Skip to main content
Log in

A parking pricing scheme considering parking dynamics

  • Published:
Transportation Aims and scope Submit manuscript

Abstract

Powerful parking management approaches are vital in metropolitan areas where parking resource is limited and congestion is severe. To date, parking pricing is considered as an efficient tool for improving parking management by moderating parking demand. Hence, this paper proposes a parking charging method involving both the parking demand and supply. We aggregate the individual parking behaviors into the parking demand and consider the trade-offs between multiple parking behaviors. Then, a maximization problem is formulated to fulfill the benefits of parking demand as well as stabilizing parking supply. The results of case study indicate that the share of parking patterns has shifted positively, and an increment in the total benefit of respondents (5.00%) is obtained. Considering parking dynamics, the proposed method can serve as an effective and feasible manner to equilibrate spatial and temporal distribution of parking demand thereby alleviating parking pressure. This study also makes a methodological contribution to parking pricing policy design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amer, A., Chow, J.Y.: A downtown on-street parking model with urban truck delivery behavior. Transp. Res. Part a: Policy Pract. 102, 51–67 (2017)

    Google Scholar 

  • Caicedo, F.: Charging parking by the minute: What to expect from this parking pricing policy? Transp. Policy. 19, 63–68 (2012)

    Article  Google Scholar 

  • Change, C.T., Chung, C.K., Sheu, J.B., Zhuang, Z.Y., Chen, H.M.: The optimal dual-pricing policy of mall parking service. Transp. Res. Part a: Policy Pract. 70, 223–243 (2014)

    Google Scholar 

  • Chen, X.Q., Zhang, L., He, X., Xiong, C.F.: Simulation-based pricing optimization for improving network-wide travel time reliability. Transportmetrica a: Trans. Sci. 14, 155–176 (2018)

    Article  Google Scholar 

  • Ding, C., Cao, X.Y.: How does the built environment at residential and work locations affect car ownership? An application of cross-classified multilevel model. J. Trans. Geo. 75, 37–45 (2019)

    Article  Google Scholar 

  • Ding, C., Wang, Y.P., Tang, T.Q., Mishra, S., Liu, C.: Joint analysis of the spatial impacts of built environment on car ownership and travel mode choice. Transp. Res. Part D: Trans. Environ. 60, 28–40 (2018a)

    Article  Google Scholar 

  • Ding, C., Cao, X.Y., Wang, Y.P.: Synergistic effects of the built environment and commuting programs on commute mode choice. Transp. Res. Part a: Policy Pract. 18, 104–118 (2018b)

    Google Scholar 

  • Fosgeraua, M., de Palma, A.: The dynamics of urban traffic congestion and the price of parking. J. Public Econ. 105, 106–115 (2013)

    Article  Google Scholar 

  • Glazer, A., Niskanen, K.: Parking fees and congestion. Reg. Sci. and Urban Econ. 22, 123–132 (1992)

    Article  Google Scholar 

  • Hensher, D.A., King, J.: Parking demand and responsiveness to supply, pricing and location in the Sydney central business district”. Transp. Res. a: Policy Pract. 35, 177–196 (2001)

    Google Scholar 

  • McFadden, D.L.: Conditional logit analysis of qualitative choice behavior. (1972).

  • Migliorea, M., Burgioa, A.L., Giovannaa, M.D.: Parking pricing for a sustainable transport system. Transp. Res. Procedia. 3, 403–412 (2014)

    Article  Google Scholar 

  • Azari, K.A., Arintono, S., Hamid, H., Rahmat, R.A.O.: Modelling demand under parking and cordon pricing policy. Transp. Policy. 25, 1–9 (2013)

    Article  Google Scholar 

  • Nourinejad, M., Roorda, M.J.: Parking enforcement policies for commercial vehicles. Transp. Res. Part a: Policy Pract. (2016). https://doi.org/10.1016/j.tra.2016.04.007

    Article  Google Scholar 

  • Ottosson, D.B., Chen, C., Wang, T.T., Lin, H.: The sensitivity of on-street parking demand in response to price changes: a case study in Seattle. WA. Transp. Policy. 25, 222–232 (2013)

    Article  Google Scholar 

  • Petiot, R.: Parking enforcement and travel demand management. Transp. Policy. 11, 399–411 (2004)

    Article  Google Scholar 

  • Piccioni, C., Valtorta, M., Musso, A.: Investigating effectiveness of on-street parking pricing schemes in urban areas: an empirical study in Rome”. Transp. Policy. 80, 136–147 (2019)

    Article  Google Scholar 

  • Pierce, G., Shoup, D.: Getting the prices right: an evaluation of pricing parking by demand in San Francisco. J. Am. Plan. Assoc. 79, 67–81 (2013)

    Article  Google Scholar 

  • Proost, S., Sen, A.: Urban transport pricing reform with two levels of government: a case study of Brussels. Transp. Policy. 13, 127–139 (2016)

    Article  Google Scholar 

  • Pu, Z., Li, Z., Ash, J., Zhu, W., Wang, Y.: Evaluation of spatial heterogeneity in the sensitivity of on-street parking occupancy to price change. Transp. Res. Part C: Emer. Technol. 77, 67–79 (2017)

    Article  Google Scholar 

  • Qian, Z., Rajagopal, R.: Optimal parking pricing in general networks with provision of occupancy information. Procedia Soc. Behav. Sci. 80, 779–805 (2013)

    Article  Google Scholar 

  • Rao: Pricing research in marketing: the state of the Art. J. Bus. 57, 39–60 (1984)

    Article  Google Scholar 

  • 2018 Beijing Transport Annual Report. Beijing Transport Institute, China, 2018.

  • Schmidt, P., Strauss, R.: The prediction of occupation using multinomial logit models. Int. Econ. Rev. 16, 471–486 (1975)

    Article  Google Scholar 

  • Schulz, M.: Control Theory. In Physics And Other Fields Of Science. Berlin Heidelberg (2006).

  • Shoup, D.: Cashing out employer-paid parking: A precedent for congestion pricing? Transport. Res. Board Special Rep. 242, 152–199 (1994)

    Google Scholar 

  • Sykes, P., Grontmij, F., Bradley, R., Jennings, G., McDonnell, G.: Planning urban car park provision using microsimulation. Traffic Eng. & Control. 51, 1–10 (2010)

    Google Scholar 

  • Tsai, J.F., Chu, C.P.: Economic analysis of collecting parking fees by a private firm. Transp. Res. Part a: Policy Pract. 40, 690–697 (2006)

    Google Scholar 

  • Wang, T.T., Chen, C.: Attitudes, mode switching behavior, and the built environment: a longitudinal study in the puget sound region. Transp. Res. Part a: Policy Pract. 46, 1594–1607 (2012)

    Google Scholar 

  • Wang, F.L., Chen, C.: On data processing required to derive mobility patterns from passively-generated mobile phone data. Transp. Res. Part C: Emer. Tech. 87, 58–74 (2018)

    Article  Google Scholar 

  • Wang, H., Li, R., Wang, X.K., Shang, P.: Effect of on-street parking pricing policies on parking characteristics: a case study of Nanning. Transp. Res. Part a: Policy Pract. 137, 65–78 (2020)

    Google Scholar 

  • Yan, X., Levine, J., Marans, R.: The effectiveness of parking policies to reduce parking demand pressure and car use. Transp. Policy. 73, 41–50 (2019)

    Article  Google Scholar 

  • Zakharenko, R.: The time dimension of parking economics. Transp. Res. Part B: Method. 91, 211–228 (2016)

    Article  Google Scholar 

  • Zheng, N., Geroliminis, N.: Modeling and optimization of multimodal urban networks with limited parking and dynamic pricing. Transp. Res. Part B: Method. 83, 36–58 (2016)

    Article  Google Scholar 

  • Zheng, H.Y., Chen, X.W., Chen, X.Q.: How does on-demand ridesplitting influence vehicle use and purchase willingness? A case Study in Hangzhou China. IEEE Intell. Transp. Sys. Magazine. 11, 143–157 (2019)

    Article  Google Scholar 

  • Zhu, X., Wang, F.L., Chen, C., Reed, D.D.: Personalized incentives for promoting sustainable traveler behaviors. Transp. Res. Part C: Emer. Tech. 113, 314–331 (2020)

    Article  Google Scholar 

  • Zong, F., He, Y.N., Yuan, Y.X.: Dependence of parking pricing on land use and time of day. Sustainability. 7, 9587–9607 (2015)

    Article  Google Scholar 

  • Zong, F., Yu, P., Tang, J.J., Sun, X.: Understanding parking decisions with structural equation modeling. Physica a. 523, 408–417 (2019)

    Article  Google Scholar 

  • Zong, F., Zeng, M., Lv, J.Y., Wang, C.Y.: A credit charging scheme incorporating carpool and carbon emissions. Transp. Res. Part D: Transp. Environ. 94, 102111 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

We wish to express our sincere thanks to the editor and the anonymous reviewer for the thorough and constructive comments on the paper. The research is funded by the National Natural Science Foundation of China (52272349 and U21B2090).

Author information

Authors and Affiliations

Authors

Contributions

Methodology: MZ; Formal analysis and investigation: FZ and PY; Writing—original draft preparation: MZ; Writing—review and editing: MZ and FZ, Funding acquisition: FZ, Supervision: PY.

Corresponding author

Correspondence to Meng Zeng.

Ethics declarations

Conflict of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Tables 8 and 9

Table 8 Estimation results of the utility function
Table 9 Nomenclature
  1. (1)

    The calculation of parking facility cost

In this paper, the on-street parking facility cost is expressed in (19), which is comprised of the land price range, the road-usage cost and the corresponding taxes.

$${\sum }_{i}\left[{{C}_{i}}^{\mathrm{consistent}}+{{\int }_{0}^{T}\left(1+s\right)}^{-t}{C}_{i}(t)dt\right]={\sum }_{i}\left[{{\int }_{0}^{T}\left(1+s\right)}^{-t}{{C}_{i}}^{\mathrm{on}}(t)dt\right]={\sum }_{i}\left[{C}_{\mathrm{ran},i}^{\mathrm{on}}\sigma {N}_{i}^{\mathrm{on}}+{{\int }_{0}^{T}\left(1+s\right)}^{-t}({C}_{\mathrm{roa},i}^{\mathrm{on}}(t){N}_{i}^{\mathrm{on}}\times \text{365} + {C}_{\mathrm{tax},i}^{\mathrm{on}}(t){N}_{i}^{\mathrm{on}}\sigma )dt\right](i\hspace{0.17em}=\hspace{0.17em}3, 7)$$
(19)

The off-street parking facility cost in this paper includes the annual expenditures, social cost and other cost like cost of parking enforcement.

$${\sum }_{i}\left[{{C}_{i}}^{\mathrm{consistent}}+{{\int }_{0}^{T}\left(1+s\right)}^{-t}{C}_{i}(t)dt\right]={\sum }_{i}\left[{{\int }_{0}^{T}\left(1+s\right)}^{-t}{{C}_{i}}^{\mathrm{off}}(t)dt\right]={\sum }_{i}\left[{{\int }_{0}^{T}\left(1+s\right)}^{-t}{C}_{\mathrm{spo},i}^{\mathrm{off}}(t){N}_{i}^{\mathrm{off}}dt\right](i\hspace{0.17em}=\hspace{0.17em}1, 5) $$
(20)

where the time distribution function of each off-street parking facility cost \({C}_{\mathrm{spo},i}^{\mathrm{off}}(t)\) can be expressed as follows:

$${C}_{\mathrm{spo},i}^{\mathrm{off}}(t)=\frac{{C}_{\mathrm{exp},i}^{\mathrm{off}}(t)+{C}_{\mathrm{exp},i}^{\mathrm{off}}(t)\bullet s+{C}_{\mathrm{soc},i}^{\mathrm{off}}(t)}{{N}_{i}^{\mathrm{off}}}(i\hspace{0.17em}=\hspace{0.17em}1, 5)$$
(21)
  1. (2)

    The calculation of average parking rate per trip in the parking pattern i (Ri):

    $${R}_{1}=\frac{{r}_{1}^{\mathrm{fh}}}{{H}_{1}}+\frac{{H}_{1}-1}{{H}_{1}}{r}_{1}^{\mathrm{nfh}}$$
    (22)
    $${R}_{2}=\frac{{\delta }_{\mathrm{P}/\mathrm{OP}}}{{H}_{2}}{r}_{1}^{\mathrm{fh}}+\frac{{H}_{2}-1}{{H}_{2}}{\delta }_{\mathrm{P}/\mathrm{OP}}{r}_{1}^{\mathrm{nfh}}$$
    (23)
    $${R}_{3}=\frac{{\delta }_{\mathrm{S}/\mathrm{OS}}}{{H}_{3}}{r}_{1}^{\mathrm{fh}}+\frac{{H}_{3}-1}{{H}_{3}}{\delta }_{\mathrm{S}/\mathrm{OS}}{r}_{1}^{\mathrm{nfh}}$$
    (24)
    $${R}_{4}=\frac{{\delta }_{\mathrm{S}/\mathrm{OS}}{\delta }_{\mathrm{P}/\mathrm{OP}}}{{H}_{4}}{r}_{1}^{\mathrm{fh}}+\frac{{H}_{4}-1}{{H}_{4}}{\delta }_{\mathrm{S}/\mathrm{OS}}{\delta }_{\mathrm{P}/\mathrm{OP}}{r}_{1}^{\mathrm{nfh}}$$
    (25)
    $${R}_{5}=\frac{{\delta }_{\mathrm{C}/\mathrm{NC}}}{{H}_{5}}{r}_{1}^{\mathrm{fh}}+\frac{{H}_{5}-1}{{H}_{5}}{\delta }_{\mathrm{C}/\mathrm{NC}}{r}_{1}^{\mathrm{nfh}}$$
    (26)
    $${R}_{6}=\frac{{\delta }_{\mathrm{C}/\mathrm{NC}}{\delta }_{\mathrm{P}/\mathrm{OP}}}{{H}_{6}}{r}_{1}^{\mathrm{fh}}+\frac{{H}_{6}-1}{{H}_{6}}{\delta }_{\mathrm{C}/\mathrm{NC}}{\delta }_{\mathrm{P}/\mathrm{OP}}{r}_{1}^{\mathrm{nfh}}$$
    (27)
    $${R}_{7}=\frac{{\delta }_{\mathrm{C}/\mathrm{NC}}{\delta }_{\mathrm{S}/\mathrm{OS}}}{{H}_{7}}{r}_{1}^{\mathrm{fh}}+\frac{{H}_{7}-1}{{H}_{7}}{\delta }_{\mathrm{C}/\mathrm{NC}}{\delta }_{\mathrm{S}/\mathrm{OS}}{r}_{1}^{\mathrm{nfh}}$$
    (28)
    $$ R_{8} = \frac{{\delta_{{{\text{C}}/{\text{NC}}}} \delta_{{{\text{S}}/{\text{OS}}}} \delta_{{{\text{P}}/{\text{OP}}}} }}{{H_{8} }}r_{1}^{{{\text{fh}}}} + \frac{{H_{8} - 1}}{{H_{8} }}\delta_{{{\text{C}}/{\text{NC}}}} \delta_{{{\text{S}}/{\text{OS}}}} \delta_{{{\text{P}}/{\text{OP}}}} r_{1}^{{{\text{nfh}}}} $$
    (29)

(3) The calculation of (17)

$$ \begin{gathered} \frac{\partial L}{{\partial r_{1}^{{{\text{fh}}}} }} = \frac{1}{{e^{{V_{2} }} + \cdots + e^{{V_{8} }} }}\left( \begin{gathered} \frac{{\delta_{{\text{P/OP}}} }}{{H_{2} }}\gamma_{2,15} e^{{V_{2} }} + \frac{{\delta_{{\text{S/OS}}} }}{{H_{3} }}\gamma_{3,15} e^{{V_{3} }} + \frac{{\delta_{{\text{S/OS}}} \delta_{{\text{P/OP}}} }}{{H_{4} }}\gamma_{4,15} e^{{V_{4} }} + \frac{{\delta_{{\text{C/NC}}} }}{{H_{5} }}\gamma_{5,15} e^{{V_{5} }} \hfill \\ + \frac{{\delta_{{\text{C/NC}}} \delta_{{\text{P/OP}}} }}{{H_{6} }}\gamma_{6,15} e^{{V_{6} }} + \frac{{\delta_{{\text{C/NC}}} \delta_{{\text{S/OS}}} }}{{H_{7} }}\gamma_{7,15} e^{{V_{7} }} + \frac{{\delta_{{\text{C/NC}}} \delta_{{\text{S/OS}}} \delta_{{\text{P/OP}}} }}{{H_{8} }}\gamma_{8,15} e^{{V_{8} }} \hfill \\ \end{gathered} \right) \hfill \\ \mathop \int \limits_{0}^{T} (1 + s)^{ - t} Q_{1} \left( t \right)dt - \frac{{\lambda_{1} }}{{H_{1} }}\mathop \int \limits_{0}^{T} (1 + s)^{ - t} Q_{1} \left( t \right)dt + \mathop \sum \limits_{i = 2}^{8} \left[ {\left( {\gamma_{i,15} - \lambda_{1} } \right)} \right. \times \left. {\frac{{\partial R_{i} }}{{\partial r_{1}^{{{\text{fh}}}} }}\mathop \int \limits_{0}^{T} (1 + s)^{ - t} Q_{i} \left( t \right)dt} \right] + \lambda_{2} - \lambda_{3} + \lambda_{6} = 0 \hfill \\ \end{gathered} $$
(30)
$$ \begin{gathered} \frac{\partial L}{{\partial r_{1}^{{{\text{nfh}}}} }} = \frac{1}{{e^{{V_{2} }} + \cdots + e^{{V_{8} }} }}\left( \begin{gathered} \frac{{H_{2} - 1}}{{H_{2} }}\delta_{{\text{P/OP}}} \gamma_{2,15} e^{{V_{2} }} + \frac{{H_{3} - 1}}{{H_{3} }}\delta_{{\text{S/OS}}} \gamma_{3,15} e^{{V_{3} }} + \frac{{H_{4} - 1}}{{H_{4} }}\delta_{{\text{S/OS}}} \delta_{{\text{P/OP}}} \gamma_{4,15} e^{{V_{4} }} + \hfill \\ \frac{{H_{5} - 1}}{{H_{5} }}\delta_{{\text{C/NC}}} \gamma_{5,15} e^{{V_{5} }} + \frac{{H_{6} - 1}}{{H_{6} }}\delta_{{\text{C/NC}}} \delta_{{\text{P/OP}}} \gamma_{6,15} e^{{V_{6} }} + \frac{{H_{7} - 1}}{{H_{7} }}\delta_{{\text{C/NC}}} \delta_{{\text{S/OS}}} \gamma_{7,15} e^{{V_{7} }} + \hfill \\ \frac{{H_{8} - 1}}{{H_{8} }}\delta_{{\text{C/NC}}} \delta_{{\text{S/OS}}} \delta_{{\text{P/OP}}} \gamma_{8,15} e^{{V_{8} }} \hfill \\ \end{gathered} \right) \hfill \\ \mathop \int \limits_{0}^{T} (1 + s)^{ - t} Q_{1} \left( t \right)dt - \frac{{H_{1} - 1}}{{H_{1} }}\lambda_{1} \times \mathop \int \limits_{0}^{T} (1 + s)^{ - t} Q_{1} \left( t \right)dt + \mathop \sum \limits_{i = 2}^{8} \left[ {\left( {\gamma_{i,15} - \lambda_{1} } \right)\frac{{\partial R_{i} }}{{\partial r_{1}^{{{\text{nfh}}}} }}\mathop \int \limits_{0}^{T} (1 + s)^{ - t} Q_{i} \left( t \right)dt} \right] \hfill \\ + \lambda_{4} - \lambda_{5} - \lambda_{6} = 0 + \lambda_{4} - \lambda_{5} - \lambda_{6} = 0 \hfill \\ \end{gathered} $$
(31)
$$ \begin{gathered} \frac{\partial L}{{\partial \delta_{{\text{C/NC}}} }} = \left( {\gamma_{5,15} - \lambda_{1} } \right)\left( {\frac{1}{{H_{5} }}r_{1}^{fh} + \frac{{H_{5} - 1}}{{H_{5} }}r_{1}^{nfh} } \right)\mathop \smallint \limits_{0}^{T} (1 + s)^{ - t} Q_{5} \left( t \right)dt + \left( {\gamma_{6,15} - \lambda_{1} } \right)\left( {\frac{{\delta_{{\text{P/OP}}} }}{{H_{6} }}r_{{1}}^{{{\text{fh}}}} + \frac{{H_{6} - 1}}{{H_{6} }}\delta_{{\text{P/OP}}} r_{{1}}^{{{\text{nfh}}}} } \right) \hfill \\ \mathop \int \limits_{0}^{T} (1 + s)^{ - t} Q_{6} \left( t \right)dt + \left( {\gamma_{7,15} - \lambda_{1} } \right)\left( {\frac{{\delta_{S/OS} }}{{H_{7} }}r_{1}^{fh} + \frac{{H_{7} - 1}}{{H_{7} }}\delta_{{\text{S/OS}}} r_{{1}}^{{{\text{nfh}}}} } \right)\mathop \int \limits_{0}^{T} (1 + s)^{ - t} Q_{7} \left( t \right)dt \hfill \\ + \left( {\gamma_{8 - 15} - \lambda_{1} } \right)\left( {\frac{{\delta_{{\text{S/OS}}} \delta_{{\text{P/OP}}} }}{{H_{8} }}r_{1}^{fh} + \frac{{H_{8} - 1}}{{H_{8} }}\delta_{{\text{S/OS}}} \delta_{{\text{P/OP}}} r_{{1}}^{{{\text{nfh}}}} } \right) \times \mathop \int \limits_{0}^{T} (1 + s)^{ - t} Q_{8} \left( t \right)dt + \lambda_{7} - \lambda_{8} = 0 \hfill \\ \end{gathered} $$
(32)
$$ \begin{gathered} \frac{\partial L}{{\partial \delta_{{\text{S/OS}}} }} = \left( {\gamma_{3,15} - \lambda_{1} } \right)\left( {\frac{1}{{H_{3} }}r_{{1}}^{{{\text{fh}}}} + \frac{{H_{3} - 1}}{{H_{3} }}r_{1}^{{{\text{nfh}}}} } \right)\mathop \int \limits_{0}^{T} (1 + s)^{ - t} Q_{3} \left( t \right)dt + \left( {\gamma_{4,15} - \lambda_{1} } \right)(\frac{{\delta_{{\text{P/OP}}} }}{{H_{4} }}r_{1}^{{{\text{fh}}}} + \hfill \\ \frac{{H_{4} - 1}}{{H_{4} }}\delta_{{\text{P/OP}}} r_{1}^{{{\text{nfh}}}} )\mathop \smallint \limits_{0}^{T} (1 + s)^{ - t} Q_{4} \left( t \right)dt + \left( {\gamma_{7,15} - \lambda_{1} } \right)\left( {\frac{{\delta_{{\text{C/NC}}} }}{{H_{7} }}r_{1}^{{{\text{fh}}}} + \frac{{H_{7} - 1}}{{H_{7} }}\delta_{{\text{C/NC}}} r_{1}^{{{\text{nfh}}}} } \right)\mathop \int \limits_{0}^{T} (1 + s)^{ - t} Q_{7} \left( t \right)dt + \hfill \\ \left( {\gamma_{8,15} - \lambda_{1} } \right) \times \left( {\frac{{\delta_{{\text{C/NC}}} \delta_{{\text{P/OP}}} }}{{H_{8} }}r_{1}^{fh} + \frac{{H_{8} - 1}}{{H_{8} }}\delta_{{\text{C/NC}}} \delta_{{\text{P/OP}}} r_{1}^{{{\text{nfh}}}} } \right) \times \mathop \int \limits_{0}^{T} (1 + s)^{ - t} Q_{8} \left( t \right)dt + \lambda_{9} - \lambda_{10} = 0 \hfill \\ \end{gathered} $$
(33)
$$ \begin{gathered} \frac{\partial L}{{\partial \delta_{{\text{P/OP}}} }} = \left( {\gamma_{2,15} - \lambda_{1} } \right)\left( {\frac{1}{{H_{2} }}r_{1}^{{{\text{fh}}}} + \frac{{H_{2} - 1}}{{H_{2} }}r_{1}^{{{\text{nfh}}}} } \right)\mathop \int \limits_{0}^{T} (1 + s)^{ - t} Q_{2} \left( t \right)dt + \left( {\gamma_{4,15} - \lambda_{1} } \right)(\frac{{\delta_{{\text{S/OS}}} }}{{H_{4} }}r_{{1}}^{{{\text{fh}}}} + \hfill \\ \frac{{H_{4} - 1}}{{H_{4} }}\delta_{{\text{S/OS}}} r_{1}^{{{\text{nfh}}}} )\mathop \int \limits_{0}^{T} (1 + s)^{ - t} Q_{4} \left( t \right)dt + \left( {\gamma_{6,15} - \lambda_{1} } \right)\left( {\frac{{\delta_{{\text{C/NC}}} }}{{H_{6} }}r_{1}^{{{\text{fh}}}} + \frac{{H_{6} - 1}}{{H_{6} }}\delta_{{\text{C/NC}}} r_{1}^{{{\text{nfh}}}} } \right)\mathop \int \limits_{0}^{T} (1 + s)^{ - t} Q_{6} \left( t \right)dt \hfill \\ \left( {\gamma_{8,15} - \lambda_{1} } \right)\left( {\frac{{\delta_{{\text{C/NC}}} \delta_{{\text{S/OS}}} }}{{H_{8} }}r_{1}^{{{\text{fh}}}} + \frac{{H_{8} - 1}}{{H_{8} }}\delta_{{\text{C/NC}}} \delta_{{\text{S/OS}}} r_{1}^{{{\text{nfh}}}} } \right) \times \mathop \int \limits_{0}^{T} (1 + s)^{ - t} Q_{8} \left( t \right)dt + \lambda_{11} - \lambda_{12} = 0 \hfill \\ \end{gathered} $$
(34)
$$\frac{\partial L}{\partial {\lambda }_{1}}={\sum }_{{\mu }_{\mathrm{off}}=1}^{2}\left[{\int }_{0}^{T}(1+s{)}^{-t}{C}_{\mathrm{spo},{\mu }_{\mathrm{off}}}^{\mathrm{off}}(t){N}_{{\mu }_{\mathrm{off}}}^{\mathrm{off}}dt\right]+{\sum }_{{\mu }_{\mathrm{on}}=1}^{2}{C}_{\mathrm{ran},{\mu }_{\mathrm{on}}}^{\mathrm{on}}\sigma {N}_{{\mu }_{\mathrm{on}}}^{\mathrm{on}}+{\sum }_{{\mu }_{\mathrm{on}}=1}^{2}\left[{\int }_{0}^{T}(1+s{)}^{-t}\times \right.\left.({C}_{\mathrm{roa},{\mu }_{\mathrm{on}}}^{\mathrm{on}}(t){N}_{{\mu }_{\mathrm{on}}}^{\mathrm{on}}\times 365+{C}_{\mathrm{tax},{\mu }_{\mathrm{on}}}^{\mathrm{on}}(t)\sigma {N}_{{\mu }_{\mathrm{on}}}^{\mathrm{on}})dt\right]-{\sum }_{i=1}^{n}{\int }_{0}^{T}(1+s{)}^{-t}{R}_{i}{Q}_{i}(t)dt+{\psi }_{1}^{2}=0$$
(35)
$$\frac{\partial L}{\partial {\lambda }_{2}}={r}_{1}^{\mathrm{fh}}-{y}_{1}^{^{\prime}}+{\psi }_{2}^{2}=0$$
(36)
$$\frac{\partial L}{\partial {\lambda }_{3}}={y}_{1}-{r}_{1}^{\mathrm{fh}}+{\psi }_{3}^{2}=0$$
(37)
$$\frac{\partial L}{\partial {\lambda }_{4}}={r}_{1}^{\mathrm{nfh}}-{z}_{1}^{^{\prime}}+{\psi }_{4}^{2}=0$$
(38)
$$\frac{\partial L}{\partial {\lambda }_{5}}={z}_{1}-{r}_{1}^{\mathrm{nfh}}+{\psi }_{5}^{2}=0$$
(39)
$$\frac{\partial L}{\partial {\lambda }_{6}}={r}_{1}^{\mathrm{fh}}-{r}_{1}^{\mathrm{nfh}}+{\psi }_{6}^{2}=0$$
(40)
$$\frac{\partial L}{\partial {\lambda }_{7}}={\delta }_{\mathrm{C}/\mathrm{NC}}-{x}^{^{\prime}}+{\psi }_{7}^{2}=0$$
(41)
$$\frac{\partial L}{\partial {\lambda }_{8}}=x-{\delta }_{\mathrm{C}/\mathrm{NC}}+{\psi }_{8}^{2}=0$$
(42)
$$\frac{\partial L}{\partial {\lambda }_{9}}={\delta }_{\mathrm{S}/\mathrm{OS}}-{u}^{1}+{\psi }_{9}^{2}=0$$
(43)
$$\frac{\partial L}{\partial {\lambda }_{10}}=u-{\delta }_{\mathrm{S}/\mathrm{OS}}+{\psi }_{10}^{2}=0$$
(44)
$$\frac{\partial L}{\partial {\lambda }_{11}}={\delta }_{\mathrm{P}/\mathrm{OP}}-{w}^{^{\prime}}+{\psi }_{11}^{2}=0$$
(45)
$$\frac{\partial L}{\partial {\lambda }_{12}}=w-{\delta }_{\mathrm{P}/\mathrm{OP}}+{\psi }_{12}^{2}=0$$
(46)
$$\frac{\partial L}{\partial {\psi }_{i}}=2{\lambda }_{i}{\psi }_{i}=0$$
(47)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zong, F., Zeng, M. & Yu, P. A parking pricing scheme considering parking dynamics. Transportation (2023). https://doi.org/10.1007/s11116-022-10370-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11116-022-10370-0

Keywords

Navigation