Skip to main content
Log in

Nonlinear vibration analysis of sandwich plates with honeycomb core and graphene nanoplatelet-reinforced face-sheets

  • Original Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

This paper studies nonlinear vibration analysis of a graphene nanoplatelets’ composite sandwich. The core and two face-sheets of composite sandwich plate are fabricated from a honeycomb material and graphene nanoplatelet (GNP) reinforcements, respectively. Displacement field of sandwich plate is developed based on first-order shear deformation theory. Geometric nonlinearity is accounted in the constitutive relations based on von-Karman assumptions. After derivation of the governing partial differential motion equations through Hamilton’s principle, Galerkin’s approach is used to reduce them into a nonlinear equation of motion in terms of transverse deflection. The nonlinear frequency is found based on linear frequency and initial conditions, analytically. The nonlinear-to-linear frequency ratio is computed based on significant input parameters of honeycomb structure and graphene nanoplatelets such as thickness-to-length and thickness-to-height ratios, angle of honeycomb, various distribution, weigh fraction and geometric characteristics of graphene nanoplatelets. Before presentation of full numerical results, the comprehensive comparative study is presented for verification of the derivation and solution method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Wang ZX, Shen HS. Nonlinear analysis of sandwich plates with FGM face sheets resting on elastic foundations. Compos Struct. 2011;93(10):2521–32.

    Article  Google Scholar 

  2. Rezaiee-Pajand M, Arabi E, Masoodi AR. Nonlinear analysis of FG-sandwich plates and shells. Aerosp Sci Technol. 2019;87:178–89.

    Article  Google Scholar 

  3. Moita JS, Araújo AL, Franco Correia VM, Mota Soares CM, Mota Soares CA. Buckling and geometrically nonlinear analysis of sandwich structures. Int J Mech Sci. 2015;92:154–61.

    Article  Google Scholar 

  4. Nayak AK, Moy SSJ, Shenoi RA. Free vibration analysis of composite sandwich plates based on Reddy’s higher-order theory. Compos B Eng. 2002;33(7):505–19.

    Article  Google Scholar 

  5. Moita JS, Araújo AL, Mota Soares CM, Mota Soares CA, Herskovits J. Geometrically nonlinear analysis of sandwich structures. Compos Struct. 2016;156:135–44.

    Article  Google Scholar 

  6. Dau F, Polit O, Touratier M. C1 plate and shell finite elements for geometrically nonlinear analysis of multilayered structures. Comput Struct. 2006;84(19–20):1264–74.

    Article  Google Scholar 

  7. Chandrashekhar M, Ganguli R. Nonlinear vibration analysis of composite laminated and sandwich plates with random material properties. Int J Mech Sci. 2010;52(7):874–91.

    Article  Google Scholar 

  8. Nguyen-Van H, Nguyen-Hoai N, Chau-Dinh T, Nguyen-Thoic T. Geometrically nonlinear analysis of composite plates and shells via a quadrilateral element with good coarse-mesh accuracy. Compos Struct. 2014;112:327–38.

    Article  Google Scholar 

  9. Zhang YX, Kim KS. Geometrically nonlinear analysis of laminated composite plates by two new displacement-based quadrilateral plate elements. Compos Struct. 2006;72(3):301–10.

    Article  Google Scholar 

  10. Zippo A, Ferrari G, Amabili M, Barbieri M, Pellicano F. Active vibration control of a composite sandwich plate. Compos Struct. 2015;128:100–14.

    Article  Google Scholar 

  11. Reinaldo B, Jasmin G, Romanoff JJ. A homogenization method for geometric nonlinear analysis of sandwich structures with initial imperfections. Int J Solids Struct. 2016;87:194–205.

    Article  Google Scholar 

  12. Yang M, Li C, Zhang Y, Jia D, Zhang X, Hou Y, Li R, Wang J. Maximum undeformed equivalent chip thickness for ductile-brittle transition of zirconia ceramics under different lubrication conditions. Int J Mach Tool Manufact. 2017;122:55–65.

    Article  Google Scholar 

  13. Ganapathi M, Patel BP, Makhecha DP. Nonlinear dynamic analysis of thick composite/sandwich laminates using an accurate higher-order theory. Compos B Eng. 2004;35(4):345–55.

    Article  Google Scholar 

  14. Carrazedo R, Ribeiro R, Humberto P, Coda B. Active face prismatic positional finite element for linear and geometrically nonlinear analysis of honeycomb sandwich plates and shells. Compos Struct. 2018;200:849–63.

    Article  Google Scholar 

  15. Zhang J, Zhu X, Yang X, Zhang W. Transient nonlinear responses of an auxetic honeycomb sandwich plate under impact loads. Int J Impact Eng. 2019;134: 103383.

    Article  Google Scholar 

  16. Zhang JH, Zhang W. Multi-pulse chaotic dynamics of non-autonomous nonlinear system for a honeycomb sandwich plate. Acta Mech. 2012;223:1047–66.

    Article  MathSciNet  Google Scholar 

  17. Zhang J, Yang X, Zhang W. Free vibrations and nonlinear responses for a cantilever honeycomb sandwich plate. Adv Mater Sci Eng. 2018. https://doi.org/10.1155/2018/8162873.

    Article  Google Scholar 

  18. Hao WL, Zhang W, Yao MH. Multipulse chaotic dynamics of six-dimensional nonautonomous nonlinear system for a honeycomb sandwich plate. Int J Bifurc Chaos. 2014;24(11):1450138.

    Article  MathSciNet  Google Scholar 

  19. Nguyen DD, Pham CH. Nonlinear dynamic response and vibration of sandwich composite plates with negative Poisson’s ratio in auxetic honeycombs. J Sandwich Struct Mater. 2018;20(6):692–717.

    Article  CAS  Google Scholar 

  20. Yang M, Li C, Zhang Y, Jia D, Li R, Hou Y, Cao H, Wang J. Predictive model for minimum chip thickness and size effect in single diamond grain grinding of zirconia ceramics under different lubricating conditions. Ceram Int. 2019;45(12):14908–20.

    Article  CAS  Google Scholar 

  21. Huang BT, Li CH, Zhang YB, Ding WF, Yang M, Yang YY, Zhai H, Xu XF, Wang DZ, Debnath S, Jamil M, Li HN, Ali HM, Gupta MK, Said Z. Advances in fabrication of ceramic corundum abrasives based on sol–gel process. Chin J Aeronautics. 2021;34(6):1–17.

    Article  Google Scholar 

  22. Yaghoobi H, Taheri F. Analytical solution and statistical analysis of buckling capacity of sandwich plates with uniform and non-uniform porous core reinforced with graphene nanoplatelets. Compos Struct. 2020;252: 112700.

    Article  Google Scholar 

  23. Zhang J, Li C, Zhang Y, Yang M, Jia D, Liu G, Hou Y, Li R, Zhang N, Wu Q, Cao H. Experimental assessment of an environmentally friendly grinding process using nanofluid minimum quantity lubrication with cryogenic air. J Clean Prod. 2018;193:236–48.

    Article  CAS  Google Scholar 

  24. Nguyen NV, Nguyen LB, Nguyen-Xuan H, Lee J. Analysis and active control of geometrically nonlinear responses of smart FG porous plates with graphene nanoplatelets reinforcement based on Bézier extraction of NURBS. Int J Mech Sci. 2020;180: 105692.

    Article  Google Scholar 

  25. Guo H, Yang T, Żur KK, Reddy JN. On the flutter of matrix cracked laminated composite plates reinforced with graphene nanoplatelets. Thin-Wall Struct. 2021;158: 107161.

    Article  Google Scholar 

  26. Huang K, Guo H, Qin Z, Cao S, Chen Y. Flutter analysis of laminated composite quadrilateral plates reinforced with graphene nanoplatelets using the element-free IMLS-Ritz method. Aerosp Sci Technol. 2020;103: 105915.

    Article  Google Scholar 

  27. Thai CH, Ferreira AJM, Tran TD, Phung-Van P. Free vibration, buckling and bending analyses of multilayer functionally graded graphene nanoplatelets reinforced composite plates using the NURBS formulation. Compos Struct. 2019;220:749–59.

    Article  Google Scholar 

  28. Chen J, Zhang Z, Lu H. Structure design and properties investigation of Bi2O2Se/graphene van der Waals heterojunction from first-principles study. Surfaces and Interfaces. 2022;33. https://doi.org/10.1016/j.surfin.2022.102289.

    Article  CAS  Google Scholar 

  29. Li J, Liang Z, Chen Z, Zhang Z, Liu H, Liu, Z, Xu Z. Engineering unsaturated sulfur site in three-dimension MoS2@rGO nanohybrids with expanded interlayer spacing and disordered structure for gaseous elemental mercury trap. Chem Eng J 2023;453:139767

    Article  CAS  Google Scholar 

  30. Yu Y, Shen HS, Wang H, Hui D. Postbuckling of sandwich plates with graphene-reinforced composite face sheets in thermal environments. Compos B Eng. 2018;135:72–83.

    Article  CAS  Google Scholar 

  31. Ji H, Liang X. Nonlinear frequency and chaotic motion of the honeycomb higher-order disk with graphene nanoplatelets face sheets subjected to harmonic excitation via two-dimensional analysis. Mec Based Des Struct Mach. 2020. https://doi.org/10.1080/15397734.2021.1903493.

    Article  Google Scholar 

  32. Duan Z, Li C, Ding W, Zhang Y, Yang M, Gao T, Cao H, Xu X, Wang D, Mao C, Li HN, Kumar GM, Said Z, Debnath S, Jamil M, Ali HM. Milling force model for aviation aluminum alloy: academic insight and perspective analysis. Chin J Mech Eng. 2021;34(1):1–35.

    Article  Google Scholar 

  33. Yang YY, Gong YD, Li CH, Wen XL, Sun JY. Mechanical performance of 316L stainless steel by hybrid directed energy deposition and thermal milling process. J Mater Proces Techn. 2021;291: 117023.

    Article  CAS  Google Scholar 

  34. Li H, Zhang Y, Li C, Zhou Z, Nie X, Chen Y, Cao H, Liu B, Zhang N, Said Z, Debnath S, Jamil M, Ali HM, Sharma S. Cutting fluid corrosion inhibitors from inorganic to organic: Progress and applications. Korean J Chem Eng. 2022;39:1107–34.

    Article  CAS  Google Scholar 

  35. Xu W, Li C, Zhang Y, Ali HM, Sharma S, Li R, Yang M, Gao T, Liu M, Wang X, Said Z, Liu X, Zou Z. Electrostatic atomization minimum quantity lubrication machining: from mechanism to application. Int J Extrem Manuf. 2022;4: 042003.

    Article  Google Scholar 

  36. Gao T, Zhang Y, Li C, Wang Y, Chen Y, An Q, Zhang SLI, Cao HN, Ali H, Zhou HM, Sharma Z, Sh. Fiber-reinforced composites in milling and grinding: machining bottlenecks and advanced strategies. Front Mech Eng. 2022;17(2):24.

    Article  Google Scholar 

  37. Duan ZJ, Li CH, Zhang YB, Dong L, Bai XF, Yang M, Jia DZ, Li RZ, Cao HJ, Xu XF. Milling surface roughness for 7050 aluminum alloy cavity influenced by nozzle position of nanofluid minimum quantity lubrication. Chin J Aeronaut. 2021;34(6):33–53.

    Article  Google Scholar 

  38. Şimşek M. Nonlinear free vibration of a functionally graded nanobeam using nonlocal strain gradient theory and a novel Hamiltonian approach. Int J Eng Sci. 2016;105:12–27.

    Article  MathSciNet  Google Scholar 

  39. Ghayesh MH, Amabili M, Farokhi H. Nonlinear forced vibrations of a microbeam based on the strain gradient elasticity theory. Int J Eng Sci. 2013;63:52–60.

    Article  MathSciNet  Google Scholar 

  40. Ghadiri M, Hamed S, Hosseini S. Nonlinear dual frequency excited vibration of viscoelastic graphene sheets exposed to thermo-magnetic field. Commun Nonlinear Sci Numer Simul. 2020;83: 105111.

    Article  MathSciNet  Google Scholar 

  41. Wang X, Li C, Zhang Y, Said Z, Debath S, Sharma S, Yang M. Gao, T. Influence of texture shape and arrangement on nanofluid minimum quantity lubrication turning. The Int J Adv Manufact Techn. 2022;119(1–2):631–46.

    Article  Google Scholar 

  42. Torabi K, Afshari H, Aboutalebi FH. Vibration and flutter analyses of cantilever trapezoidal honeycomb sandwich plates. J Sandw Struct Mater. 2017;21(8):2887–920.

    Article  Google Scholar 

  43. Mohammad-Rezaei Bidgoli E, Arefi M, Mohammadimehr M. Free vibration analysis of honeycomb doubly curved shell integrated with CNT-reinforced piezoelectric layers. Mech Base Des Struct Mach. 2020. https://doi.org/10.1080/15397734.2020.1836969.

    Article  Google Scholar 

  44. Arefi M, Mohammad-Rezaei Bidgoli E, Dimitri R, Tornabene F. Free vibrations of functionally graded polymer composite nanoplates reinforced with graphene nanoplatelets. Aerosp Sci Technol. 2018;81:108–17.

    Article  Google Scholar 

  45. Arefi M, Mohammad-Rezaei Bidgoli E, Rabczuk T. Thermo-mechanical buckling behavior of FG GNP reinforced micro plate based on MSGT. Thin-Wall Struct. 2019;142:444–59.

    Article  Google Scholar 

  46. Shamsaddini Lori E, Ebrahimi F, Supeni EEB, Habibi M, Safarpour H. The critical voltage of a GPL-reinforced composite microdisk covered with piezoelectric layer. Eng Comput. 2021;37:3489–508.

    Article  Google Scholar 

  47. Guo H, Ouyang X, Yang T, Żur KK, Reddy JN. On the dynamics of rotating cracked functionally graded blades reinforced with graphene nanoplatelets. Eng Struct. 2021;249: 113286.

    Article  Google Scholar 

  48. Mohammad-Rezaei Bidgoli E, Arefi M. Free vibration analysis of microplates reinforced with functionally graded graphene nanoplatelets. Innovations in graphene-based polymer Composites. Amsterdam: Elsevier; 2022. p. 521–57.

    Google Scholar 

  49. Feng C, Kitipornchai S, Yang J. Nonlinear free vibration of functionally graded polymer composite beams reinforced with graphene nanoplatelets (GPLs). Eng Struct. 2017;140:110–9.

    Article  Google Scholar 

  50. Zhao S, Zhao Z, Yang Z, Ke LL, Kitipornchai S, Yang J. Functionally graded graphene reinforced composite structures: a review. Eng Struct. 2020;210: 110339.

    Article  Google Scholar 

  51. Rafiee M, Nitzsche F, Labrosse MR. Modeling and mechanical analysis of multiscale fiber-reinforced graphene composites: nonlinear bending, thermal post-buckling and large amplitude vibration. Int J Non-Linear Mech. 2018;103:104–12.

    Article  Google Scholar 

  52. Ganapathi M, Aditya S, Shubhendu S, Polit O, Ben ZT. Nonlinear supersonic flutter study of porous 2D curved panels including graphene platelets reinforcement effect using trigonometric shear deformable finite element. Int J Non-Linear Mech. 2020;125: 103543.

    Article  Google Scholar 

  53. Arefi M, Mohammad-Rezaei Bidgoli E, Rabczuk T. Effect of various characteristics of graphene nanoplatelets on thermal buckling behavior of FGRC micro plate based on MCST. Europ J Mech-A/Solids. 2019;77: 103802.

    Article  ADS  MathSciNet  Google Scholar 

  54. Arefi M, Amabili M. A comprehensive electro-magneto-elastic buckling and bending analyses of three-layered doubly curved nanoshell based on nonlocal three-dimensional theory. Compos Struct. 2021;257(1): 113100.

    Article  Google Scholar 

  55. Babaei H, Eslami MR. On nonlinear vibration and snap-through buckling of long FG porous cylindrical panels using nonlocal strain gradient theory. Compos Struct. 2021;256: 113125.

    Article  Google Scholar 

  56. Zhu P, Liew KM. Free vibration analysis of moderately thick functionally graded plates by local Kriging meshless method. Compos Struct. 2011;93(11):2925–44.

    Article  Google Scholar 

  57. Akavci SS, Tanrikulu AH. Static and free vibration analysis of functionally graded plates based on a new quasi-3D and 2D shear deformation theories. Compos B Eng. 2015;83:203–15.

    Article  Google Scholar 

  58. Hashemi S, Jafari AA. An analytical solution for nonlinear vibrations analysis of functionally graded plate using modified lindstedt-poincare method. Int J Appl Mech. 2020;12(1):2050003.

    Article  Google Scholar 

  59. Zenkour AM, Radwan AF. Compressive study of functionally graded plates resting on Winkler—Pasternak foundations under various boundary conditions using hyperbolic shear deformation theory. Archs Civil Mech Eng. 2018;18:645–58.

    Article  Google Scholar 

  60. Zenkour AM, Allam MNM, Radwan AF. Effects of hygrothermal conditions on cross-ply laminated plates resting on elastic foundations. Arch Civil Mech Eng. 2014;14:144–59.

    Article  Google Scholar 

  61. Zhang X, Tang Y, Zhang F, Lee C. a novel aluminum-graphite dual-ion battery. Adv Energy Mater. 2016;6(11):1502588.

    Article  Google Scholar 

  62. Zhang Y, Liu G, Ye J, Lin Y. Crushing and parametric studies of polygonal substructures based hierarchical cellular honeycombs with non-uniform wall thickness. Compos Struct. 2022;299:116087.

    Article  Google Scholar 

  63. Liu X, Liu J, Yang H, Huang B, Zeng G. Design of a high-performance graphene/SiO2-Ag periodic grating/MoS2 surface plasmon resonance sensor. Appl Opt. 2022;61(23):6752–60.

    Article  ADS  CAS  PubMed  Google Scholar 

  64. Li S, Liu Z. Scheduling uniform machines with restricted assignment. Math Biosci Eng. 2022;19(9):9697–708.

    Article  MathSciNet  PubMed  Google Scholar 

  65. Shi M, Zhu H, Chen C, Jiang J, Zhao L, Yan C. Synergistically coupling of graphene quantum dots with Zn-intercalated MnO2 cathode for high-performance aqueous Zn-ion batteries. Int J Miner Metall Mater. 2023;30(1):25–32.

    Article  CAS  Google Scholar 

  66. Lu Z, Liu W, Ding H, Chen L. Energy transfer of an axially loaded beam with a parallel-coupled nonlinear vibration isolator. J Vibr Acoust. 2022;144(5):051009.

    Article  Google Scholar 

  67. Fu Q, Gu M, Yuan J, Lin Y. Experimental study on vibration velocity of piled raft supported embankment and foundation for ballastless high speed railway. Buildings. 2022;12(11):1982.

    Article  Google Scholar 

  68. Zhang Z, Sui M, Li C, Zhou Z, Liu B, Chen Y, Said Z, Debnath S, Sharma S. Residual stress of MoS2 nano-lubricant grinding cemented carbide. Int J Adv Manuf Tech. 2022;119:5671–85.

    Article  Google Scholar 

  69. Duan Z, Li C, Zhang Y, Yang M, Gao T, Liu X, Li R, Said Z, Debnath S. Sharma, S. Mechanical behavior and Semiempirical force model of aerospace aluminum alloy milling using nano biological lubricant. Front Mech Eng. 2022. https://doi.org/10.1007/s11465-022-0720-4.

    Article  Google Scholar 

  70. Gao T, Li C, Yang M, Zhang Y, Jia D, Ding W, Debnath S, Yu T, Said Z. Wang, J,. Mechanics analysis and predictive force models for the single-diamond grain grinding of carbon fiber reinforced polymers using CNT nano-lubricant. J Mater Proces Techn. 2021;290:116976.

    Article  CAS  Google Scholar 

  71. Meng Q, Lai X, Yan Z, Su C, Wu M. Motion Planning and Adaptive Neural Tracking Control of an Uncertain Two-Link Rigid-Flexible Manipulator With Vibration Amplitude Constraint. IEEE transaction on neural networks and learning systems. 2022;33(8):3814–28.

    Article  MathSciNet  Google Scholar 

  72. Wang D, Wang X, Jin ML, He P, Zhang S. Molecular level manipulation of charge density for solid-liquid TENG system by proton irradiation. Nano Energy. 2022;103:107819.

    Article  CAS  Google Scholar 

  73. Arani AG, Haghparast E, Ghorbanpour Arani AH. Size-dependent vibration of double-bonded carbon nanotube-reinforced composite microtubes conveying fluid under longitudinal magnetic field. Polymer Composi 2016;37(5):1375–83.

    Article  Google Scholar 

  74. Xi M, Fu X, Yang H, He C, Fu L, Cheng X., Guo J. Predicted a honeycomb metallic BiC and a direct semiconducting Bi2C monolayer as excellent CO2 adsorbents. Chin Chem Lett. 2021. https://doi.org/10.1016/j.cclet.2021.12.041.

    Article  Google Scholar 

  75. Li Z, Zhang Q, Shen H, Xiao X, Kuai H, Zheng J. Buckling performance of the encased functionally graded porous composite liner with polyhedral shapes reinforced by graphene platelets under external pressure. Thin-Walled Struct. 2023;183: 110370. https://doi.org/10.1016/j.tws.2022.110370.

    Article  Google Scholar 

  76. Xu H, He T, Zhong N, Zhao B, Liu Z. Transient thermomechanical analysis of micro cylindrical asperity sliding contact of SnSbCu alloy. Tribol Int. 2022;167. https://doi.org/10.1016/j.triboint.2021.107362.

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by X (4005279/025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Arefi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammad-Rezaei Bidgoli, E., Arefi, M. Nonlinear vibration analysis of sandwich plates with honeycomb core and graphene nanoplatelet-reinforced face-sheets. Archiv.Civ.Mech.Eng 23, 56 (2023). https://doi.org/10.1007/s43452-022-00589-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-022-00589-0

Keywords

Navigation