1932

Abstract

Our defenses against infection rely on the ability of the immune system to distinguish invading pathogens from self. This task is exceptionally challenging, if not seemingly impossible, in the case of retroviruses that have integrated almost seamlessly into the host. This review examines the limits of innate and adaptive immune responses elicited by endogenous retroviruses and other retroelements, the targets of immune recognition, and the consequences for host health and disease. Contrary to theoretical expectation, endogenous retroelements retain substantial immunogenicity, which manifests most profoundly when their epigenetic repression is compromised, contributing to autoinflammatory and autoimmune disease and age-related inflammation. Nevertheless, recent evidence suggests that regulated immune reactivity to endogenous retroelements is integral to immune system development and function, underpinning cancer immunosurveillance, resistance to infection, and responses to the microbiota. Elucidation of the interaction points with endogenous retroelements will therefore deepen our understanding of immune system function and contribution to disease.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-101721-033341
2023-04-26
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/immunol/41/1/annurev-immunol-101721-033341.html?itemId=/content/journals/10.1146/annurev-immunol-101721-033341&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Brodsky FM. 1999. Stealth, sabotage and exploitation. Immunol. Rev. 168:5–11
    [Google Scholar]
  2. 2.
    Damian RT. 1964. Molecular mimicry: antigen sharing by parasite and host and its consequences. Am. Nat. 98:129–49
    [Google Scholar]
  3. 3.
    Rojas M, Restrepo-Jiménez P, Monsalve DM, Pacheco Y, Acosta-Ampudia Y et al. 2018. Molecular mimicry and autoimmunity. J. Autoimmun. 95:100–23
    [Google Scholar]
  4. 4.
    Alcami A. 2003. Viral mimicry of cytokines, chemokines and their receptors. Nat. Rev. Immunol. 3:36–50
    [Google Scholar]
  5. 5.
    Hoffmann HH, Schneider WM, Rice CM. 2015. Interferons and viruses: an evolutionary arms race of molecular interactions. Trends Immunol 36:124–38
    [Google Scholar]
  6. 6.
    García-Sastre A. 2017. Ten strategies of interferon evasion by viruses. Cell Host Microbe 22:176–84
    [Google Scholar]
  7. 7.
    Rebollo R, Romanish MT, Mager DL. 2012. Transposable elements: an abundant and natural source of regulatory sequences for host genes. Annu. Rev. Genet. 46:21–42
    [Google Scholar]
  8. 8.
    Goubert C, Zevallos NA, Feschotte C. 2020. Contribution of unfixed transposable element insertions to human regulatory variation. Philos. Trans. R. Soc. Lond. B 375:20190331
    [Google Scholar]
  9. 9.
    Wells JN, Feschotte C. 2020. A field guide to eukaryotic transposable elements. Annu. Rev. Genet. 54:539–61
    [Google Scholar]
  10. 10.
    Horie M, Honda T, Suzuki Y, Kobayashi Y, Daito T et al. 2010. Endogenous non-retroviral RNA virus elements in mammalian genomes. Nature 463:84–87
    [Google Scholar]
  11. 11.
    Magiorkinis G, Gifford RJ, Katzourakis A, De Ranter Belshaw R 2012. Env-less endogenous retroviruses are genomic superspreaders. PNAS 109:7385–90
    [Google Scholar]
  12. 12.
    Kassiotis G. 2014. Endogenous retroviruses and the development of cancer. J. Immunol. 192:1343–49
    [Google Scholar]
  13. 13.
    Stocking C, Kozak CA. 2008. Murine endogenous retroviruses. Cell Mol. Life Sci. 65:3383–98
    [Google Scholar]
  14. 14.
    Li M, Huang X, Zhu Z, Gorelik E. 1999. Sequence and insertion sites of murine melanoma-associated retrovirus. J. Virol. 73:9178–86
    [Google Scholar]
  15. 15.
    Pothlichet J, Mangeney M, Heidmann T. 2006. Mobility and integration sites of a murine C57BL/6 melanoma endogenous retrovirus involved in tumor progression in vivo. Int. J. Cancer 119:1869–77
    [Google Scholar]
  16. 16.
    Pothlichet J, Heidmann T, Mangeney M. 2006. A recombinant endogenous retrovirus amplified in a mouse neuroblastoma is involved in tumor growth in vivo. Int. J. Cancer 119:815–22
    [Google Scholar]
  17. 17.
    Young GR, Eksmond U, Salcedo R, Alexopoulou L, Stoye JP, Kassiotis G. 2012. Resurrection of endogenous retroviruses in antibody-deficient mice. Nature 491:774–78
    [Google Scholar]
  18. 18.
    Ottina E, Levy P, Eksmond U, Merkenschlager J, Young GR et al. 2018. Restoration of endogenous retrovirus infectivity impacts mouse cancer models. Cancer Immunol. Res. 6:1292–300
    [Google Scholar]
  19. 19.
    Bannert N, Kurth R. 2006. The evolutionary dynamics of human endogenous retroviral families. Annu. Rev. Genom. Hum. Genet. 7:149–73
    [Google Scholar]
  20. 20.
    Holloway JR, Williams ZH, Freeman MM, Bulow U, Coffin JM. 2019. Gorillas have been infected with the HERV-K (HML-2) endogenous retrovirus much more recently than humans and chimpanzees. PNAS 116:1337–46
    [Google Scholar]
  21. 21.
    Monde K, Satou Y, Goto M, Uchiyama Y, Ito J et al. 2022. Movements of ancient human endogenous retroviruses detected in SOX2-expressing cells. J. Virol. 96:9e0035622
    [Google Scholar]
  22. 22.
    Smit AF. 1993. Identification of a new, abundant superfamily of mammalian LTR-transposons. Nucleic Acids Res 21:1863–72
    [Google Scholar]
  23. 23.
    Xiong Y, Eickbush TH. 1990. Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J 9:3353–62
    [Google Scholar]
  24. 24.
    Richardson SR, Doucet AJ, Kopera HC, Moldovan JB, Garcia-Perez JL, Moran JV. 2015. The influence of LINE-1 and SINE retrotransposons on mammalian genomes. Microbiol. Spectr. 3:MDNA3–0061-2014
    [Google Scholar]
  25. 25.
    Medzhitov R. 2001. Toll-like receptors and innate immunity. Nat. Rev. Immunol. 1:135–45
    [Google Scholar]
  26. 26.
    Wu J, Chen ZJ. 2014. Innate immune sensing and signaling of cytosolic nucleic acids. Annu. Rev. Immunol. 32:461–88
    [Google Scholar]
  27. 27.
    Nozaki K, Li L, Miao EA. 2022. Innate sensors trigger regulated cell death to combat intracellular infection. Annu. Rev. Immunol. 40:469–98
    [Google Scholar]
  28. 28.
    Miller KN, Victorelli SG, Salmonowicz H, Dasgupta N, Liu T et al. 2021. Cytoplasmic DNA: sources, sensing, and role in aging and disease. Cell 184:5506–26
    [Google Scholar]
  29. 29.
    Crowl JT, Gray EE, Pestal K, Volkman HE, Stetson DB. 2017. Intracellular nucleic acid detection in autoimmunity. Annu. Rev. Immunol. 35:313–36
    [Google Scholar]
  30. 30.
    Gorbunova V, Seluanov A, Mita P, McKerrow W, Fenyö D et al. 2021. The role of retrotransposable elements in ageing and age-associated diseases. Nature 596:43–53
    [Google Scholar]
  31. 31.
    Ishak CA, De Carvalho DD. 2020. Reactivation of endogenous retroelements in cancer development and therapy. Annu. Rev. Cancer Biol. 4:159–76
    [Google Scholar]
  32. 32.
    Lee HK, Lund JM, Ramanathan B, Mizushima N, Iwasaki A. 2007. Autophagy-dependent viral recognition by plasmacytoid dendritic cells. Science 315:1398–401
    [Google Scholar]
  33. 33.
    Yu P, Lübben W, Slomka H, Gebler J, Konert M et al. 2012. Nucleic acid-sensing Toll-like receptors are essential for the control of endogenous retrovirus viremia and ERV-induced tumors. Immunity 37:867–79
    [Google Scholar]
  34. 34.
    Dembny P, Newman AG, Singh M, Hinz M, Szczepek M et al. 2020. Human endogenous retrovirus HERV-K(HML-2) RNA causes neurodegeneration through Toll-like receptors. JCI Insight 5:e131093
    [Google Scholar]
  35. 35.
    Sinibaldi-Vallebona P, Lavia P, Garaci E, Spadafora C. 2006. A role for endogenous reverse transcriptase in tumorigenesis and as a target in differentiating cancer therapy. Genes Chromosomes Cancer 45:1–10
    [Google Scholar]
  36. 36.
    Beck-Engeser GB, Eilat D, Wabl M. 2011. An autoimmune disease prevented by anti-retroviral drugs. Retrovirology 8:91
    [Google Scholar]
  37. 37.
    Rice GI, Meyzer C, Bouazza N, Hully M, Boddaert N et al. 2018. Reverse-transcriptase inhibitors in the Aicardi-Goutières syndrome. N. Engl. J. Med. 379:2275–77
    [Google Scholar]
  38. 38.
    Lima-Junior DS, Krishnamurthy SR, Bouladoux N, Collins N, Han SJ et al. 2021. Endogenous retroviruses promote homeostatic and inflammatory responses to the microbiota. Cell 184:3794–811.e19
    [Google Scholar]
  39. 39.
    Canadas I, Thummalapalli R, Kim JW, Kitajima S, Jenkins RW et al. 2018. Tumor innate immunity primed by specific interferon-stimulated endogenous retroviruses. Nat. Med. 24:81143–50
    [Google Scholar]
  40. 40.
    Chiappinelli KB, Strissel PL, Desrichard A, Li H, Henke C et al. 2015. Inhibiting DNA methylation causes an interferon response in cancer via dsRNA including endogenous retroviruses. Cell 162:974–86
    [Google Scholar]
  41. 41.
    Roulois D, Loo Yau H, Singhania R, Wang Y, Danesh A et al. 2015. DNA-Demethylating agents target colorectal cancer cells by inducing viral mimicry by endogenous transcripts. Cell 162:961–73
    [Google Scholar]
  42. 42.
    Tavora B, Mederer T, Wessel KJ, Ruffing S, Sadjadi M et al. 2020. Tumoural activation of TLR3-SLIT2 axis in endothelium drives metastasis. Nature 586:299–304
    [Google Scholar]
  43. 43.
    Magin C, Löwer R, Löwer J. 1999. cORF and RcRE, the Rev/Rex and RRE/RxRE homologues of the human endogenous retrovirus family HTDV/HERV-K. J. Virol. 73:9496–507
    [Google Scholar]
  44. 44.
    Grow EJ, Flynn RA, Chavez SL, Bayless NL, Wossidlo M et al. 2015. Intrinsic retroviral reactivation in human preimplantation embryos and pluripotent cells. Nature 522:221–25
    [Google Scholar]
  45. 45.
    Wang-Johanning F, Rycaj K, Plummer JB, Li M, Yin B et al. 2012. Immunotherapeutic potential of anti-human endogenous retrovirus-K envelope protein antibodies in targeting breast tumors. J. Natl. Cancer Inst. 104:189–210
    [Google Scholar]
  46. 46.
    Li M, Radvanyi L, Yin B, Rycaj K, Li J et al. 2017. Downregulation of human endogenous retrovirus type K (HERV-K) viral env RNA in pancreatic cancer cells decreases cell proliferation and tumor growth. Clin. Cancer Res. 23:5892–911
    [Google Scholar]
  47. 47.
    Lemaitre C, Tsang J, Bireau C, Heidmann T, Dewannieux M. 2017. A human endogenous retrovirus-derived gene that can contribute to oncogenesis by activating the ERK pathway and inducing migration and invasion. PLOS Pathog 13:e1006451
    [Google Scholar]
  48. 48.
    Panova V, Attig J, Young GR, Stoye JP, Kassiotis G. 2020. Antibody-induced internalisation of retroviral envelope glycoproteins is a signal initiation event. PLOS Pathog 16:e1008605
    [Google Scholar]
  49. 49.
    Lavialle C, Cornelis G, Dupressoir A, Esnault C, Heidmann O et al. 2013. Paleovirology of ‘syncytins’, retroviral env genes exapted for a role in placentation. Philos. Trans. R. Soc. Lond. B 368:20120507
    [Google Scholar]
  50. 50.
    Antony JM, van Marle G, Opii W, Butterfield DA, Mallet F et al. 2004. Human endogenous retrovirus glycoprotein-mediated induction of redox reactants causes oligodendrocyte death and demyelination. Nat. Neurosci. 7:1088–95
    [Google Scholar]
  51. 51.
    Li W, Lee MH, Henderson L, Tyagi R, Bachani M et al. 2015. Human endogenous retrovirus-K contributes to motor neuron disease. Sci. Transl. Med. 7:307ra153
    [Google Scholar]
  52. 52.
    Jönsson ME, Garza R, Sharma Y, Petri R, Södersten E et al. 2021. Activation of endogenous retroviruses during brain development causes an inflammatory response. EMBO J 40:e106423
    [Google Scholar]
  53. 53.
    Pasquarella A, Ebert A, Pereira de Almeida G, Hinterberger M, Kazerani M et al. 2016. Retrotransposon derepression leads to activation of the unfolded protein response and apoptosis in pro-B cells. Development 143:1788–99
    [Google Scholar]
  54. 54.
    Green NM, Moody KS, Debatis M, Marshak-Rothstein A. 2012. Activation of autoreactive B cells by endogenous TLR7 and TLR3 RNA ligands. J. Biol. Chem. 287:39789–99
    [Google Scholar]
  55. 55.
    Hung T, Pratt GA, Sundararaman B, Townsend MJ, Chaivorapol C et al. 2015. The Ro60 autoantigen binds endogenous retroelements and regulates inflammatory gene expression. Science 350:455–59
    [Google Scholar]
  56. 56.
    Cuellar TL, Herzner AM, Zhang X, Goyal Y, Watanabe C et al. 2017. Silencing of retrotransposons by SETDB1 inhibits the interferon response in acute myeloid leukemia. J. Cell Biol. 216:3535–49
    [Google Scholar]
  57. 57.
    Tunbak H, Enriquez-Gasca R, Tie CHC, Gould PA, Mlcochova P et al. 2020. The HUSH complex is a gatekeeper of type I interferon through epigenetic regulation of LINE-1s. Nat. Commun. 11:5387
    [Google Scholar]
  58. 58.
    Leonova KI, Brodsky L, Lipchick B, Pal M, Novototskaya L et al. 2013. p53 cooperates with DNA methylation and a suicidal interferon response to maintain epigenetic silencing of repeats and noncoding RNAs. PNAS 110:E89–98
    [Google Scholar]
  59. 59.
    Sheng W, LaFleur MW, Nguyen TH, Chen S, Chakravarthy A et al. 2018. LSD1 ablation stimulates anti-tumor immunity and enables checkpoint blockade. Cell 174:3549–63.e19
    [Google Scholar]
  60. 60.
    Mannion NM, Greenwood SM, Young R, Cox S, Brindle J et al. 2014. The RNA-editing enzyme ADAR1 controls innate immune responses to RNA. Cell Rep 9:1482–94
    [Google Scholar]
  61. 61.
    Pestal K, Funk CC, Snyder JM, Price ND, Treuting PM, Stetson DB. 2015. Isoforms of RNA-editing enzyme ADAR1 independently control nucleic acid sensor MDA5-driven autoimmunity and multi-organ development. Immunity 43:933–44
    [Google Scholar]
  62. 62.
    Liddicoat BJ, Piskol R, Chalk AM, Ramaswami G, Higuchi M et al. 2015. RNA editing by ADAR1 prevents MDA5 sensing of endogenous dsRNA as nonself. Science 349:1115–20
    [Google Scholar]
  63. 63.
    Nishikura K. 2016. A-to-I editing of coding and non-coding RNAs by ADARs. Nat. Rev. Mol. Cell Biol. 17:83–96
    [Google Scholar]
  64. 64.
    Baker AR, Slack FJ. 2022. ADAR1 and its implications in cancer development and treatment. Trends Genet 38:8821–30
    [Google Scholar]
  65. 65.
    Ahmad S, Mu X, Yang F, Greenwald E, Park JW et al. 2018. Breaching self-tolerance to Alu duplex RNA underlies MDA5-mediated inflammation. Cell 172:797–810.e13
    [Google Scholar]
  66. 66.
    Chung H, Calis JJA, Wu X, Sun T, Yu Y et al. 2018. Human ADAR1 prevents endogenous RNA from triggering translational shutdown. Cell 172:811–24.e14
    [Google Scholar]
  67. 67.
    Mehdipour P, Marhon SA, Ettayebi I, Chakravarthy A, Hosseini A et al. 2020. Epigenetic therapy induces transcription of inverted SINEs and ADAR1 dependency. Nature 588:169–73
    [Google Scholar]
  68. 68.
    Jiao H, Wachsmuth L, Kumari S, Schwarzer R, Lin J et al. 2020. Z-nucleic-acid sensing triggers ZBP1-dependent necroptosis and inflammation. Nature 580:391–95
    [Google Scholar]
  69. 69.
    Wang R, Li H, Wu J, Cai Z-Y, Li B et al. 2020. Gut stem cell necroptosis by genome instability triggers bowel inflammation. Nature 580:386–90
    [Google Scholar]
  70. 70.
    Devos M, Tanghe G, Gilbert B, Dierick E, Verheirstraeten M et al. 2020. Sensing of endogenous nucleic acids by ZBP1 induces keratinocyte necroptosis and skin inflammation. J. Exp. Med. 217:e20191913
    [Google Scholar]
  71. 71.
    Karki R, Sundaram B, Sharma BR, Lee S, Malireddi RKS et al. 2021. ADAR1 restricts ZBP1-mediated immune response and PANoptosis to promote tumorigenesis. Cell Rep 37:109858
    [Google Scholar]
  72. 72.
    Zhang T, Yin C, Fedorov A, Qiao L, Bao H et al. 2022. ADAR1 masks the cancer immunotherapeutic promise of ZBP1-driven necroptosis. Nature 606:7914594–602
    [Google Scholar]
  73. 73.
    Jiao H, Wachsmuth L, Wolf S, Lohmann J, Nagata Met al 2022. ADAR1 averts fatal type I interferon induction by ZBP1. Nature 607:776–83
    [Google Scholar]
  74. 74.
    de Reuver R, Verdonck S, Dierick E, Nemegeer J, Hessmann Eet al 2022. ADAR1 prevents autoinflammation by suppressing spontaneous ZBP1 activation. Nature 607:784–89
    [Google Scholar]
  75. 75.
    Hubbard NW, Ames JM, Maurano M, Chu LH, Somfleth KYet al 2022. ADAR1 mutation causes ZBP1-dependent immunopathology. Nature 607:769–75
    [Google Scholar]
  76. 76.
    Tang Q, Rigby RE, Young GR, Hvidt AK, Davis T et al. 2021. Adenosine-to-inosine editing of endogenous Z-form RNA by the deaminase ADAR1 prevents spontaneous MAVS-dependent type I interferon responses. Immunity 54:1961–75.e5
    [Google Scholar]
  77. 77.
    Ishizuka JJ, Manguso RT, Cheruiyot CK, Bi K, Panda A et al. 2019. Loss of ADAR1 in tumours overcomes resistance to immune checkpoint blockade. Nature 565:43–48
    [Google Scholar]
  78. 78.
    Liu H, Golji J, Brodeur LK, Chung FS, Chen JT et al. 2019. Tumor-derived IFN triggers chronic pathway agonism and sensitivity to ADAR loss. Nat. Med. 25:95–102
    [Google Scholar]
  79. 79.
    Kazazian HH Jr., Moran JV. 2017. Mobile DNA in health and disease. N. Engl. J. Med. 377:361–70
    [Google Scholar]
  80. 80.
    De Cecco M, Ito T, Petrashen AP, Elias AE, Skvir NJ et al. 2019. L1 drives IFN in senescent cells and promotes age-associated inflammation. Nature 566:73–78
    [Google Scholar]
  81. 81.
    Simon M, Van Meter M, Ablaeva J, Ke Z, Gonzalez RS et al. 2019. LINE1 derepression in aged wild-type and SIRT6-deficient mice drives inflammation. Cell Metab 29:871–85.e5
    [Google Scholar]
  82. 82.
    Zhao Y, Oreskovic E, Zhang Q, Lu Q, Gilman A et al. 2021. Transposon-triggered innate immune response confers cancer resistance to the blind mole rat. Nat. Immunol. 22:1219–30
    [Google Scholar]
  83. 83.
    Fukuda S, Varshney A, Fowler BJ, Wang SB, Narendran S et al. 2021. Cytoplasmic synthesis of endogenous Alu complementary DNA via reverse transcription and implications in age-related macular degeneration. PNAS 118:e2022751118
    [Google Scholar]
  84. 84.
    Kines KJ, Sokolowski M, deHaro DL, Christian CM, Belancio VP. 2014. Potential for genomic instability associated with retrotranspositionally-incompetent L1 loci. Nucleic Acids Res 42:10488–502
    [Google Scholar]
  85. 85.
    Li T, Chen ZJ. 2018. The cGAS-cGAMP-STING pathway connects DNA damage to inflammation, senescence, and cancer. J. Exp. Med. 215:1287–99
    [Google Scholar]
  86. 86.
    Simpson E, Takacs K, Altmann DM. 1994. Thymic repertoire selection by superantigens: presentation by human and mouse MHC molecules. Thymus 23:1–13
    [Google Scholar]
  87. 87.
    Acha-Orbea H, MacDonald HR. 1995. Superantigens of mouse mammary tumor virus. Annu. Rev. Immunol. 13:459–86
    [Google Scholar]
  88. 88.
    Sutkowski N, Conrad B, Thorley-Lawson DA, Huber BT 2001. Epstein-Barr virus transactivates the human endogenous retrovirus HERV-K18 that encodes a superantigen. Immunity 15:579–89
    [Google Scholar]
  89. 89.
    Papiernik M. 2001. Natural CD4+ CD25+ regulatory T cells. Their role in the control of superantigen responses. Immunol. Rev. 182:180–89
    [Google Scholar]
  90. 90.
    Ribot J, Romagnoli P, van Meerwijk JP. 2006. Agonist ligands expressed by thymic epithelium enhance positive selection of regulatory T lymphocytes from precursors with a normally diverse TCR repertoire. J. Immunol. 177:1101–7
    [Google Scholar]
  91. 91.
    Myers L, Joedicke JJ, Carmody AB, Messer RJ, Kassiotis G et al. 2013. IL-2-independent and TNF-α-dependent expansion of Vβ5+ natural regulatory T cells during retrovirus infection. J. Immunol. 190:5485–95
    [Google Scholar]
  92. 92.
    Punkosdy GA, Blain M, Glass DD, Lozano MM, O'Mara L et al. 2011. Regulatory T-cell expansion during chronic viral infection is dependent on endogenous retroviral superantigens. PNAS 108:3677–82
    [Google Scholar]
  93. 93.
    Kalter SS, Helmke RJ, Heberling RL, Panigel M, Fowler AK et al. 1973. Brief communication: C-type particles in normal human placentas. J. Natl. Cancer Inst. 50:1081–84
    [Google Scholar]
  94. 94.
    Dirksen ER, Levy JA. 1977. Virus-like particles in placentas from normal individuals and patients with systemic lupus erythematosus. J. Natl. Cancer Inst. 59:1187–92
    [Google Scholar]
  95. 95.
    Nelson J, Leong JA, Levy JA. 1978. Normal human placentas contain RNA-directed DNA polymerase activity like that in viruses. PNAS 75:6263–67
    [Google Scholar]
  96. 96.
    Simpson GR, Patience C, Löwer R, Tönjes RR, Moore HD et al. 1996. Endogenous D-type (HERV-K) related sequences are packaged into retroviral particles in the placenta and possess open reading frames for reverse transcriptase. Virology 222:451–56
    [Google Scholar]
  97. 97.
    Löwer R, Boller K, Hasenmaier B, Korbmacher C, Müller-Lantzsch N et al. 1993. Identification of human endogenous retroviruses with complex mRNA expression and particle formation. PNAS 90:4480–84
    [Google Scholar]
  98. 98.
    Contreras-Galindo R, Kaplan MH, Leissner P, Verjat T, Ferlenghi I et al. 2008. Human endogenous retrovirus K (HML-2) elements in the plasma of people with lymphoma and breast cancer. J. Virol. 82:9329–36
    [Google Scholar]
  99. 99.
    Contreras-Galindo R, Kaplan MH, Dube D, Gonzalez-Hernandez MJ, Chan S et al. 2015. Human endogenous retrovirus type K (HERV-K) particles package and transmit HERV-K-related sequences. J. Virol. 89:7187–201
    [Google Scholar]
  100. 100.
    Larouche JD, Trofimov A, Hesnard L, Ehx G, Zhao Q et al. 2020. Widespread and tissue-specific expression of endogenous retroelements in human somatic tissues. Genome Med 12:40
    [Google Scholar]
  101. 101.
    Andersson AC, Yun Z, Sperber GO, Larsson E, Blomberg J. 2005. ERV3 and related sequences in humans: structure and RNA expression. J. Virol. 79:9270–84
    [Google Scholar]
  102. 102.
    Bustamante Rivera YY, Brütting C, Schmidt C, Volkmer I, Staege MS. 2017. Endogenous retrovirus 3—history, physiology, and pathology. Front. Microbiol. 8:2691
    [Google Scholar]
  103. 103.
    de Parseval N, Forrest G, Venables PJ, Heidmann T. 1999. ERV-3 envelope expression and congenital heart block: What does a physiological knockout teach us. Autoimmunity 30:81–83
    [Google Scholar]
  104. 104.
    de Parseval N, Heidmann T. 1998. Physiological knockout of the envelope gene of the single-copy ERV-3 human endogenous retrovirus in a fraction of the Caucasian population. J. Virol. 72:3442–45
    [Google Scholar]
  105. 105.
    Li JM, Fan WS, Horsfall AC, Anderson AC, Rigby S et al. 1996. The expression of human endogenous retrovirus-3 in fetal cardiac tissue and antibodies in congenital heart block. Clin. Exp. Immunol. 104:388–93
    [Google Scholar]
  106. 106.
    Deakin CT, Cornish GH, Ng KW, Faulkner N, Bolland W et al. 2021. Favorable antibody responses to human coronaviruses in children and adolescents with autoimmune rheumatic diseases. Med 2:1093–109.e6
    [Google Scholar]
  107. 107.
    Rakoff-Nahoum S, Kuebler PJ, Heymann JJ, Sheeehy ME, Ortiz GM et al. 2006. Detection of T lymphocytes specific for human endogenous retrovirus K (HERV-K) in patients with seminoma. AIDS Res. Hum. Retroviruses 22:52–56
    [Google Scholar]
  108. 108.
    Bonaventura P, Alcazer V, Mutez V, Tonon L, Martin J et al. 2022. Identification of shared tumor epitopes from endogenous retroviruses inducing high-avidity cytotoxic T cells for cancer immunotherapy. Sci. Adv. 8:eabj3671
    [Google Scholar]
  109. 109.
    Wang-Johanning F, Radvanyi L, Rycaj K, Plummer JB, Yan P et al. 2008. Human endogenous retrovirus K triggers an antigen-specific immune response in breast cancer patients. Cancer Res 68:5869–77
    [Google Scholar]
  110. 110.
    Sauter M, Schommer S, Kremmer E, Remberger K, Dolken G et al. 1995. Human endogenous retrovirus K10: expression of Gag protein and detection of antibodies in patients with seminomas. J. Virol. 69:414–21
    [Google Scholar]
  111. 111.
    Sauter M, Roemer K, Best B, Afting M, Schommer S et al. 1996. Specificity of antibodies directed against Env protein of human endogenous retroviruses in patients with germ cell tumors. Cancer Res 56:4362–65
    [Google Scholar]
  112. 112.
    Kleiman A, Senyuta N, Tryakin A, Sauter M, Karseladze A et al. 2004. HERV-K(HML-2) GAG/ENV antibodies as indicator for therapy effect in patients with germ cell tumors. Int. J. Cancer 110:459–61
    [Google Scholar]
  113. 113.
    Ishida T, Obata Y, Ohara N, Matsushita H, Sato S et al. 2008. Identification of the HERV-K gag antigen in prostate cancer by SEREX using autologous patient serum and its immunogenicity. Cancer Immun 8:15
    [Google Scholar]
  114. 114.
    Humer J, Waltenberger A, Grassauer A, Kurz M, Valencak J et al. 2006. Identification of a melanoma marker derived from melanoma-associated endogenous retroviruses. Cancer Res 66:1658–63
    [Google Scholar]
  115. 115.
    Hahn S, Ugurel S, Hanschmann KM, Strobel H, Tondera C et al. 2008. Serological response to human endogenous retrovirus K in melanoma patients correlates with survival probability. AIDS Res. Hum. Retroviruses 24:717–23
    [Google Scholar]
  116. 116.
    Buscher K, Trefzer U, Hofmann M, Sterry W, Kurth R, Denner J. 2005. Expression of human endogenous retrovirus K in melanomas and melanoma cell lines. Cancer Res 65:4172–80
    [Google Scholar]
  117. 117.
    Boller K, Janssen O, Schuldes H, Tonjes RR, Kurth R. 1997. Characterization of the antibody response specific for the human endogenous retrovirus HTDV/HERV-K. J. Virol. 71:4581–88
    [Google Scholar]
  118. 118.
    Gupta R, Michaud HA, Zeng X, Debbaneh M, Arron ST et al. 2014. Diminished humoral responses against and reduced gene expression levels of human endogenous retrovirus-K (HERV-K) in psoriasis. J. Transl. Med. 12:256
    [Google Scholar]
  119. 119.
    Tokuyama M, Gunn BM, Venkataraman A, Kong Y, Kang I et al. 2021. Antibodies against human endogenous retrovirus K102 envelope activate neutrophils in systemic lupus erythematosus. J. Exp. Med. 218:e20191766
    [Google Scholar]
  120. 120.
    Takahashi Y, Harashima N, Kajigaya S, Yokoyama H, Cherkasova E et al. 2008. Regression of human kidney cancer following allogeneic stem cell transplantation is associated with recognition of an HERV-E antigen by T cells. J. Clin. Investig. 118:1099–109
    [Google Scholar]
  121. 121.
    Cherkasova E, Weisman Q, Childs RW. 2013. Endogenous retroviruses as targets for antitumor immunity in renal cell cancer and other tumors. Front. Oncol. 3:243
    [Google Scholar]
  122. 122.
    Cherkasova E, Scrivani C, Doh S, Weisman Q, Takahashi Y et al. 2016. Detection of an immunogenic HERV-E envelope with selective expression in clear cell kidney cancer. Cancer Res 76:2177–85
    [Google Scholar]
  123. 123.
    Smith CC, Beckermann KE, Bortone DS, de Cubas AA, Bixby LM et al. 2018. Endogenous retroviral signatures predict immunotherapy response in clear cell renal cell carcinoma. J. Clin. Investig. 128:114804–20
    [Google Scholar]
  124. 124.
    Gemmell P, Hein J, Katzourakis A. 2016. Phylogenetic analysis reveals that ERVs “die young” but HERV-H is unusually conserved. PLOS Comput. Biol. 12:e1004964
    [Google Scholar]
  125. 125.
    Izsvák Z, Wang J, Singh M, Mager DL, Hurst LD. 2016. Pluripotency and the endogenous retrovirus HERVH: conflict or serendipity?. BioEssays 38:109–17
    [Google Scholar]
  126. 126.
    Mullins CS, Linnebacher M. 2012. Endogenous retrovirus sequences as a novel class of tumor-specific antigens: an example of HERV-H env encoding strong CTL epitopes. Cancer Immunol. Immunother. 61:1093–100
    [Google Scholar]
  127. 127.
    Wentzensen N, Coy JF, Knaebel HP, Linnebacher M, Wilz B et al. 2007. Expression of an endogenous retroviral sequence from the HERV-H group in gastrointestinal cancers. Int. J. Cancer 121:1417–23
    [Google Scholar]
  128. 128.
    Brudek T, Christensen T, Aagaard L, Petersen T, Hansen H, Moller-Larsen A. 2009. B cells and monocytes from patients with active multiple sclerosis exhibit increased surface expression of both HERV-H Env and HERV-W Env, accompanied by increased seroreactivity. Retrovirology 6:104
    [Google Scholar]
  129. 129.
    Mameli G, Cossu D, Cocco E, Frau J, Marrosu MG et al. 2015. Epitopes of HERV-Wenv induce antigen-specific humoral immunity in multiple sclerosis patients. J. Neuroimmunol. 280:66–68
    [Google Scholar]
  130. 130.
    Hon GM, Erasmus RT, Matsha T. 2013. Multiple sclerosis-associated retrovirus and related human endogenous retrovirus-W in patients with multiple sclerosis: a literature review. J. Neuroimmunol. 263:8–12
    [Google Scholar]
  131. 131.
    Ruprecht K, Gronen F, Sauter M, Best B, Rieckmann P, Mueller-Lantzsch N. 2008. Lack of immune responses against multiple sclerosis-associated retrovirus/human endogenous retrovirus W in patients with multiple sclerosis. J. Neurovirol. 14:143–51
    [Google Scholar]
  132. 132.
    Saini SK, Ørskov AD, Bjerregaard AM, Unnikrishnan A, Holmberg-Thydén S et al. 2020. Human endogenous retroviruses form a reservoir of T cell targets in hematological cancers. Nat. Commun. 11:5660
    [Google Scholar]
  133. 133.
    Kong Y, Rose CM, Cass AA, Williams AG, Darwish M et al. 2019. Transposable element expression in tumors is associated with immune infiltration and increased antigenicity. Nat. Commun. 10:5228
    [Google Scholar]
  134. 134.
    Bonté P-E, Arribas YA, Merlotti A, Carrascal M, Zhang JV et al. 2022. Single-cell RNA-seq-based proteogenomics identifies glioblastoma-specific transposable elements encoding HLA-I-presented peptides. Cell Rep 39:110916
    [Google Scholar]
  135. 135.
    Carter V, LaCava J, Taylor MS, Liang SY, Mustelin C et al. 2020. High prevalence and disease correlation of autoantibodies against p40 encoded by long interspersed nuclear elements in systemic lupus erythematosus. Arthritis Rheumatol 72:89–99
    [Google Scholar]
  136. 136.
    Starck SR, Tsai JC, Chen K, Shodiya M, Wang L et al. 2016. Translation from the 5′ untranslated region shapes the integrated stress response. Science 351:aad3867
    [Google Scholar]
  137. 137.
    Laumont CM, Daouda T, Laverdure JP, Bonneil E, Caron-Lizotte O et al. 2016. Global proteogenomic analysis of human MHC class I-associated peptides derived from non-canonical reading frames. Nat. Commun. 7:10238
    [Google Scholar]
  138. 138.
    Zhu Y, Orre LM, Johansson HJ, Huss M, Boekel J et al. 2018. Discovery of coding regions in the human genome by integrated proteogenomics analysis workflow. Nat. Commun. 9:903
    [Google Scholar]
  139. 139.
    Erhard F, Dölken L, Schilling B, Schlosser A. 2020. Identification of the cryptic HLA-I immunopeptidome. Cancer Immunol. Res. 8:1018–26
    [Google Scholar]
  140. 140.
    Calviello L, Hirsekorn A, Ohler U. 2020. Quantification of translation uncovers the functions of the alternative transcriptome. Nat. Struct. Mol. Biol. 27:717–25
    [Google Scholar]
  141. 141.
    Chen J, Brunner AD, Cogan JZ, Nunez JK, Fields AP et al. 2020. Pervasive functional translation of noncanonical human open reading frames. Science 367:1140–46
    [Google Scholar]
  142. 142.
    Ouspenskaia T, Law T, Clauser KR, Klaeger S, Sarkizova S et al. 2022. Unannotated proteins expand the MHC-I-restricted immunopeptidome in cancer. Nat. Biotechnol. 40:209–17
    [Google Scholar]
  143. 143.
    Kahles A, Lehmann KV, Toussaint NC, Huser M, Stark SG et al. 2018. Comprehensive analysis of alternative splicing across tumors from 8,705 patients. Cancer Cell 34:211–24.e6
    [Google Scholar]
  144. 144.
    Zhao Q, Laverdure JP, Lanoix J, Durette C, Côté C et al. 2020. Proteogenomics uncovers a vast repertoire of shared tumor-specific antigens in ovarian cancer. Cancer Immunol. Res. 8:544–55
    [Google Scholar]
  145. 145.
    Ehx G, Larouche JD, Durette C, Laverdure JP, Hesnard L et al. 2021. Atypical acute myeloid leukemia-specific transcripts generate shared and immunogenic MHC class-I-associated epitopes. Immunity 54:737–52.e10
    [Google Scholar]
  146. 146.
    Bigot J, Lalanne AI, Lucibello F, Gueguen P, Houy A et al. 2021. Splicing patterns in SF3B1-mutated uveal melanoma generate shared immunogenic tumor-specific neoepitopes. Cancer Discov. 11:1938–51
    [Google Scholar]
  147. 147.
    Attig J, Young GR, Hosie L, Perkins D, Encheva-Yokoya V et al. 2019. LTR retroelement expansion of the human cancer transcriptome and immunopeptidome revealed by de novo transcript assembly. Genome Res. 29:1578–90
    [Google Scholar]
  148. 148.
    Jang HS, Shah NM, Du AY, Dailey ZZ, Pehrsson EC et al. 2019. Transposable elements drive widespread expression of oncogenes in human cancers. Nat. Genet. 51:611–17
    [Google Scholar]
  149. 149.
    Kazachenka A, Young GR, Attig J, Kordella C, Lamprianidou E et al. 2019. Epigenetic therapy of myelodysplastic syndromes connects to cellular differentiation independently of endogenous retroelement derepression. Genome Med 11:86
    [Google Scholar]
  150. 150.
    Laumont CM, Vincent K, Hesnard L, Audemard É, Bonneil É et al. 2018. Noncoding regions are the main source of targetable tumor-specific antigens. Sci. Transl. Med. 10:eaau5516
    [Google Scholar]
  151. 151.
    Chong C, Müller M, Pak H, Harnett D, Huber F et al. 2020. Integrated proteogenomic deep sequencing and analytics accurately identify non-canonical peptides in tumor immunopeptidomes. Nat. Commun. 11:1293
    [Google Scholar]
  152. 152.
    Baudino L, Yoshinobu K, Morito N, Santiago-Raber M-L, Izui S. 2010. Role of endogenous retroviruses in murine SLE. Autoimmun. Rev. 10:27–34
    [Google Scholar]
  153. 153.
    Rappaport I, Alterman AL, Braverman S, Stackpole CW. 1987. Syngeneic monoclonal antibodies to B16 melanoma viral antigens. Cancer Res 47:5391–96
    [Google Scholar]
  154. 154.
    Leong SP, Muller J, Yetter RA, Gorelik E, Takami T, Hearing VJ. 1988. Expression and modulation of a retrovirus-associated antigen by murine melanoma cells. Cancer Res 48:4954–58
    [Google Scholar]
  155. 155.
    Huang AY, Gulden PH, Woods AS, Thomas MC, Tong CD et al. 1996. The immunodominant major histocompatibility complex class I-restricted antigen of a murine colon tumor derives from an endogenous retroviral gene product. PNAS 93:9730–35
    [Google Scholar]
  156. 156.
    Kershaw MH, Hsu C, Mondesire W, Parker LL, Wang G et al. 2001. Immunization against endogenous retroviral tumor-associated antigens. Cancer Res 61:7920–24
    [Google Scholar]
  157. 157.
    Young GR, Ploquin MJ, Eksmond U, Wadwa M, Stoye JP, Kassiotis G. 2012. Negative selection by an endogenous retrovirus promotes a higher-avidity CD4+ T cell response to retroviral infection. PLOS Pathog 8:e1002709
    [Google Scholar]
  158. 158.
    Li M, Xu F, Muller J, Hearing VJ, Gorelik E. 1998. Ecotropic C-type retrovirus of B16 melanoma and malignant transformation of normal melanocytes. Int. J. Cancer 76:430–36
    [Google Scholar]
  159. 159.
    Malarkannan S, Serwold T, Nguyen V, Sherman LA, Shastri N. 1996. The mouse mammary tumor virus env gene is the source of a CD8+ T-cell-stimulating peptide presented by a major histocompatibility complex class I molecule in a murine thymoma. PNAS 93:13991–96
    [Google Scholar]
  160. 160.
    Dudley J, Risser R. 1984. Amplification and novel locations of endogenous mouse mammary tumor virus genomes in mouse T-cell lymphomas. J. Virol. 49:92–101
    [Google Scholar]
  161. 161.
    Song E, Mao T, Dong H, Boisserand LSB, Antila S et al. 2020. VEGF-C-driven lymphatic drainage enables immunosurveillance of brain tumours. Nature 577:689–94
    [Google Scholar]
  162. 162.
    Griffin GK, Wu J, Iracheta-Vellve A, Patti JC, Hsu J et al. 2021. Epigenetic silencing by SETDB1 suppresses tumour intrinsic immunogenicity. Nature 595:309–14
    [Google Scholar]
  163. 163.
    Achleitner M, Kleefisch M, Hennig A, Peschke K, Polikarpova A et al. 2017. Lack of Trex1 causes systemic autoimmunity despite the presence of antiretroviral drugs. J. Immunol. 199:2261–69
    [Google Scholar]
  164. 164.
    Ambati J, Magagnoli J, Leung H, Wang SB, Andrews CA et al. 2020. Repurposing anti-inflammasome NRTIs for improving insulin sensitivity and reducing type 2 diabetes development. Nat. Commun. 11:4737
    [Google Scholar]
  165. 165.
    Hladik F, Burgener A, Ballweber L, Gottardo R, Vojtech L et al. 2015. Mucosal effects of tenofovir 1% gel. eLife 4:e04525
    [Google Scholar]
  166. 166.
    Keller MJ, Wood L, Billingsley JM, Ray LL, Goymer J et al. 2019. Tenofovir disoproxil fumarate intravaginal ring for HIV pre-exposure prophylaxis in sexually active women: a phase 1, single-blind, randomised, controlled trial. Lancet HIV 6:e498–508
    [Google Scholar]
  167. 167.
    Hughes SM, Levy CN, Calienes FL, Stekler JD, Pandey U et al. 2020. Treatment with commonly used antiretroviral drugs induces a type I/III interferon signature in the gut in the absence of HIV infection. Cell Rep. Med. 1:100096
    [Google Scholar]
  168. 168.
    Rajurkar M, Parikh AR, Solovyov A, You E, Kulkarni AS et al. 2022. Reverse transcriptase inhibition disrupts repeat element life cycle in colorectal cancer. Cancer Discov 12:61462–81
    [Google Scholar]
  169. 169.
    Karijolich J, Abernathy E, Glaunsinger BA. 2015. Infection-induced retrotransposon-derived noncoding RNAs enhance herpesviral gene expression via the NF-κB pathway. PLOS Pathog 11:e1005260
    [Google Scholar]
  170. 170.
    Schmidt N, Domingues P, Golebiowski F, Patzina C, Tatham MH et al. 2019. An influenza virus-triggered SUMO switch orchestrates co-opted endogenous retroviruses to stimulate host antiviral immunity. PNAS 116:17399–408
    [Google Scholar]
  171. 171.
    Lefkopoulos S, Polyzou A, Derecka M, Bergo V, Clapes T et al. 2020. Repetitive elements trigger RIG-I-like receptor signaling that regulates the emergence of hematopoietic stem and progenitor cells. Immunity 53:934–51.e9
    [Google Scholar]
  172. 172.
    Jayewickreme R, Mao T, Philbrick W, Kong Y, Treger RS et al. 2021. Endogenous retroviruses provide protection against vaginal HSV-2 disease. Front. Immunol. 12:758721
    [Google Scholar]
  173. 173.
    Rooney MS, Shukla SA, Wu CJ, Getz G, Hacohen N. 2015. Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 160:48–61
    [Google Scholar]
  174. 174.
    Desai N, Sajed D, Arora KS, Solovyov A, Rajurkar M et al. 2017. Diverse repetitive element RNA expression defines epigenetic and immunologic features of colon cancer. JCI Insight 2:e91078
    [Google Scholar]
  175. 175.
    Goel S, DeCristo MJ, Watt AC, BrinJones H, Sceneay J et al. 2017. CDK4/6 inhibition triggers anti-tumour immunity. Nature 548:471–75
    [Google Scholar]
  176. 176.
    Gannon HS, Zou T, Kiessling MK, Gao GF, Cai D et al. 2018. Identification of ADAR1 adenosine deaminase dependency in a subset of cancer cells. Nat. Commun. 9:5450
    [Google Scholar]
  177. 177.
    Leruste A, Tosello J, Ramos RN, Tauziède-Espariat A, Brohard S et al. 2019. Clonally expanded T cells reveal immunogenicity of rhabdoid tumors. Cancer Cell 36:597–612.e8
    [Google Scholar]
  178. 178.
    Krug B, De Jay N, Harutyunyan AS, Deshmukh S, Marchione DM et al. 2019. Pervasive H3K27 acetylation leads to ERV expression and a therapeutic vulnerability in H3K27M gliomas. Cancer Cell 35:782–97.e8
    [Google Scholar]
  179. 179.
    Shen JZ, Qiu Z, Wu Q, Finlay D, Garcia G et al. 2021. FBXO44 promotes DNA replication-coupled repetitive element silencing in cancer cells. Cell 184:352–69.e23
    [Google Scholar]
  180. 180.
    Espinet E, Gu Z, Imbusch CD, Giese NA, Büscher M et al. 2021. Aggressive PDACs show hypomethylation of repetitive elements and the execution of an intrinsic IFN program linked to a ductal cell of origin. Cancer Discov 11:638–59
    [Google Scholar]
  181. 181.
    Zhou X, Singh M, Sanz Santos G, Guerlavais V, Carvajal LA et al. 2021. Pharmacologic activation of p53 triggers viral mimicry response thereby abolishing tumor immune evasion and promoting antitumor immunity. Cancer Discov 11:123090–105
    [Google Scholar]
  182. 182.
    Gu Z, Liu Y, Zhang Y, Cao H, Lyu J et al. 2021. Silencing of LINE-1 retrotransposons is a selective dependency of myeloid leukemia. Nat. Genet. 53:672–82
    [Google Scholar]
  183. 183.
    Kassiotis G, Stoye JP. 2016. Immune responses to endogenous retroelements: taking the bad with the good. Nat. Rev. Immunol. 16:207–19
    [Google Scholar]
  184. 184.
    Ishak CA, Classon M, De Carvalho DD. 2018. Deregulation of retroelements as an emerging therapeutic opportunity in cancer. Trends Cancer 4:583–97
    [Google Scholar]
  185. 185.
    Jung H, Kim HS, Kim JY, Sun JM, Ahn JS et al. 2019. DNA methylation loss promotes immune evasion of tumours with high mutation and copy number load. Nat. Commun. 10:4278
    [Google Scholar]
  186. 186.
    Young GR, Stoye JP, Kassiotis G. 2013. Are human endogenous retroviruses pathogenic? An approach to testing the hypothesis. BioEssays 35:794–803
    [Google Scholar]
  187. 187.
    Mavrommatis B, Baudino L, Levy P, Merkenschlager J, Eksmond U et al. 2016. Dichotomy between T cell and B cell tolerance to neonatal retroviral infection permits T cell therapy. J. Immunol. 197:3628–38
    [Google Scholar]
  188. 188.
    Sacha JB, Kim IJ, Chen L, Ullah JH, Goodwin DA et al. 2012. Vaccination with cancer- and HIV infection-associated endogenous retrotransposable elements is safe and immunogenic. J. Immunol. 189:1467–79
    [Google Scholar]
  189. 189.
    Kassiotis G, Stoye JP. 2017. Making a virtue of necessity: the pleiotropic role of human endogenous retroviruses in cancer. Philos. Trans. R. Soc. Lond. B 372:20160277
    [Google Scholar]
  190. 190.
    Hedrick SM. 2004. The acquired immune system: a vantage from beneath. Immunity 21:607–15
    [Google Scholar]
  191. 191.
    Bauer JH, Helfand SL. 2006. New tricks of an old molecule: lifespan regulation by p53. Aging Cell 5:437–40
    [Google Scholar]
  192. 192.
    Schäfer M, Werner S. 2008. Cancer as an overhealing wound: an old hypothesis revisited. Nat. Rev. Mol. Cell Biol. 9:628–38
    [Google Scholar]
  193. 193.
    Burns KH. 2020. Our conflict with transposable elements and its implications for human disease. Annu. Rev. Pathol. 15:51–70
    [Google Scholar]
  194. 194.
    Chuong EB, Elde NC, Feschotte C. 2016. Regulatory evolution of innate immunity through co-option of endogenous retroviruses. Science 351:1083–87
    [Google Scholar]
  195. 195.
    Ferreira LM, Meissner TB, Mikkelsen TS, Mallard W, O'Donnell CW et al. 2016. A distant trophoblast-specific enhancer controls HLA-G expression at the maternal-fetal interface. PNAS 113:5364–69
    [Google Scholar]
  196. 196.
    Chikuma S, Yamanaka S, Nakagawa S, Ueda MT, Hayabuchi H et al. 2021. TRIM28 expression on dendritic cells prevents excessive T cell priming by silencing endogenous retrovirus. J. Immunol. 206:1528–39
    [Google Scholar]
  197. 197.
    Marasca F, Sinha S, Vadalà R, Polimeni B, Ranzani V et al. 2022. LINE1 are spliced in non-canonical transcript variants to regulate T cell quiescence and exhaustion. Nat. Genet. 54:2180–93
    [Google Scholar]
  198. 198.
    Ng KW, Attig J, Young GR, Ottina E, Papamichos SI et al. 2019. Soluble PD-L1 generated by endogenous retroelement exaptation is a receptor antagonist. eLife 8:e50256
    [Google Scholar]
  199. 199.
    Payer LM, Steranka JP, Ardeljan D, Walker J, Fitzgerald KC et al. 2019. Alu insertion variants alter mRNA splicing. Nucleic Acids Res 47:421–31
    [Google Scholar]
/content/journals/10.1146/annurev-immunol-101721-033341
Loading
/content/journals/10.1146/annurev-immunol-101721-033341
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error