Skip to main content

Advertisement

Log in

Experimental and numerical investigations of platinum foil/titanium plate interfaces prepared by explosive welding

  • Original Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

Platinum/titanium (Pt/Ti) bimetal composite is of utmost interest to the electrochemical industry for its superior functionality. Here, an improved explosive welding (EW) technology was introduced to join Pt foil and Ti sheet, and the microstructure evolution of the achieved Pt/Ti joint as well as the thermodynamic behaviors during the EW process was systematically investigated by various microscopic observations and smoothed particles hydrodynamics (SPH) simulation. It was found that the Pt/Ti EW interface was featured by a straight metallurgical reaction layer with a width of ~ 30 μm, and its formation mechanism was related to localized melting followed by intense mechanical mixing of participant metals. In the reaction layer, both elements of Pt and Ti were detected, and the average phase was determined to be Pt0.69Fe0.31. The EBSD analyses revealed a remarkable grain structure change near the interface, such as grain orientation deflection in Pt matrix, heat-induced grain growth in Ti matrix, and the formation of extra fine nanograins in the reaction layer. The SPH simulation well captured the morphology features of the Pt/Ti interface, and quantificationally revealed the extreme thermodynamic states of high heat of ~ 2000 K, high pressure of ~ 5 GPa, and large strain of ~ 3 during the EW process. Finally, the nanoindentation results revealed inhomogenous mechanical behaviors near the bonding interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time due to technical or time limitations.

References

  1. Hiwarkar AD, Singh S, Srivastava VC, Thakur C, Mall ID, Lo SL. Electro-chemical mineralization of recalcitrant indole by platinum-coated titanium electrode: multi-response optimization, mechanistic and sludge disposal study. Int J Environ Sci Te. 2018;15:349–60.

    Article  CAS  Google Scholar 

  2. Pushpavanam RM. Electroless deposition of platinum on titanium substrates. Mater Chem Phys. 2001;68:62–5.

    Article  Google Scholar 

  3. Basirun WJ, Pletcher D, Saraby-Reintjes A. Studies of platinum electroplating baths part iv. deposits on copper from Q Bath. J Appl Electrochem. 1996;26:873–80.

    Article  CAS  Google Scholar 

  4. Igumenov IK, Gelfond NV, Galkin PS, Morozova NB, Buleev M. I, Corrosion testing of platinum metals CVD coated titanium anodes in seawater-simulated solutions. Desalination. 2001;136:273–80.

    Article  CAS  Google Scholar 

  5. Schemed U, Seidel H. Effect of high temperature annealing on the electrical performance of titanium /platinum thin films. Thin Solid Films. 2008;516:898–906.

    Article  ADS  Google Scholar 

  6. Fujishiro S, Eylon D. Improvement of Ti alloy fatigue properties by Pt ion plating. Metall Trans A. 1980;11:1259–63.

    Article  Google Scholar 

  7. Noolu NJ, Kerr HW, Zhou Y, Xie J. Laser weldability of pt and ti alloys. Mater Sci Eng A. 2005;397:8–15.

    Article  Google Scholar 

  8. Blazynski TZ. Explosive welding. Elsevier, New York: Forming and Compaction; 1983.

    Book  Google Scholar 

  9. Bataev IA, Tanaka S, Zhou Q, Lazurenko DV, Junior AJ, Bataev AA, et al. Towards better understanding of explosive welding by combination of numerical simulation and experimental study. Mater Des. 2019;169:107649.

    Article  CAS  Google Scholar 

  10. Chu Q, Zhang M, Li J, Yan C. Experimental and numerical investigation of microstructure and mechanical behavior of titanium/steel interfaces prepared by explosive welding. Mater Sci Eng A. 2017;689:323–31.

    Article  CAS  Google Scholar 

  11. Yang M, Xu JF, Ma HH, Lei MZ, Ni XJ, Shen ZW, et al. Microstructure development during explosive welding of metal foil: morphologies, mechanical behaviors and mechanisms. Compos Part B-Eng. 2021;212:108685.

    Article  CAS  Google Scholar 

  12. Xu J, Yang M, Chen D, Ma H, Shen Z, Zhang B, Tian J. Providing a new perspective for obtaining high-quality metal coatings: fabrication and properties studies of TA2 foil on Q235 steel by explosive welding. Arch Civ Mech Eng. 2021;21(3):1–11.

    Article  Google Scholar 

  13. Yang M, Xu J, Chen D, Ma H, Shen Z, Zhang B, Tian J. Understanding interface evolution during explosive welding of silver foil and Q235 substrate through experimental observation coupled with simulation. Appl Surf Sci. 2021;566:150703.

    Article  CAS  Google Scholar 

  14. Yang M, Ma HH, Shen ZW, Huang ZC, Tian QC, Tian J. Dissimilar material welding of tantalum foil and Q235 steel plate using improved explosive welding technique. Mater Des. 2019;186:108348.

    Article  Google Scholar 

  15. Yang M, Ma HH, Shen ZW. Study on self-restrained explosive welding with high energy efficiency. Int J Adv Manuf Tech. 2018;99:3123–32.

    Article  Google Scholar 

  16. Zhang Z, Feng D, Liu MB. Investigation of explosive welding through whole process modeling using a density adaptive SPH method. J Manuf Process. 2018;35:169–89.

    Article  Google Scholar 

  17. Corbett BM. Numerical simulations of target hole diameters for hypervelocity impacts into elevated and room temperature bumpers. Int J Impact Eng. 2006;33:43–440.

    Article  Google Scholar 

  18. Pradeep P, Parchuri K, Kotegawa S, Yamamoto H, Ito K, Mori A, Hokamoto K. Benefits of intermediate-layer formation at the interface of Nb/Cu and Ta/Cu explosive clads. Mater Des. 2019;166:107610.

    Article  Google Scholar 

  19. Lei MZ, Yang M, Ni XJ, Ma HH, Xu SL. Experiment and simulation investigations on w/cu components prepared by strong confinement thermal explosive welding. Nucl Mater Energy. 2021;29:101086.

    Article  CAS  Google Scholar 

  20. Paul H, Chulist R, Miszczyk M, Lityńska-Dobrzyńska L, Cios G, Gałka A, Szlezynger M. Towards a better understanding of the phase transformations in explosively welded copper to titanium sheets. Mater Sci Eng A. 2020;784:139285.

    Article  CAS  Google Scholar 

  21. Chen X, Inao D, Tanaka S, Mori A, Li X, Hokamoto K. Explosive welding of Al alloys and high strength duplex stainless steel by controlling energetic conditions. J Manuf Process. 2020;58:1318–33.

    Article  Google Scholar 

  22. Yang M, Xu JF, Ma HH, Shen ZW, Zhang BY, Cheng DG. Elucidating the formation mechanism of the vortex at the Ta/Fe explosively welded interface using microstructure characterizations and numerical simulations metall. Mater Trans A. 2022;53:364–9.

    Article  CAS  Google Scholar 

  23. Paul H, Chulist R, Lityn´ Ska-Dobrzyn´ Ska L, Prazmowski M, Faryna M, Mania I, Szulc Z, Miszczyk MM, Kurek A. Interfacial reactions and microstructure related properties of explosively welded tantalum and steel sheets with copper interlayer. Mater Des. 2021;208:109873.

    Article  CAS  Google Scholar 

  24. Xu JF, Yang M, Ma HH, Shen ZW, Zhang BY, Rui TA, Zhao RJ. Experimental and numerical investigations on the microstructural features and mechanical properties of explosive welded niobium-steel interface. Mater Des. 2022;218:110716.

    Article  CAS  Google Scholar 

  25. Zhang H, Jiao KX, Zhang JL, Liu J. Microstructure and mechanical properties investigations of copper-steel composite fabricated by explosive welding. Mater Sci Eng A. 2018;731:278–87.

    Article  CAS  Google Scholar 

  26. Sapanathan T, Raoelison RN, Buiron N, Rachik M. In situ metallic porous structure formation due to ultra high heating and cooling rates during an electromagnetic pulse welding. Scripta Mater. 2017;128:10–3.

    Article  CAS  Google Scholar 

  27. Lee T, Nassiri A, Dittrich T, Vivek A, Daehn GS. Microstructure development in impact welding of a model system. Scr Mater. 2020;178:203–6.

    Article  CAS  Google Scholar 

  28. Paul H, Miszczyk MM, Chulist R, Prażmowski M, Morgiel J, Gałka A, Faryna M, Brisset F. Microstructure and phase constitution in the bonding zone of explosively welded tantalum and stainless steel sheets. Mater Des. 2018;153:177–89.

    Article  CAS  Google Scholar 

  29. Zhang T, Wang W, Zhang W, Wei Y, Cao X, Yan Z. Microstructure evolution and mechanical properties of an aa6061/az31b alloy plate fabricated by explosive welding. J Alloy Compd. 2017;735:1759–68.

    Article  Google Scholar 

  30. Okamoto H. Pt-Ti (Platinum-Titanium). J Phase Equilib Diffus. 2009;30:217–8.

    Article  CAS  Google Scholar 

  31. Ji C, Chen L, Long Y, Xu QJ. Dynamic behaviors of multi-layered steel targets with air gaps subjected to the impact of EFP simulants. Int J Prot Structures. 2015;6:65–80.

    Article  Google Scholar 

  32. Segal VM. Materials processing by simple shear. Mater Sci Eng A. 1995;197:157–64.

    Article  Google Scholar 

  33. Fronczek DM, Chulist R, Litynska-Dobrzynska L, Kac S, Schell N, Kania Z, Szulc Z, Wojewoda-Budka J. Microstructure and kinetics of intermetallic phase growth of three-layered A1050/AZ31/A1050 clads prepared by explosive welding combined with subsequent annealing. Mater Des. 2017;130:120–30.

    Article  CAS  Google Scholar 

  34. Chu Q, Xia T, Zhao P, Zhang M, Zheng J, Yan F, Luo H. Interfacial investigation of explosion-welded Al/steel plate: the microstructure, mechanical properties and residual stresses. Mater Sci Eng A. 2022;833:142525.

    Article  CAS  Google Scholar 

  35. Liu K, Chen P, Ran C, Zhou Q, Feng J, Fan X. Investigation on the interfacial microstructure and mechanical properties of the w-cu joints fabricated by hot explosive welding. J Mater Process Tech. 2021;300:117–400.

    Google Scholar 

  36. Mousavi SAAA, Sartangi PF. Experimental investigation of explosive welding of CP-titanium/AISI 304 stainless steel. Mater Des. 2009;30:459–68.

    Article  Google Scholar 

  37. Zeng XY, Li XQ, Li XJ, Mo F, Yan HH. Numerical study on the effect of thermal conduction on explosive welding interface. Int J Adv Manuf Technol. 2019;104:2607–17.

    Article  Google Scholar 

  38. Zhou Q, Feng JR, Chen PW. Numerical and experimental studies on the explosive welding of tungsten foil to copper. Materials. 2017;10:984.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  39. Nassiri A, Vivek A, Abke T, Liu B, Lee T, Daehn G. Depiction of interfacial morphology in impact welded ti/cu bimetallic systems using smoothed particle hydrodynamics. Appl Phys Lett. 2017;110:231601.

    Article  ADS  Google Scholar 

  40. Song J, Kostka A, Veehmayer M, Raabe D. Hierarchical microstructure of explosive joints: example of titanium to steel cladding. Mater Sci Eng, A. 2011;528:2641–7.

    Article  Google Scholar 

  41. Yang M, Ma H, Shen Z, Cheng DG, Deng YX. Microstructure and mechanical properties of Al-Fe meshing bonding interfaces manufactured by explosive welding. T Nonferr Metal Soc. 2019;29(4):680–91.

    Article  CAS  Google Scholar 

  42. Rosenthal I, Miriyev A, Tuval E, Stern A, Frage N. Characterization of explosionbonded Ti-alloy/steel plate with Ni interlayer [J]. Metallograp Microstruct Analy. 2014;3:97–103.

    Article  CAS  Google Scholar 

  43. Venkateswaran P, Xu ZH, Li XD. Determination of mechanical properties of Al-Mg alloys dissimilar friction stir welded interface by indentation methods [J]. J Mater Sci. 2009;44:4140–7.

    Article  ADS  CAS  Google Scholar 

  44. Zhang H, Jiao KX, Zhang JL, Liu J. Comparisons of the microstructures and micro-mechanical properties of copper/steel explosive-bonded wave interfaces. Mater Sci Eng A. 2019;756:430–41.

    Article  CAS  Google Scholar 

  45. Yang M, Ma H, Yao D, Shen Z. Experimental study for manufacturing 316L/CuCrZr hollow structural component, Fusion. Eng Des. 2019;144:107–18.

    CAS  Google Scholar 

Download references

Acknowledgements

The reported research is supported by the Natural Science Foundation of the Anhui Higher Education Institution (No. KJ2021A0461), Independent subject of State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines (No. SKLMRDPC20ZZ07), Anhui Province Natural Science Foundation (No. 2108085QA40), University-level key projects of Anhui University of science and technology (No. xjzd2020-03), and the National Science Foundation for Young Scientists of China (12102427, 12102202).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Yang.

Ethics declarations

Conflict of interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Yang, M. Experimental and numerical investigations of platinum foil/titanium plate interfaces prepared by explosive welding. Archiv.Civ.Mech.Eng 23, 51 (2023). https://doi.org/10.1007/s43452-022-00591-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-022-00591-6

Keywords

Navigation