Skip to main content
Log in

Nishanbaevite, KAl2O(AsO4)(SO4), a new As/S-ordered arsenate-sulfate mineral of fumarolic origin

  • Research
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The new mineral nishanbaevite, ideally KAl2O(AsO4)(SO4), was found in sublimates of the Arsenatnaya fumarole at the Second scoria cone of the Northern Breakthrough of the Great Tolbachik Fissure Eruption, Tolbachik volcano, Kamchatka, Russia. It is associated with euchlorine, alumoklyuchevskite, langbeinite, urusovite, lammerite, lammerite-β, ericlaxmanite, kozyrevskite, and hematite. Nishanbaevite occurs as long-prismatic or lamellar crystals up to 0.03 mm typically combined in brush-like aggregates and crusts up to 1.5 mm across. It is transparent, colourless, with vitreous lustre. Dcalc = 3.012 g cm− 3. Nishanbaevite is optically biaxial (–), α = 1.552, β ≈ γ = 1.567. The chemical composition (average of seven analyses) is: Na2O 3.79, K2O 8.01, CaO 0.10, CuO 0.21, Al2O3 30.08, Fe2O3 0.50, SiO2 1.62, P2O5 0.66, As2O5 32.23, SO3 22.59, total 99.79 wt%. The empirical formula calculated based on 9 O apfu is: (K0.57Na0.41Ca0.01)Σ0.99(Al1.99Fe3+0.02Cu0.01)Σ2.02(As0.95S0.95Si0.09P0.03)Σ2.02O9. Nishanbaevite is orthorhombic, Pbcm, a = 15.487(3), b = 7.2582(16), c = 6.6014(17) Å, V = 742.1(3) Å3 and Z = 4. The strongest reflections of the powder XRD pattern [d,Å(I)(hkl)] are: 15.49(100)(100), 6.56(30)(110), 4.653(29)(111), 3.881(54)(400), 3.298(52)(002), 3.113(29)(121), and 3.038(51)(202, 411). The crystal structure, solved from single-crystal XRD data (R = 7.58%), is unique. It is based on the complex heteropolyhedral sheets formed by zig-zag chains of Al-centred polyhedra (alternating trigonal bipyramids AlO5 and octahedra AlO6 sharing edges) and isolated tetrahedra AsO4 and SO4. Adjacent chains of Al polyhedra are connected via AsO4 tetrahedra to form a heteropolyhedral double-layer. Its topological peculiarity is considered and compared with those in structurally related compounds. The (K,Na) site is located in the interlayer space between SO4 tetrahedra. The position of nishanbaevite among the arsenate-sulfates and their specific structural features are discussed. The mineral is named in honour of the Russian mineralogist Tursun Prnazorovich Nishanbaev (1955–2017).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agilent Technologies (2014) CrysAlisPro Software system, version 1.171.37.34. Agilent Technologies UK Ltd, Oxford, UK

    Google Scholar 

  • Bald L, Gruehn R (1981) Die kristallstruktur von einem sulfat-reichen oxidsulfat des zinks. Naturwissenschaften 68:39 (in German)

    Article  Google Scholar 

  • Berlepsch P, Armbruster T, Brugger J, Bykova EY, Kartashov PM (1999) The crystal structure of vergasovaite Cu3O[(Mo,S)O4SO4], and its relation to synthetic Cu3O(MoO4)2. Eur J Mineral 11:101–110

    Article  Google Scholar 

  • Blatov VA, Shevchenko AP, Proserpio DM (2014) Applied topological analysis of crystal structures with the program package ToposPro. Cryst Growth Des 14:3576–3586

    Article  Google Scholar 

  • Britvin SN, Dolivo-Dobrovolsky DV, Krzhizhanovskaya MG (2017) Software for processing the X-ray powder diffraction data obtained from the curved image plate detector of Rigaku RAXIS Rapid II diffractometer. Zapiski RMO 146(3):104–107 (in Russian)

    Google Scholar 

  • Chukanov NV, Möhn G, Dal Bo F, Zubkova NV, Varlamov DA, Pekov IV, Chollet P, Vessely Ya, Jouffret L, Henot J-M, Friis H, Ksenofontov DA, Agakhanov AA, Britvin SN, Desor J, Koshlyakova NN, Pushcharovsky DYu (2021) Oberwolfachite, SrFe3 +3(AsO4)(SO4)(OH)6, a new alunite-supergroup mineral from the Clara mine, Schwarzwald, Germany and Monterniers mine, Rhône, France. Mineral Mag 85:808–816

    Article  Google Scholar 

  • Colombo F, Rius J, Vallcorba O, Pannunzio Miner EV (2014) The crystal structure of sarmientite, Fe3 +2(AsO4)(SO4)(OH)·5H2O, solved ab initio from laboratory powder diffraction data. Mineral Mag 78:347–360

    Article  Google Scholar 

  • Eby RK, Hawthorne FC (1993) Structural relations in copper oxysalt minerals. I. Structural hierarchy. Acta Crystallogr B49:28–56

    Article  Google Scholar 

  • Fedotov SA, Markhinin YK (eds) (1983) The great Tolbachik Fissure Eruption. Cambridge Univ. Press, New York

    Google Scholar 

  • Gagné OC, Hawthorne FC (2015) Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen. Acta Crystallogr B71:562–578

    Google Scholar 

  • Giuseppetti G, Tadini C (1989) Beudantite: PbFe3(SO4)(AsO4)(OH)6, its crystal structure, tetrahedral site disordering and scattered Pb distribution. N Jb Mineral Mh 1989: 27–33

  • Hase M, Kuroe H, Pomjakushin VYu, Keller L, Tamura R, Terada N, Matsushita Y, Dönni A, Sekine T (2015) Magnetic structure of the spin-1/2 frustrated quasi-one-dimensional antiferromagnet Cu3Mo2O9: appearance of a partial disordered state. Phys Rev B 92:054425

    Article  Google Scholar 

  • Jambor JL, Owens DR, Grice JD, Feinglos MN (1996) Gallobeudantite, PbGa3[(AsO4),(SO4)]2 (OH)6, a new mineral species from Tsumeb, Namibia, and associated new gallium analogues of the alunite-jarosite family. Can Mineral 34:1305–1315

    Google Scholar 

  • Kampf AR, Nash BP, Dini M, Molina Donso AA (2017) Juansilvaite, Na5Al3[AsO3(OH)]4[AsO2(OH)2]2(SO4)2·4H2O, a new arsenate-sulfate from the Torrecillas mine, Iquique Province, Chile. Mineral Mag 81:619–628

    Article  Google Scholar 

  • Lengauer CL, Giester G, Kirchner E (2004) Leogangite, Cu10(AsO4)4(SO4)(OH)6 ·8H2O, a new mineral from the Leogang mining district, Salzburg province, Austria. Mineral Petrol 81:187–201

    Article  Google Scholar 

  • Majzlan J, Lazic B, Armbruster Th, Jonson MB, White MA, Fisher RA, Plasil J, Loun J, Skoda R, Novak M (2012) Crystal structure, thermodynamic properties, and paragenesis of bukovskýite, Fe2(AsO4)(SO4)(OH)·9H2O. J Mineral Petrol Sci 107:133–148

    Article  Google Scholar 

  • Nazarchuk EV, Siidra OI, Nekrasova DO, Shilovskikh VV, Borisov AS, Avdontseva EY (2020) Glikinite, Zn3O(SO4)2, a new anhydrous zinc oxysulfate mineral structurally based on OZn4 tetrahedra. Mineral Mag 84:563–567

    Article  Google Scholar 

  • Nekrasova DO, Siidra OI, Zaitsev AN, Ugolkov VL, Colmont M, Charkin DO, Mentré O, Chen R, Kovrugin VM, Borisov AS (2021) A fumarole in a one-pot: synthesis, crystal structure and properties of Zn- and Mg-analogs of itelmenite and a synthetic analog of glikinite. Phys Chem Minerals 48 Article number: 6

  • Pekov IV, Zubkova NV, Yapaskurt VO, Belakovskiy DI, Lykova IS, Vigasina MF, Sidorov EG, Pushcharovsky DYu (2014) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. I. Yurmarinite, Na7(Fe3+,mg,Cu)4(AsO4)6. Mineral Mag 78:905–917

    Article  Google Scholar 

  • Pekov IV, Koshlyakova NN, Zubkova NV, Lykova IS, Britvin SN, Yapaskurt VO, Agakhanov AA, Shchipalkina NV, Turchkova AG, Sidorov EG (2018) Fumarolic arsenates – a special type of arsenic mineralization. Eur J Mineral 30:305–322

    Article  Google Scholar 

  • Pekov IV, Britvin SN, Krivovichev SV, Yapaskurt VO, Vigasina MF, Turchkova AG, Sidorov EG (2021) Vasilseverginite, Cu9O4(AsO4)2(SO4)2, a new fumarolic mineral with a hybrid structure containing novel type of anion-centered tetrahedral structural units. Amer Mineral 106:633–640

    Article  Google Scholar 

  • Reichelt W, Steiner U, Söhnel T, Oeckler O, Duppel V, Kienle L (2005) Mischkristallbildung im system Cu3Mo2O9 / Zn3Mo2O9. Z Anorg Allg Chem 631:596–603 (in German)

    Article  Google Scholar 

  • Sabelli C (1980) The crystal structure of chalcophyllite. Zeit Krist - Crystalline Mater 151:129–140

    Article  Google Scholar 

  • Sarp H, Černy R, Puscharovsky DYu, Schouwink P, Teyssier J, Williams PA, Babalik H, Mari G (2014) La barrotite, Cu9Al(HSiO4)2[(SO4)(HAsO4)0.5](OH)12·8H2O, un nouveau minéral de la mine de Roua (Alpes-Maritimes, France). Riviera Scientifique 98:3–22

    Google Scholar 

  • Shchipalkina NV, Pekov IV, Koshlyakova NN, Britvin SN, Zubkova NV, Varlamov DA, Sidorov EG (2020) Unusual silicate mineralization in fumarolic sublimates of the Tolbachik volcano, Kamchatka, Russia – Part 1: Neso-, cyclo-, ino- and phyllosilicates. Eur J Mineral 32:101–119

    Article  Google Scholar 

  • Söhnel T, Reichelt W, Oppermann H, Mattausch HJ, Simon A (1996) Zum system Zn/Mo/O. I. Phasenbestand und eigenschaften der ternären zinkmolybdate; struktur von Zn3Mo2O9. Z Anorg Allg Chem 622:1274–1280 (in German)

    Article  Google Scholar 

  • Tantardini C, Oganov AR (2021) Thermochemical electronegativities of the elements. Nat Commun 12:2087

  • Shevchenko AP, Blatov VA (2021) Simplify to understand: how to elucidate crystal structures? Struct Chem 32:507–519

    Article  Google Scholar 

  • Shevchenko AP, Shabalin AA, Karpukhin IYu, Blatov VA (2022) Topological representations of crystal structures: generation, analysis and implementation in the TopCryst system. STAM Methods 2(1):250–265

    Google Scholar 

  • Siidra OI, Nazarchuk EV, Pautov LA, Borisov AS, Avdontseva EY (2021) Karlditmarite, IMA 2021-003. CNMNC Newsl 61; Mineral Mag 85:459–463

    Google Scholar 

  • Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Crystallogr –71:3–8

    Google Scholar 

  • Symonds RB, Reed MH (1993) Calculation of multicomponent chemical equilibria in gas-solid-liquid systems: calculation methods, thermochemical data, and applications to studies of high-temperature volcanic gases with examples from Mount St. Helens. Amer J Scie 293:758–864

    Article  Google Scholar 

  • Szymański JT (1988) The crystal structure of beudantite, Pb(Fe,Al)3[(as,S)O4]2(OH)6. Can Mineral 26:923–932

    Google Scholar 

  • Zelenski ME, Zubkova NV, Pekov IV, Polekhovsky YS, Pushcharovsky DY (2012) Cupromolybdite, Cu3O(MoO4)2, a new fumarolic mineral from the Tolbachik volcano, Kamchatka Peninsula, Russia. Eur J Mineral 24(4):749–757

    Article  Google Scholar 

  • Zubkova NV, Pushcharovsky DYu, Giester G, Tillmanns E, Pekov IV, Kleimenov DA (2002) The crystal structure of arsentsumebite, Pb2Cu[(As,S)O4]2(OH). Mineral Petrol 75:79–88

    Article  Google Scholar 

Download references

Acknowledgements

SEM and EPMA studies were performed in Laboratory of Analytical Techniques of High Spatial Resolution, Department of Petrology, Moscow State University. This study was conducted using an XCalibur S CCD diffractometer (Moscow State University). The technical support by the Saint Petersburg State University X-Ray Diffraction Resource Center in the powder XRD study is acknowledged. We thank two anonymous referees and Editor Gerald Giester for valuable comments. The mineralogical studies, crystal structure determination and comparative crystal chemical analyses were supported by the Russian Science Foundation, grant no. 19-17-00050 to IVP, NVZ and DYP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor V. Pekov.

Additional information

Editorial handling: G. Giester

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pekov, I.V., Zubkova, N.V., Yapaskurt, V.O. et al. Nishanbaevite, KAl2O(AsO4)(SO4), a new As/S-ordered arsenate-sulfate mineral of fumarolic origin. Miner Petrol 117, 247–257 (2023). https://doi.org/10.1007/s00710-022-00803-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-022-00803-0

Keywords

Navigation