Skip to main content
Log in

Tribological properties of hybrid aluminium matrix composites reinforced with boron carbide and ilmenite particles for brake rotor applications

  • Original Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

In the present study, stir casting process was employed to incorporate a blend mixture of ilmenite (FeTiO3) and boron carbide (B4C) particles in the matrix of LM13 base alloy. The study demonstrated the effect of individual reinforcement, weight percentage and mixing proportion on wear behaviour of LM13 alloy for brake rotor applications. Composite with 15 wt.% of reinforcement having 75% proportion of boron carbide (15BI-31 composite) shows change in silicon morphology to globular and highest refinement of silicon structure. Highest wear resistance, highest hardness, lowest coefficient of thermal expansion and lowest friction coefficient values were obtained for 15BI-31 composites. The addition of ilmenite particles enhances the properties of BI composites by making the strong interfacial bonding and enhancing the oxidation rate of sliding surface. However, the increase in dislocation density by boron carbide particles helps in enhancing the hardness of composites which contributes in providing the stability to mechanical mixed layer. The comparable wear property (17% higher wear rate), low processing cost and low material cost of 15BI-31 composite make it a suitable material for brake rotor applications. The predominant wear mechanism for composites was observed to be abrasive wear and delamination wear. However, the severity of wear mechanism changes as the applied load increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also form as part of an ongoing study.

References

  1. Tayyebi M, Alizadeh M. A novel two-step method for producing Al/Cu functionally graded metal matrix composite. J Alloys Compd. 2022. https://doi.org/10.1016/j.jallcom.2022.165078.

    Article  Google Scholar 

  2. Huang J, Tayyebi M, Assari AH. Effect of SiC particle size and severe deformation on mechanical properties and thermal conductivity of Cu/Al/Ni/SiC composite fabricated by ARB process. J Manuf Process. 2021;68:57–68. https://doi.org/10.1016/j.jmapro.2021.07.017.

    Article  Google Scholar 

  3. Wang Y, Tayyebi M, Assari A. Fracture toughness, wear, and microstructure properties of aluminum/titanium/steel multi-laminated composites produced by cross-accumulative roll-bonding process. Arch Civ Mech Eng. 2022;22:49. https://doi.org/10.1007/s43452-021-00355-8.

    Article  Google Scholar 

  4. Tayyebi M, Rahmatabadi D, Adhami M, Hashemi R. Influence of ARB technique on the microstructural, mechanical and fracture properties of the multilayered Al1050/Al5052 composite reinforced by SiC particles. J Mater Res Technol. 2019;8:4287–301. https://doi.org/10.1016/j.jmrt.2019.07.039.

    Article  CAS  Google Scholar 

  5. Gupta R, Sharma S, Nanda T, Pandey OP. A comparative study of dry sliding wear behaviour of sillimanite and rutile reinforced LM27 aluminium alloy composites. Mater Res Express. 2020. https://doi.org/10.1088/2053-1591/ab61a2.

    Article  Google Scholar 

  6. Gupta R, Sharma S, Nanda T, Pandey OP. Wear studies of hybrid AMCs reinforced with naturally occurring sillimanite and rutile ceramic particles for brake-rotor applications. Ceram Int. 2020;46:16849–59. https://doi.org/10.1016/j.ceramint.2020.03.262.

    Article  CAS  Google Scholar 

  7. Gupta R, Nanda T, Pandey OP. Comparison of wear behaviour of LM13 Al−Si alloy based composites reinforced with synthetic (B4C) and natural (ilmenite) ceramic particles. Trans Nonferrous Met Soc China. 2021;31:3613–25. https://doi.org/10.1016/S1003-6326(21)65752-7.

    Article  CAS  Google Scholar 

  8. Gupta R, Nanda T, Pandey OP. Effect of high operating temperatures on the wear characteristics of boron carbide and ilmenite reinforced LM13 alloy based composites. J Tribol. 2022. https://doi.org/10.1115/1.4054318.

    Article  Google Scholar 

  9. Mahmoud ERI, Takahashi M, Shibayanagi T, Ikeuchi K. Wear characteristics of surface-hybrid-MMCs layer fabricated on aluminum plate by friction stir processing. Wear. 2010;268:1111–21. https://doi.org/10.1016/j.wear.2010.01.005.

    Article  CAS  Google Scholar 

  10. Rejil CM, Dinaharan I, Vijay SJ, Murugan N. Microstructure and sliding wear behavior of AA6360(TiC + B4C) hybrid surface composite layer synthesized by friction stir processing on aluminum substrate. Mater Sci Eng A. 2012;552:336–44. https://doi.org/10.1016/j.msea.2012.05.049.

    Article  CAS  Google Scholar 

  11. Umanath K, Palanikumar K, Selvamani ST. Analysis of dry sliding wear behaviour of Al6061/SiC/Al2O3 hybrid metal matrix composites. Compos Part B. 2013;53:159–68. https://doi.org/10.1016/j.compositesb.2013.04.051.

    Article  CAS  Google Scholar 

  12. Zhang Z, Topping T, Li Y, Vogt R, Zhou Y, Haines C, Paras J, Kapoor D, Schoenung JM, Lavernia EJ. Mechanical behavior of ultrafine-grained Al composites reinforced with B4C nanoparticles. Scr Mater. 2011;65:652–5. https://doi.org/10.1016/j.scriptamat.2011.06.037.

    Article  CAS  Google Scholar 

  13. Kalaiselvan K, Murugan N, Parameswaran S. Production and characterization of AA6061–B4C stir cast composite. Mater Des. 2011;32:4004–9. https://doi.org/10.1016/j.matdes.2011.03.018.

    Article  CAS  Google Scholar 

  14. Kaur K, Pandey OP. Microstructural characteristics of spray formed zircon sand reinforced LM13 composite. J Alloys Compd. 2010;503:410–5. https://doi.org/10.1016/j.jallcom.2010.04.249.

    Article  CAS  Google Scholar 

  15. Shorowordi KM, Haseeb ASMA, Celis JP. Tribo-surface characteristics of Al-B4C and Al-SiC composites worn under different contact pressures. Wear. 2006;261:634–41. https://doi.org/10.1016/j.wear.2006.01.023.

    Article  CAS  Google Scholar 

  16. Fadavi Boostani A, Tahamtan S, Jiang ZY, Wei D, Yazdani S, Azari Khosroshahi R, Taherzadeh Mousavian R, Xu J, Zhang X, Gong D. Enhanced tensile properties of aluminium matrix composites reinforced with graphene encapsulated SiC nanoparticles. Compos Part A Appl Sci Manuf. 2015;68:155–63. https://doi.org/10.1016/j.compositesa.2014.10.010.

    Article  CAS  Google Scholar 

  17. Wannasin J, Flemings MC. Fabrication of metal matrix composites by a high-pressure centrifugal infiltration process. J Mater Process Technol. 2005;169:143–9. https://doi.org/10.1016/j.jmatprotec.2005.03.004.

    Article  CAS  Google Scholar 

  18. Rohatgi PK, Pasciak K, Narendranath CS, Ray S, Sachdev A. Evolution of microstructure and local thermal conditions during directional solidification of A356-SiC particle composites. J Mater Sci. 1994;29:5357–66. https://doi.org/10.1007/BF01171548.

    Article  ADS  CAS  Google Scholar 

  19. Tham LM, Gupta M, Cheng L. Effect of limited matrix-reinforcement interfacial reaction on enhancing the mechanical properties of aluminium-silicon carbide composites. Acta Mater. 2001;49:3243–53. https://doi.org/10.1016/S1359-6454(01)00221-X.

    Article  ADS  CAS  Google Scholar 

  20. Sharma S, Gupta R, Nanda T, Pandey OP. Influence of two different range of sillimanite particle reinforcement on tribological characteristics of LM30 based composites under elevated temperature conditions. Mater Chem Phys. 2021. https://doi.org/10.1016/j.matchemphys.2020.123988.

    Article  Google Scholar 

  21. Hayun S, Dilman H, Dariel MP, Frage N. The effect of aluminum on the microstructure and phase composition of boron carbide infiltrated with silicon. Mater Chem Phys. 2009;118:490–5. https://doi.org/10.1016/j.matchemphys.2009.08.023.

    Article  CAS  Google Scholar 

  22. Prasad DS, Shoba C, Ramanaiah N. Investigations on mechanical properties of aluminum hybrid composites. J Mater Res Technol. 2014;3:79–85. https://doi.org/10.1016/j.jmrt.2013.11.002.

    Article  CAS  Google Scholar 

  23. Nyanor P, El-Kady O, Yehia HM, Hamada AS, Hassan MA. Effect of bimodal-sized hybrid TiC–CNT reinforcement on the mechanical properties and coefficient of thermal expansion of aluminium matrix composites. Met Mater Int. 2021;27:753–66. https://doi.org/10.1007/s12540-020-00802-w.

    Article  CAS  Google Scholar 

  24. Wagih A, Abu-Oqail A, Fathy A. Effect of GNPs content on thermal and mechanical properties of a novel hybrid Cu-Al2O3/GNPs coated Ag nanocomposite. Ceram Int. 2019;45:1115–24. https://doi.org/10.1016/j.ceramint.2018.10.001.

    Article  CAS  Google Scholar 

  25. Bhowmik A, Dey D, Biswas A. Characteristics study of physical, mechanical and tribological behaviour of SiC/TiB2 dispersed aluminium matrix composite. SILICON. 2022;14:1133–46. https://doi.org/10.1007/s12633-020-00923-2.

    Article  CAS  Google Scholar 

  26. He T, Lu T, Ciftci N, Tan H, Uhlenwinkel V, Nielsch K, Scudino S. Mechanical properties and tribological behavior of aluminum matrix composites reinforced with Fe-based metallic glass particles: Influence of particle size. Powder Technol. 2020;361:512–9. https://doi.org/10.1016/j.powtec.2019.11.088.

    Article  CAS  Google Scholar 

  27. Hosseini N, Karimzadeh F, Abbasi MH, Enayati MH. A comparative study on the wear properties of coarse-grained Al6061 alloy and nanostructured Al6061-Al2O3 composites. Tribol Int. 2012;54:58–67. https://doi.org/10.1016/j.triboint.2012.04.020.

    Article  CAS  Google Scholar 

  28. Zhu H, Jar C, Song J, Zhao J, Li J, Xie Z. High temperature dry sliding friction and wear behavior of aluminum matrix composites (Al3Zr+α-Al2O3)/Al. Tribol Int. 2012;48:78–86. https://doi.org/10.1016/j.triboint.2011.11.011.

    Article  CAS  Google Scholar 

  29. Lin F, Wang J, Wu H, Jia F, Lu Y, Ren M, Yang M, Chen Z, Jiang Z. Synergistic effects of TiC and graphene on the microstructure and tribological properties of Al2024 matrix composites. Adv Powder Technol. 2021;32:3635–49. https://doi.org/10.1016/j.apt.2021.08.015.

    Article  CAS  Google Scholar 

  30. Lakshmikanthan A, Bontha S, Krishna M, Koppad PG, Ramprabhu T. Microstructure, mechanical and wear properties of the A357 composites reinforced with dual sized SiC particles. J Alloys Compd. 2019;786:570–80. https://doi.org/10.1016/j.jallcom.2019.01.382.

    Article  CAS  Google Scholar 

  31. Manikandan R, Arjunan TV, Pdsfsdh ARNO. Studies on micro structural characteristics, mechanical and tribological behaviours of boron carbide and cow dung ash reinforced aluminium (Al 7075). Hyb Metal Matr Comp. 2020. https://doi.org/10.1016/j.compositesb.2019.107668.

    Article  Google Scholar 

Download references

Funding

No funding was available for the present study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. P. Pandey.

Ethics declarations

Conflict of interests

The authors have no conflicts of interest to declare. All co-authors have seen and agreed with the contents of the manuscript.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, R., Nanda, T. & Pandey, O.P. Tribological properties of hybrid aluminium matrix composites reinforced with boron carbide and ilmenite particles for brake rotor applications. Archiv.Civ.Mech.Eng 23, 47 (2023). https://doi.org/10.1007/s43452-022-00569-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-022-00569-4

Keywords

Navigation