Quantum-dot heat engines with irreversible heat transfer,” Phys. Rev. Res., vol. 2, p. 013259, 2020. https://doi.org/10.1103/physrevresearch.2.013259.Search in Google Scholar

[37] J. J. Fernández, “Optimization of energy production in two-qubit heat engines using the ecological function,” Quantum Sci. Technol., vol. 7, p. 035002, 2022. https://doi.org/10.1088/2058-9565/ac635a.Search in Google Scholar

[38] J. J. Fernández, “Endoreversible model of thermal to radiative energy converters,” J. Appl. Phys., vol. 123, p. 164501, 2018. https://doi.org/10.1063/1.5018184.Search in Google Scholar

[39] J. J. Fenández, “Theoretical optimization of the working properties of spatial thermoradiative cells using the Carnot efficiency,” J. Appl. Phys., vol. 125, p. 103101, 2019. https://doi.org/10.1063/1.5079295.Search in Google Scholar

[40] J. J. Fernández, “Optimization of one-qubit Novikov heat engines: energy production at maximum power and maximum ecological functions,” 2023.10.1140/epjp/s13360-023-04363-wSearch in Google Scholar

[41] J. D. Barrow, The Constants of Nature, from α to ω: The Numbers That Encode The Deepests Secrets Of Universe, New York, Pantheone, 2002.Search in Google Scholar

[42] D. Segal and A. Nitzan, “Spin-boson thermal rectifier,” Phys. Rev. Lett., vol. 94, p. 034301, 2005. https://doi.org/10.1103/physrevlett.94.034301.Search in Google Scholar PubMed

[43] L. A. Wu, C. X. Xu, and D. Segal, “Coherence and decoherence in quantum absorption refrigerators,” Phys. Rev. E, vol. 80, p. 041103, 2009.Search in Google Scholar

[44] T. Schmield and U. Seifer, “Efficiency at maximum power: an analytically solvable model for stochastic heat engines,” Europhys. Lett., vol. 81, p. 200003, 2007.10.1209/0295-5075/81/20003Search in Google Scholar

[45] P. Hänggi and F. Marchesoni, “Artificial Brownian motors: controlling transport on the nanoscale,” Phys. Rev. Mod. Phys., vol. 81, pp. 387–442, 2009. https://doi.org/10.1103/revmodphys.81.387.Search in Google Scholar

[46] Z.-C. Tu, “Stochastic heat engine with the consideration of inertial effects and shortcuts to adiabaticity,” Phys. Rev. E, vol. 89, p. 052148, 2014. https://doi.org/10.1103/physreve.89.052148.Search in Google Scholar

[47] M. Esposito, K. Linderberg, and C. van den Broeck, “Thermoelectric efficiency at maximum power in a quantum dot,” Europhys. Lett., vol. 85, p. 60010, 2009. https://doi.org/10.1209/0295-5075/85/60010.Search in Google Scholar

[48] M. Esposito, R. Kawai, K. Linderberg, and C. Van den Broeck, “Quantum-dot Carnot engine at maximum power,” Phys. Rev. E, vol. 81, p. 041106, 2010. https://doi.org/10.1103/physreve.81.041106.Search in Google Scholar PubMed

[49] B. De and B. Muralidharan, “Thermoelectric study of dissipative quantum-dot heat engines,” Phys. Rev. B, vol. 94, p. 165416, 2016. https://doi.org/10.1103/physrevb.94.165416.Search in Google Scholar

[50] J. Xu and C. P. Wong, “Low-loss percolative dielectric composite,” Appl. Phys. Lett., vol. 87, p. 082907, 2005. https://doi.org/10.1063/1.2032597.Search in Google Scholar

[51] S. Bilai and R. Ramaswamy, “Quasiperiodically driven maps in the low-dissipation limit,” Phys. Rev. E, vol. 87, p. 034901, 2013. https://doi.org/10.1103/physreve.87.034901.Search in Google Scholar

[52] S. Velasco, J. M. M. Roco, A. Medina, and A. C. Hernández, “Feynman’s ratchet optimization: maximum power and maximum efficiency regimes,” J. Phys. D: Appl. Phys., vol. 34, no. 6, pp. 1000–1006, 2001. https://doi.org/10.1088/0022-3727/34/6/323.Search in Google Scholar

[53] C. Z. Tu, “Efficiency at maximum power of Feynman’s ratchet as a heat engine,” J. Phys. A, vol. 41, p. 312003, 2008. https://doi.org/10.1088/1751-8113/41/31/312003.Search in Google Scholar

[54] M. A. Barranco-Jiménez, A. Ocampo-García, and F. Angulo-Brown, “Thermodynamic analysis of an array of isothermal endoreversible electric engines,” Eur. Phys. J. Plus, vol. 135, p. 153, 2020. https://doi.org/10.1140/epjp/s13360-019-00038-7.Search in Google Scholar

Received: 2022-10-25
Revised: 2022-12-14
Accepted: 2023-01-10
Published Online: 2023-01-24
Published in Print: 2023-07-27

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.1515/jnet-2022-0081/html
Scroll to top button