Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 5, 2022

Minimum power consumption of multistage irreversible Carnot heat pumps with heat transfer law of q ∝ (ΔT) m

  • Lingen Chen EMAIL logo and Shaojun Xia

Abstract

For the given initial finite high-temperature heat reservoir temperature, continuous Hamilton–Jacobi–Bellman equations are established to obtain optimal finite high-temperature heat reservoir temperature for minimum power consumption of multistage Carnot heat pumping system with generalized convective heat transfer law [q ∝ (ΔT) m ]. Analytical expression of optimal heat reservoir temperature with Newtonian heat transfer law (m = 1) is obtained based on generalized optimization results for minimum power consumption. For other heat transfer laws (m ≠ 1), numerical solutions for minimum power consumption are provided. Optimization results for multistage Carnot heat pumps are compared with maximum power output solutions of multistage irreversible Carnot heat engines.


Corresponding author: Lingen Chen, Institute of Thermal Science and Power Engineering, Wuhan Institute of Technology, Wuhan 430205, China; and School of Mechanical & Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China, E-mail:

Funding source: National Natural Science Foundation of China

Award Identifier / Grant number: 52171317 and 51779262

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This paper is supported by The National Natural Science Foundation of China (Project Nos. 52171317 and 51779262). The authors wish to thank the reviewers for their careful, unbiased and constructive suggestions, which led to this revised manuscript.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] F. L. Curzon and B. Ahlborn, “Efficiency of a Carnot engine at maximum power output,” Am. J. Phys., vol. 43, no. 1, pp. 22–24, 1975. https://doi.org/10.1119/1.10023.Search in Google Scholar

[2] B. Andresen, “Finite-time thermodynamics,” in Physics Laboratory II, University of Copenhagen, 1983.10.1063/1.2916405Search in Google Scholar

[3] K. H. Hoffmann, J. M. Burzler, and S. Schubert, “Endoreversible thermodynamics,” J. Non-Equilib. Thermodyn., vol. 22, no. 4, pp. 311–355, 1997.Search in Google Scholar

[4] S. Sieniutycz, “Hamilton-Jacobi-Bellman framework for optimal control in multistage energy systems,” Phys. Rep., vol. 326, no. 4, pp. 165–285, 2000. https://doi.org/10.1016/s0370-1573(99)00116-7.Search in Google Scholar

[5] S. Sieniutycz, “Thermodynamic limits on production or consumption of mechanical energy in practical and industry systems,” Prog. Energy Combust. Sci., vol. 29, no. 3, pp. 193–246, 2003. https://doi.org/10.1016/s0360-1285(03)00020-0.Search in Google Scholar

[6] B. Andresen, “Current trends in finite-time thermodynamics,” Angew. Chem. Int., vol. 50, no. 12, pp. 2690–2704, 2011. https://doi.org/10.1002/anie.201001411.Search in Google Scholar PubMed

[7] S. Sieniutycz and J. Jezowski, Energy Optimization in Process Systems and Fuel Cells, 3rd ed. Oxford, UK, Elsevier, 2018.Search in Google Scholar

[8] S. Sieniutycz and Z. Szwast, Optimizing Thermal, Chemical and Environmental Systems, Elsevier, 2018.Search in Google Scholar

[9] S. Sieniutycz, Complexity and Complex Thermo-Economic Systems, Elsevier, 2020.Search in Google Scholar

[10] R. S. Berry, P. Salamon, and B. Andresen, “How it all began,” Entropy, vol. 22, no. 8, p. 908, 2020. https://doi.org/10.3390/e22080908.Search in Google Scholar PubMed PubMed Central

[11] G. Valencia-Ortega, S. Levario-Medina, and M. A. Barranco-Jiménez, “The role of internal irreversibilities in the performance and stability of power plant models working at maximum ϵ-ecological function,” J. Non-Equilib. Thermodyn., vol. 46, no. 4, pp. 413–429, 2021. https://doi.org/10.1515/jnet-2021-0030.Search in Google Scholar

[12] Z. Smith, P. S. Pal, and S. Deffner, “Endoreversible Otto engines at maximal power,” J. Non-Equilib. Thermodyn., vol. 45, no. 3, pp. 305–310, 2020. https://doi.org/10.1515/jnet-2020-0039.Search in Google Scholar

[13] H. R. Xu, L. G. Chen, Y. L. Ge, and H. J. Feng, “Multi-objective optimization of Stirling heat engine with various heat transfer and mechanical losses,” Energy, vol. 256, p. 124699, 2022. https://doi.org/10.1016/j.energy.2022.124699.Search in Google Scholar

[14] Y. L. Ge, S. S. Shi, L. G. Chen, D. F. Zhang, and H. J. Feng, “Power density analysis and multi-objective optimization for an irreversible Dual cycle,” J. Non-Equilib. Thermodyn., vol. 47, no. 3, pp. 289–309, 2022. https://doi.org/10.1515/jnet-2021-0083.Search in Google Scholar

[15] S. Levario-Medina, G. Valencia-Ortega, and M. A. Barranco-Jimenez, “Energetic optimization considering a generalization of the ecological criterion in traditional simple-cycle and combined cycle power plants,” J. Non-Equilib. Thermodyn., vol. 45, no. 3, pp. 269–290, 2020. https://doi.org/10.1515/jnet-2019-0088.Search in Google Scholar

[16] G. Gonca and B. Guzel, “Exergetic and exergo-economocal analyses of a gas-steam combined cycle system,” J. Non-Equilib. Thermodyn., vol. 47, no. 4, pp. 415–431, 2022. https://doi.org/10.1515/jnet-2022-0042.Search in Google Scholar

[17] L. G. Chen, F. K. Meng, Y. L. Ge, H. J. Feng, and S. J. Xia, “Performance optimization of a class of combined thermoelectric heating devices,” Sci. China: Technol. Sci., vol. 63, no. 12, pp. 2640–2648, 2020. https://doi.org/10.1007/s11431-019-1518-x.Search in Google Scholar

[18] L. G. Chen, F. K. Meng, Y. L. Ge, and H. J. Feng, “Performance optimization for a multielement thermoelectric refrigerator with another linear heat transfer law,” J. Non-Equilib. Thermodyn., vol. 46, no. 2, pp. 149–162, 2021. https://doi.org/10.1515/jnet-2020-0050.Search in Google Scholar

[19] X. Zhang, G. F. Yang, M. Q. Yan, L. K. Ang, Y. S. Ang, and J. C. Chen, “Design of an all-day electrical power generator based on thermoradiative devices,” Sci. China: Technol. Sci., vol. 64, no. 10, pp. 2166–2173, 2021. https://doi.org/10.1007/s11431-021-1873-9.Search in Google Scholar

[20] J. Lin, S. Xie, C. X. Jiang, Y. F. Sun, J. C. Chen, and Y. R. Zhao, “Maximum power and corresponding efficiency of an irreversible blue heat engine for harnessing waste heat and salinity gradient energy,” Sci. China: Technol. Sci., vol. 65, no. 3, pp. 646–656, 2022. https://doi.org/10.1007/s11431-021-1954-9.Search in Google Scholar

[21] Z. M. Ding, S. S. Qiu, L. G. Chen, and W. H. Wang, “Modeling and performance optimization of double-resonance electronic cooling device with three electron reservoirs,” J. Non-Equilib. Thermodyn., vol. 46, no. 3, pp. 273–289, 2021. https://doi.org/10.1515/jnet-2020-0105.Search in Google Scholar

[22] S. S. Qiu, Z. M. Ding, L. G. Chen, and Y. L. Ge, “Performance optimization of three-terminal energy selective electron generators,” Sci. China: Technol. Sci., vol. 64, no. 8, pp. 1641–1652, 2021. https://doi.org/10.1007/s11431-020-1828-5.Search in Google Scholar

[23] Z. M. Ding, Y. L. Ge, L. G. Chen, H. J. Feng, and S. J. Xia, “Optimal performance regions of Feynman’s ratchet engine with different optimization criteria,” J. Non-Equilib. Thermodyn., vol. 45, no. 2, pp. 191–207, 2020. https://doi.org/10.1515/jnet-2019-0102.Search in Google Scholar

[24] C. Z. Qi, Z. M. Ding, L. G. Chen, Y. L. Ge, and H. J. Feng, “Modelling of irreversible two-stage combined thermal Brownian refrigerators and their optimal performance,” J. Non-Equilib. Thermodyn., vol. 46, no. 2, pp. 175–189, 2021. https://doi.org/10.1515/jnet-2020-0084.Search in Google Scholar

[25] L. G. Chen and S. J. Xia, “Maximizing power output of endoreversible non-isothermal chemical engine via linear irreversible thermodynamics,” Energy, vol. 255, p. 124526, 2022. https://doi.org/10.1016/j.energy.2022.124526.Search in Google Scholar

[26] L. G. Chen, P. L. Li, S. J. Xia, R. Kong, and Y. L. Ge, “Multi-objective optimization of membrane reactor for steam methane reforming heated by molten salt,” Sci. China: Technol. Sci., vol. 65, no. 6, pp. 1396–1414, 2022. https://doi.org/10.1007/s11431-021-2003-0.Search in Google Scholar

[27] X. W. Liu, L. G. Chen, Y. L. Ge, H. J. Feng, F. Wu, and G. Lorenzini, “Exergy-based ecological optimization of an irreversible quantum Carnot heat pump with spin-1/2 systems,” J. Non-Equilib. Thermodyn., vol. 46, no. 1, pp. 61–76, 2021. https://doi.org/10.1515/jnet-2020-0028.Search in Google Scholar

[28] S. Y. Boikov, B. Andresen, A. A. Akhremenkov, and A. M. Tsirlin, “Evaluation of irreversibility and optimal organization of an integrated multi-stream heat exchange system,” J. Non-Equilib. Thermodyn., vol. 45, no. 2, pp. 155–171, 2020. https://doi.org/10.1515/jnet-2019-0078.Search in Google Scholar

[29] V. Badescu, “Maximum work rate extractable from energy fluxes,” J. Non-Equilib. Thermodyn., vol. 47, no. 1, pp. 77–93, 2022. https://doi.org/10.1515/jnet-2021-0039.Search in Google Scholar

[30] V. Badescu, “Self-driven reverse thermal engines under monotonous and oscillatory optimal operation,” J. Non-Equilib. Thermodyn., vol. 46, no. 3, pp. 291–319, 2021. https://doi.org/10.1515/jnet-2020-0103.Search in Google Scholar

[31] R. Paul and K. H. Hoffmann, “Optimizing the piston paths of Stirling cycle cryocoolers,” J. Non-Equilib. Thermodyn., vol. 47, no. 2, pp. 195–203, 2022. https://doi.org/10.1515/jnet-2021-0073.Search in Google Scholar

[32] P. L. Li, L. G. Chen, S. J. Xia, R. Kong, and Y. L. Ge, “Total entropy generation rate minimization configuration of a membrane reactor of methanol synthesis via carbon dioxide hydrogenation,” Sci. China: Technol. Sci., vol. 65, no. 3, pp. 657–678, 2022. https://doi.org/10.1007/s11431-021-1935-4.Search in Google Scholar

[33] J. Li and L. G. Chen, “Optimal configuration of finite source heat engine cycle for maximum output work with complex heat transfer law,” J. Non-Equilib. Thermodyn., vol. 47, no. 4, pp. 433–441, 2022. https://doi.org/10.1515/jnet-2022-0024.Search in Google Scholar

[34] L. G. Chen and S. J. Xia, “Heat engine cycle configurations for maximum work output with generalized models of reservoir thermal capacity and heat resistance,” J. Non-Equilib. Thermodyn., vol. 47, no. 4, pp. 329–338, 2022. https://doi.org/10.1515/jnet-2022-0029.Search in Google Scholar

[35] L. G. Chen and S. J. Xia, “Maximizing power of irreversible multistage chemical engine with linear mass transfer law using HJB theory,” Energy, vol. 261, p. 125277, 2022. https://doi.org/10.1016/j.energy.2022.125277.Search in Google Scholar

[36] L. G. Chen and S. J. Xia, “Maximum work output configuration of finite potential source irreversible isothermal chemical engines with bypass mass leakage and mass resistance,” Energy Rep., vol. 8, pp. 11440–11445, 2022. https://doi.org/10.1016/j.egyr.2022.08.269.Search in Google Scholar

[37] L. G. Chen, S. J. Xia, “Power-optimization of multistage non-isothermal chemical engine system via Onsager equations, Hamilton-Jacobi-Bellman theory and dynamic programming,” Sci. China: Technol. Sci., vol. 66, 2023, https://doi.org/10.1007/s11431-022-2229-6.Search in Google Scholar

[38] L. G. Chen and S. J. Xia, “Maximum work configuration of finite potential source endoreversible non-isothermal chemical engines,” J. Non-Equilib. Thermodyn., vol. 48, 2023, https://doi.org/10.1515/jnet-2022-0045.Search in Google Scholar

[39] L. G. Chen, K. Ma, H. J. Feng, and Y. L. Ge, “Optimal piston motion paths for a light-driven engine with generalized radiative law and maximum ecological function,” Case Stud. Therm. Eng., vol. 40, p. 102505, 2022. https://doi.org/10.1016/j.csite.2022.102505.Search in Google Scholar

[40] L. G. Chen and S. J. Xia, “Maximum profit output configuration of multi-reservoir resource exchange intermediary,” Entropy, vol. 24, no. 10, p. 1451, 2022. https://doi.org/10.3390/e24101451.Search in Google Scholar

[41] S. Sieniutycz, “Hamilton-Jacobi-Bellman theory of dissipative thermal availability,” Phys. Rev. E, vol. 56, no. 5, pp. 5051–5064, 1997. https://doi.org/10.1103/physreve.56.5051.Search in Google Scholar

[42] S. Sieniutycz, “Generalized thermodynamic of maximum work in finite time,” Open Syst. Inf. Dyn., vol. 5, no. 4, pp. 369–390, 1998. https://doi.org/10.1023/a:1009643917234.10.1023/A:1009643917234Search in Google Scholar

[43] S. Sieniutycz, “Nonlinear thermokinetics of maximum work in finite time,” Int. J. Eng. Sci., vol. 36, nos. 5–6, pp. 577–597, 1998. https://doi.org/10.1016/s0020-7225(97)00085-2.Search in Google Scholar

[44] S. Sieniutycz and M. R. von Spakovsky, “Finite time generalization of thermal exergy,” Energy Convers. Manage., vol. 39, no. 14, pp. 1423–1447, 1998. https://doi.org/10.1016/s0196-8904(98)00023-5.Search in Google Scholar

[45] S. J. Xia, L. G. Chen, and F. R. Sun, “Hamilton–Jacobi–Bellman equations and dynamic programming for power-optimization of multistage heat engine system with generalized convective heat transfer law,” Chin. Sci. Bull., vol. 56, no. 11, pp. 1147–1157, 2011. https://doi.org/10.1007/s11434-010-4095-2.Search in Google Scholar

[46] S. Sieniutycz and Z. Szwast, “Work limits in imperfect sequential systems with heat and fluid flow,” J. Non-Equilib. Thermodyn., vol. 28, no. 2, pp. 85–114, 2003. https://doi.org/10.1515/jnetdy.2003.005.Search in Google Scholar

[47] S. Sieniutycz, “Development of generalized (rate dependent) availability,” Int. J. Heat Mass Transfer, vol. 49, nos. 3–4, pp. 789–795, 2006. https://doi.org/10.1016/j.ijheatmasstransfer.2005.08.014.Search in Google Scholar

[48] S. Sieniutycz and P. Kuran, “Nonlinear models for mechanical energy production in imperfect generators driven by thermal or solar energy,” Int. J. Heat Mass Transfer, vol. 48, nos. 3–4, pp. 719–730, 2005. https://doi.org/10.1016/j.ijheatmasstransfer.2004.09.021.Search in Google Scholar

[49] S. Sieniutycz and P. Kuran, “Modeling thermal behavior and work flux in finite-rate systems with radiation,” Int. J. Heat Mass Transfer, vol. 49, nos. 17–18, pp. 3264–3283, 2006. https://doi.org/10.1016/j.ijheatmasstransfer.2006.01.036.Search in Google Scholar

[50] S. Sieniutycz, “Hamilton–Jacobi–Bellman equations and dynamic programming for power-maximizing relaxation of radiation,” Int. J. Heat Mass Transfer, vol. 50, nos. 13–14, pp. 2714–2732, 2007. https://doi.org/10.1016/j.ijheatmasstransfer.2006.11.018.Search in Google Scholar

[51] S. Sieniutycz, “Dynamical converters with power-producing relaxation of solar radiation,” Int. J. Therm. Sci., vol. 47, no. 4, pp. 495–505, 2008. https://doi.org/10.1016/j.ijthermalsci.2007.03.016.Search in Google Scholar

[52] S. Sieniutycz, “Dynamic programming and Lagrange multipliers for active relaxation of resources in nonlinear non-equilibrium systems,” Appl. Math. Model., vol. 33, no. 3, pp. 1457–1478, 2009. https://doi.org/10.1016/j.apm.2008.02.002.Search in Google Scholar

[53] S. Sieniutycz, “Finite-rate thermodynamics of power production in thermal, chemical and electrochemical systems,” Int. J. Heat Mass Transfer, vol. 53, nos. 13–14, pp. 2864–2876, 2010. https://doi.org/10.1016/j.ijheatmasstransfer.2010.02.009.Search in Google Scholar

[54] S. Sieniutycz, “Dynamic bounds for power and efficiency of non-ideal energy converters under nonlinear transfer laws,” Energy, vol. 34, no. 3, pp. 334–340, 2009. https://doi.org/10.1016/j.energy.2008.09.019.Search in Google Scholar

[55] S. J. Xia, L. G. Chen, and F. R. Sun, “Power-optimization of non-ideal energy converters under generalized convective heat transfer law via Hamilton-Jacobi-Bellman theory,” Energy, vol. 36, no. 1, pp. 633–646, 2011. https://doi.org/10.1016/j.energy.2010.09.052.Search in Google Scholar

[56] S. J. Xia and L. G. Chen, “Minimizing power-consumption of a generalized convective law multistage heat pump system via Hamilton-Jacobi-Bellman equations and dynamic programming,” in ASME International Mechanical Engineering Congress & Exposition (IMECE) Conference, Tampa, Florida, 2017. IMECE2017-70391.10.1115/IMECE2017-70391Search in Google Scholar

[57] C. T. O’Sullivan, “Newton’s law of cooling-A critical assessment,” Am. J. Phys., vol. 58, no. 12, pp. 956–960, 1990. https://doi.org/10.1119/1.16309.Search in Google Scholar

Received: 2022-09-28
Accepted: 2022-10-28
Published Online: 2022-12-05
Published in Print: 2023-01-27

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 13.5.2024 from https://www.degruyter.com/document/doi/10.1515/jnet-2022-0068/html
Scroll to top button