Skip to main content
Log in

Research on the mechanical and electromagnetic properties of white Portland cement paste containing basalt fiber

  • Original Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

The search for construction materials that contribute to 5G signal transmission is important for the development of modern communication technologies. In this paper, the mechanical properties of white Portland cement (WPC) paste mixed with basalt fiber (BF) were analyzed and its electromagnetic properties were fully investigated. First, the fluidity and strength of WPC pastes with different BF contents were tested. Subsequently, the electromagnetic parameters of WPC paste samples were tested in the frequency band of 3.94 GHz–5.99 GHz, and their electromagnetic transmission properties were calculated. Finally, the mechanism of BF affecting the strength and electromagnetic transmission performance of WPC pastes was profiled using scanning electron microscopy (SEM) and mercury intrusion porosimetry (MIP). The results show that BF can reduce the fluidity of WPC pastes. With the increase of BF doping, the strength of WPC paste rises and then decreases, and reaches the maximum strength when the volume content of BF is 0.6%. With the increase of BF content, the electromagnetic wave reflection rate of WPC paste decreases, but the absorption and transmission rate increases. The bridging effect of BF, etc. improves the strength of the paste. In WPC pastes, with the increase of BF doping, the increase of electromagnetic wave absorption rate is smaller than the decrease of reflection rate, which leads to the improvement of electromagnetic transmission performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4.
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data available on request from the authors. The data that support the findings of this study are available from the corresponding author, [Liu], upon reasonable request.

References

  1. Velay-Lizancos M, Martinez-Lage I, Azenha M, Granja J, Vazquez-Burgo P. Concrete with fine and coarse recycled aggregates: E-modulus evolution, compressive strength and non-destructive testing at early ages. Constr Build Mater. 2018;193:323–31.

    Article  Google Scholar 

  2. Wang Y, Zhang H, Geng Y, Wang Q, Zhang S. Prediction of the elastic modulus and the splitting tensile strength of concrete incorporating both fine and coarse recycled aggregate. Constr Build Mater. 2019;215: 332–346.

    Article  Google Scholar 

  3. L. Guenego, F. Rivet, G. Ferre, A. Walzik, A. Souhayl, A. Karbab, A low-cost IoT-based device to measure exposure to sub-6GHz 5G waves, in: 2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS), 2021, pp. 1–4.

  4. Thomas Basikolo TY, Sakurai M. Electromagnetic Field Exposure Evaluation for 5G in Millimeter Wave Frequency Band. In: 2019 IEEE international symposium on antennas and propagation and USNC-URSI radio science meeting. New York: IEEE; 2019. p. 1523–4.

    Chapter  Google Scholar 

  5. Thors B, Colombi D, Ying Z, Bolin T, Tornevik C. Exposure to RF EMF from array antennas in 5G mobile communication equipment. IEEE Access. 2016;4:7469–78.

    Article  Google Scholar 

  6. Guan H, Liu S, Duan Y, Zhao Y. Investigation of the electromagnetic characteristics of cement based composites filled with EPS. Cem Concr Compos. 2007;29:49–54.

    Article  CAS  Google Scholar 

  7. Xie S, Ji Z, Zhu L, Zhang J, Cao Y, Chen J, Liu R, Wang J. Recent progress in electromagnetic wave absorption building materials. J Build Eng. 2020;27:100963.

    Article  Google Scholar 

  8. Ozturk M, Akgol O, Sevim UK, Karaaslan M, Demirci M, Unal E. Experimental work on mechanical, electromagnetic and microwave shielding effectiveness properties of mortar containing electric arc furnace slag. Constr Build Mater. 2018;165:58–63.

    Article  Google Scholar 

  9. Xu S, Shen Y, Li Q, Liu X. Hybrid effects of polyvinyl alcohol (PVA) and basalt fibers on microwave absorption of cement composites with fly ash. J Am Ceram Soc. 2021;104:6345–63.

    Article  CAS  Google Scholar 

  10. Guo AL, Gao R, Ba HJ. Electromagnetic properties of bearing cement-based materials. Adv Mat Res. 2011;261–263:663–8.

    Google Scholar 

  11. Guan H, Liu S, Duan Y, Cheng J. Cement based electromagnetic shielding and absorbing building materials. Cem Concr Compos. 2006;28:468–74.

    Article  CAS  Google Scholar 

  12. Li J, Cheng G, Huang S, Huang L. Effect of Ti on crystal transition and solid solution characteristics of white Portland cement clinker. Adv Cem Res. 2021;33:304–10.

    Article  Google Scholar 

  13. Veiga KK, Gastaldini ALG. Sulfate attack on a white Portland cement with activated slag. Constr Build Mater. 2012;34:494–503.

    Article  Google Scholar 

  14. Lübeck A, Gastaldini ALG, Barin DS, Siqueira HC. Compressive strength and electrical properties of concrete with white Portland cement and blast-furnace slag. Cem Concr Compos. 2012;34:392–9.

    Article  Google Scholar 

  15. Torkittikul P, Chaipanich A. Investigation of the mechanical and in vitro biological properties of ordinary and white Portland cements. ScienceAsia. 2009;35:358.

    Article  CAS  Google Scholar 

  16. Hosseini P, Abolhasani M, Mirzaei F, Kouhi Anbaran MR, Khaksari Y, Famili H. Influence of two types of nanosilica hydrosols on short-term properties of sustainable white Portland cement mortar. J Mater Civil Eng. 2018. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002152.

    Article  Google Scholar 

  17. Jia S, Richardson IG. Micro- and nano-structural evolutions in white Portland cement/pulverized fuel ash cement pastes due to deionized-water leaching. Cem Concr Res. 2018;103:191–203.

    Article  CAS  Google Scholar 

  18. Stoyanov V, Kostova B, Petkova V, Pelovski Y. Structure of white cement mortars with high content of marble powder. J Therm Anal Calorim. 2012;110:405–12.

    Article  CAS  Google Scholar 

  19. Koppel T, Shishkin A, Haldre H, Toropovs N, Vilcane I, Tint P. Reflection and transmission properties of common construction materials at 2.4 GHz frequency. Energy Procedia. 2017;113:158–65.

    Article  Google Scholar 

  20. Cao J, Chung DDL. Use of fly ash as an admixture for electromagnetic interference shielding. Cem Concr Res. 2004;34:1889–92.

    Article  CAS  Google Scholar 

  21. Ozturk M, Karaaslan M, Akgol O, Sevim UK. Mechanical and electromagnetic performance of cement based composites containing different replacement levels of ground granulated blast furnace slag, fly ash, silica fume and rice husk ash. Cem Concr Res. 2020;136: 106177(1-9).

    Article  CAS  Google Scholar 

  22. Ye HQ, Li Z, Peng Y, Wang CC, Li TY, Zheng YX, Sapelkin A, Adamopoulos G, Hernandez I, Wyatt PB, Gillin WP. Organo-erbium systems for optical amplification at telecommunications wavelengths. Nat Mater. 2014;13:382–6.

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Du Q, Cai C, Lv J, Wu J, Pan T, Zhou J. Experimental investigation on the mechanical properties and microstructure of basalt fiber reinforced engineered cementitious composite. Materials (Basel). 2020;13: 37969 (1-12).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Liu Y, Yu Y, Du H. The influence of two types of functional particles on the electromagnetic properties and mechanical properties of double-layer coated basalt fiber fabrics. Text Res J. 2022;92: 591–604.

    Article  CAS  Google Scholar 

  25. Li Z, Ma J. Experimental study on mechanical properties of the sandwich composite structure reinforced by basalt fiber and nomex honeycomb. Materials (Basel). 2020;13: 1870 (1-17).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Shen Y, Li Q, Xu S, Liu X. Electromagnetic wave absorption of multifunctional cementitious composites incorporating polyvinyl alcohol (PVA) fibers and fly ash: effects of microstructure and hydration. Cem Concr Res. 2021;143: 106389(1-15).

    Article  CAS  Google Scholar 

  27. Wanasinghe D, Aslani F, Ma G. Effect of water to cement ratio, fly ash, and slag on the electromagnetic shielding effectiveness of mortar. Constr Build Mater. 2020;256: 119409(1-14).

    Article  Google Scholar 

  28. Silva FGS, Fiuza Junior RA, da Silva JS, de Brito CMSR, Andrade HMC, Gonçalves JP. Consumption of calcium hydroxide and formation of C-S–H in cement pastes. J Therm Anal Calorim. 2013;116:287–93.

    Article  Google Scholar 

  29. ASTM Committee on Standards, ASTM 1437–20, Standard Test Method for Flow of Hydraulic Cement Mortar, ASTM International, Pennsylvania, 2020.

  30. ASTM C1437. Standard test method for flexural strength of hydraulic-cement mortars. West Conshohocken: American Society for Testing and Materials International; 2008.

    Google Scholar 

  31. ASTM Committee on Standards, ASTM C109M-21, Standard Test Method for Compressive Strength of Hydraulic-Cement Mortar, ASTM International, Pennsylvania, 2021.

  32. Saini P, Aror M. Microwave absorption and EMI shielding behavior of nanocomposites based on intrinsically conducting polymers, graphene and carbon nanotubes.  New polymers for special applications. 2012; 71-112.

    Google Scholar 

  33. Deák T, Czigány T. Chemical composition and mechanical properties of basalt and glass fibers: a comparison. Text Res J. 2009;79:645–51.

    Article  Google Scholar 

  34. Kim M-S, Park S-J. Influence of fiber array direction on mechanical interfacial properties of basalt fiber-reinforced composites. Polym Korea. 2015;39:219–24.

    Article  CAS  Google Scholar 

  35. Li Z, Ma J, Ma H, Xu X. Properties and applications of basalt fiber and its composites. IOP Conf Ser. 2018;186: 012052(1-8).

    Article  Google Scholar 

  36. Kang Y-Q, Cao M-S, Yuan J, Zhang L, Wen B, Fang X-Y. Preparation and microwave absorption properties of basalt fiber/nickel core–shell heterostructures. J Alloys Compd. 2010;495:254–9.

    Article  CAS  Google Scholar 

  37. Prasad R, Mahmoud AE-R, Parashar SKS. Enhancement of electromagnetic shielding and piezoelectric properties of white Portland cement by hydration time. Constr Build Mater. 2019;204:20–7.

    Article  CAS  Google Scholar 

  38. Reid AH, Kimel AV, Kirilyuk A, Gregg JF, Rasing T. Optical excitation of a forbidden magnetic resonance mode in a doped lutetium-iron-garnet film via the inverse Faraday effect. Phys Rev Lett. 2010;105: 107402.

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Baoyi L, Yuping D, Yuefang Z, Shunhua L. Electromagnetic wave absorption properties of cement-based composites filled with porous materials. Mater Des. 2011;32:3017–20.

    Article  Google Scholar 

  40. Chen X-G, Cheng J-P, Lv S-S, Zhang P-P, Liu S-T, Ye Y. Preparation of porous magnetic nanocomposites using corncob powders as template and their applications for electromagnetic wave absorption. Compos Sci Technol. 2012;72:908–14.

    Article  CAS  Google Scholar 

  41. Wang Q, Yi Y, Ma G, Luo H. Hybrid effects of steel fibers, basalt fibers and calcium sulfate on mechanical performance of PVA-ECC containing high-volume fly ash. Cem Concr Compos. 2019;97:357–68.

    Article  CAS  Google Scholar 

  42. Afroz M, Venkatesan S, Patnaikuni I. Effects of hybrid fibers on the development of high volume fly ash cement composite. Constr Build Mater. 2019;215:984–97.

    Article  CAS  Google Scholar 

  43. Ahmad MR, Chen B, Yu J. A comprehensive study of basalt fiber reinforced magnesium phosphate cement incorporating ultrafine fly ash. Compos Part B-Eng. 2019;168:204–17.

    Article  CAS  Google Scholar 

  44. Asprone D, Cadoni E, Iucolano F, Prota A. Analysis of the strain-rate behavior of a basalt fiber reinforced natural hydraulic mortar. Cem Concr Compos. 2014;53:52–8.

    Article  CAS  Google Scholar 

  45. Zeng Q, Li K, Fen-chong T, Dangla P. Pore structure characterization of cement pastes blended with high-volume fly-ash. Cem Concr Res. 2012;42:194–204.

    Article  CAS  Google Scholar 

  46. Kolokolova L, Gustafson A. S., Scattering by inhomogeneous particles: microwave analog experiments and comparison to effective medium theories. J Quant Spectrosc Ra, 2001; 70:611-625.

  47. Zhou H, Wang J, Zhuang J, Liu Q. A covalent route for efficient surface modification of ordered mesoporous carbon as high performance microwave absorbers. Nanoscale. 2013;5:12502–11.

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Wang J, Dong S, Pang SD, Zhou C, Han B. Pore structure characteristics of concrete composites with surface-modified carbon nanotubes. Cem Concr Compos. 2022;128:104453.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support by National Natural Science Foundation of China (52078015); Beijing Natural Science Foundation (8202005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunze Liu.

Ethics declarations

Conflict of interest

The authors state that there is no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Liu, Y., Cheng, Y. et al. Research on the mechanical and electromagnetic properties of white Portland cement paste containing basalt fiber. Archiv.Civ.Mech.Eng 23, 63 (2023). https://doi.org/10.1007/s43452-022-00596-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-022-00596-1

Keywords

Navigation