Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 5, 2022

Nonlinear dynamics of blood passing through an overlapped stenotic artery with copper nanoparticles

  • Hanumesh Vaidya ORCID logo , Isaac Lare Animasaun ORCID logo , Kerehalli Vinayaka Prasad , Choudhari Rajashekhar ORCID logo , Javalkar U. Viharika and Qasem M. Al-Mdallal ORCID logo EMAIL logo

Abstract

The dynamics of blood carrying microscopic copper particles through overlapping stenotic arteries is an important research area needed for scrutinizing and exploring dynamics through blood vessels. Adipose tissue deposition and other elements of atherosclerosis generate the uncommon artery disease known as arterial stenosis. It limits blood flow and raises the risk of heart disease. Using the Casson model, it is feasible to shed light on the peristaltic blood flow of copper nanoparticles over an overlapping stenotic artery. Nothing is known about the study of heat sink/source, buoyancy and Lorent force, and volume fraction because the focus is on the dynamics of blood carrying minute copper particles through an overlapping stenotic artery. When the Lorentz force is significant, the transport mentioned above was evaluated utilizing stenosis approximations to examine the stream function, wall shear stress, Nusselt number, and flow resistance distribution. In addition, temperature solutions were identified analytically, whereas a perturbation approach acquired velocity solutions. Temperature distribution and velocity are greater in stenosed arteries than in unstenosed arteries. Furthermore, extreme velocity and temperature rise as it reaches the core of the artery and falls as one approaches the wall. When the heat source parameter values increase due to an improvement in the fluid’s thermal state, the temperature distribution increases.


Corresponding author: Qasem M. Al-Mdallal, Department of Mathematical Sciences, United Arab Emirates University, PMB 15551, Al Ain, Abu Dhabi, United Arab Emirates, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This study was not funded by any means.

  3. Conflict of interest statement: The authors declare no conflict of interest.

  4. Data availability statements: All relevant data are included in the article. The data that support the findings of this study are not openly available due to reasons of sensitivity. This shall be available from the corresponding author upon reasonable request.

Appendix

α = μ f μ nf ρ γ nf ρ γ f ; α 1 = μ f μ nf ; α 2 = 1 4 β K S + 2 K f + Φ K f K S K S + 2 K f 2 Φ K f K S ;

A = 1 + 1 ξ ; A 1 = 1 + 5 A α α 2 Gr h 4 4 1 + A 1 + 3 A α 1 h 2 2 1 + A p 0 x ; A 2 = α 1 2 1 + A p 0 x α α 2 Gr h 2 2 1 + A ;

A 3 = α α 2 Gr 4 1 + 3 A ;

A 4 = α 1 h 2 2 1 + A 1 + 3 A 1 + 5 A 1 + 4 A A 1 + 15 A 2 A 1 + 3 A 2 h 2 + A 2 A 3 h 4 + 1 2 A 2 1 + 5 A 2 + 1 3 A 3 h 4 1 + 2 A + 1 + 8 A + 15 A 2 p 1 z ;

A 5 = α 1 A 1 1 + 8 A + 15 A 2 2 1 + A 1 + 3 A 1 + 5 A 1 + p 1 z ;

A 6 = α 1 A 2 1 + 6 A + 5 A 2 4 1 + A 1 + 3 A 1 + 5 A ;

A 7 = α 1 A 3 1 + 4 A + 3 A 2 6 1 + A 1 + 3 A 1 + 5 A ;

A 8 = α 1 h 2 1 + 15 A + 71 A 2 + 105 A 3 2 1 + A 1 + 3 A 1 + 5 A 1 + 7 A A 4 + p 2 z + α 1 A 5 h 4 1 + 13 A + 47 A 2 + 35 A 3 4 1 + A 1 + 3 A 1 + 5 A 1 + 7 A + α 1 A 6 h 6 1 + 11 A + 31 A 2 + 7 A 3 6 1 + A 1 + 3 A 1 + 5 A 1 + 7 A + α 1 A 7 h 8 1 + 9 A + 23 A 2 + 15 A 3 8 1 + A 1 + 3 A 1 + 5 A 1 + 7 A ;

A 9 = α 1 1 + 15 A + 71 A 2 + 105 A 3 2 1 + A 1 + 3 A 1 + 5 A 1 + 7 A A 4 + p 2 z ;

A 10 = α 1 A 5 1 + 13 A + 45 A 2 + 35 A 3 4 1 + A 1 + 3 A 1 + 5 A 1 + 7 A ;

A 11 = α 1 A 6 1 + 11 A + 31 A 2 + 7 A 3 6 1 + A 1 + 3 A 1 + 5 A 1 + 7 A ;

A 12 = α 1 A 7 1 + 9 A + 23 A 2 + 15 A 3 8 1 + A 1 + 3 A 1 + 5 A 1 + 7 A .

References

[1] T. W. Latham, Fluid Motions in a Peristaltic Pump, Doctoral Dissertation, Cambridge MA 02139, United States, Massachusetts Institute of Technology, 1966.Search in Google Scholar

[2] A. H. Shapiro, M. Y. Jaffrin, and S. L. Weinberg, “Peristaltic pumping with long wavelengths at low Reynolds number,” J. Fluid Mech., vol. 37, no. 4, pp. 799–825, 1969. https://doi.org/10.1017/s0022112069000899.Search in Google Scholar

[3] K. K. Raju and R. Devanathan, “Peristaltic motion of a non-Newtonian fluid,” Rheol. Acta, vol. 11, no. 2, pp. 170–178, 1972. https://doi.org/10.1007/bf01993016.Search in Google Scholar

[4] A. R. Rao and S. Usha, “Peristaltic transport of two immiscible viscous fluids in a circular tube,” J. Fluid Mech., vol. 298, pp. 271–285, 1995. https://doi.org/10.1017/s0022112095003302.Search in Google Scholar

[5] H. Vaidya, C. Rajashekhar, B. B. Divya, G. Manjunatha, K. V. Prasad, and I. L. Animasaun, “Influence of transport properties on the peristaltic MHD Jeffrey fluid flow through a porous asymmetric tapered channel,” Results Phys., vol. 18, p. 103295, 2020. https://doi.org/10.1016/j.rinp.2020.103295.Search in Google Scholar

[6] V. K. Sud, G. S. Sekhon, and R. K. Mishra, “Pumping action on blood by a magnetic field,” Bull. Math. Biol., vol. 39, no. 3, pp. 385–390, 1977. https://doi.org/10.1007/bf02462917.Search in Google Scholar PubMed

[7] S. Srinivas and M. Kothandapani, “The influence of heat and mass transfer on MHD peristaltic flow through a porous space with compliant walls,” Appl. Math. Comput., vol. 213, no. 1, pp. 197–208, 2009. https://doi.org/10.1016/j.amc.2009.02.054.Search in Google Scholar

[8] K. S. Mekheimer and M. A. El Kot, “Influence of magnetic field and Hall currents on blood flow through a stenotic artery,” Appl. Math. Mech., vol. 29, no. 8, pp. 1093–1104, 2008. https://doi.org/10.1007/s10483-008-0813-x.Search in Google Scholar

[9] M. M. Bhatti, M. A. Abbas, and M. M. Rashidi, “Entropy generation for peristaltic blood flow with casson model and consideration of magnetohydrodynamics effects,” Walailak J. Sci. Technol., vol. 14, no. 6, pp. 451–461, 2017.Search in Google Scholar

[10] K. S. Mekheimer, M. S. Mohamed, and T. Elnaqeeb, “Metallic nanoparticles influence on blood flow through a stenotic artery,” Int. J. Pure Appl. Math., vol. 107, no. 1, p. 201, 2016. https://doi.org/10.12732/ijpam.v107i1.16.Search in Google Scholar

[11] M. U. Ashraf, M. Qasim, A. Wakif, M. I. Afridi, and I. L. Animasaun, “A generalized differential quadrature algorithm for simulating magnetohydrodynamic peristaltic flow of blood‐based nanofluid containing magnetite nanoparticles: a physiological application,” Numer. Methods Part. Differ. Equ., 2020, in-press, https://doi.org/10.1002/num.22676.Search in Google Scholar

[12] T. Elnaqeeb, “Modeling of Au(NPs)-blood flow through a catheterized multiple stenosed artery under radial magnetic field,” Eur. Phys. J. Spec. Top., vol. 228, no. 12, pp. 2695–2712, 2019. https://doi.org/10.1140/epjst/e2019-900059-9.Search in Google Scholar

[13] N. S. Akbar, E. N. Maraj, and A. W. Butt, “Copper nanoparticles impinging on a curved channel with compliant walls and peristalsis,” The European Physical Journal Plus, vol. 129, no. 8, p. 183, 2014. https://doi.org/10.1140/epjp/i2014-14183-2.Search in Google Scholar

[14] N. Sher Akbar and A. Wahid Butt, “CNT suspended nanofluid analysis in a flexible tube with ciliated walls,” The European Physical Journal Plus, vol. 129, no. 8, p. 174, 2014. https://doi.org/10.1140/epjp/i2014-14174-3.Search in Google Scholar

[15] S. Chakravarty, A. Datta, and P. K. Mandal, “Analysis of nonlinear blood flow in a stenosed flexible artery,” Int. J. Eng. Sci., vol. 33, no. 12, pp. 1821–1837, 1995. https://doi.org/10.1016/0020-7225(95)00022-p.Search in Google Scholar

[16] K. C. Ang and J. N. Mazumdar, “Mathematical modelling of three-dimensional flow through an asymmetric arterial stenosis,” Math. Comput. Model., vol. 25, no. 1, pp. 19–29, 1997. https://doi.org/10.1016/s0895-7177(96)00182-3.Search in Google Scholar

[17] N. Verma and R. S. Parihar, “Mathematical model of blood flow through a tapered artery with mild stenosis and hematocrit,” J. Mod. Math. Stat., vol. 4, no. 1, pp. 38–43, 2010. https://doi.org/10.3923/jmmstat.2010.38.43.Search in Google Scholar

[18] G. Manjunatha, C. Rajashekhar, H. Vaidya, K. V. Prasad, O. D. Makinde, and J. U. Viharika, “Impact of variable transport properties and slip effects on MHD Jeffrey fluid flow through channel,” Arabian J. Sci. Eng., vol. 45, no. 1, pp. 417–428, 2019. https://doi.org/10.1007/s13369-019-04266-y.Search in Google Scholar

[19] S. Srinivas and M. Kothandapani, “Peristaltic transport in an asymmetric channel with heat transfer—a note,” Int. Commun. Heat Mass Tran., vol. 35, no. 4, pp. 514–522, 2008. https://doi.org/10.1016/j.icheatmasstransfer.2007.08.011.Search in Google Scholar

[20] A. H. Nayfeh, Perturbation Methods, New York, NY, USA, Wiley-Interscience, 1973.Search in Google Scholar

[21] B. K. Sharma, R. Gandhi, and M. M. Bhatti, “Entropy analysis of thermally radiating MHD slip flow of hybrid nanoparticles (Au-Al2O3/Blood) through a tapered multi-stenosed artery,” Chem. Phys. Lett., vol. 790, p. 139348, 2022. https://doi.org/10.1016/j.cplett.2022.139348.Search in Google Scholar

[22] W. Xiu, I. L. Animasaun, Q. M. Al-Mdallal, A. K. Alzahrani, and T. Muhammad, “Dynamics of ternary-hybrid nanofluids due to dual stretching on wedge surfaces when volume of nanoparticles is small and large: forced convection of water at different temperatures,” Int. Commun. Heat Mass Tran., vol. 137, p. 106241, 2022. https://doi.org/10.1016/j.icheatmasstransfer.2022.106241.Search in Google Scholar

[23] W. Cao, I. L. Animasaun, Se-J. Yook, V. A. Oladipupo, and X. Ji, “Simulation of the dynamics of colloidal mixture of water with various nanoparticles at different levels of partial slip: ternary-hybrid nanofluid,” Int. Commun. Heat Mass Tran., vol. 135, p. 106069, 2022. https://doi.org/10.1016/j.icheatmasstransfer.2022.106069.Search in Google Scholar

[24] S. Saleem, I. L. Animasaun, S.-J. Yook, Q. M. Al-Mdallal, N. A. Shah, and M. Faisal, “Insight into the motion of water conveying three kinds of nanoparticles shapes on a horizontal surface: significance of thermo-migration and Brownian motion,” Surface. Interfac., vol. 30, p. 101854, 2022. https://doi.org/10.1016/j.surfin.2022.101854.Search in Google Scholar

[25] Y. Agrawal and J. Bhagoria, “Experimental investigation for pitch and angle of arc effect of discrete artificial roughness on Nusselt number and fluid flow characteristics of a solar air heater,” Mater. Today: Proc., vol. 46, pp. 5506–5511, 2021. https://doi.org/10.1016/j.matpr.2020.09.249.Search in Google Scholar

[26] R. J. Issa, “A review on thermophysical properties and Nusselt number behavior of Al2O3 nanofluids in heat exchangers,” J. Therm. Sci., vol. 30, no. 2, pp. 418–431, 2021. https://doi.org/10.1007/s11630-021-1266-1.Search in Google Scholar

[27] M. B. Salah, R. Nasri, A. N. Alharbi, T. M. Althagafi, and T. Soltani, “Thermotropic liquid crystal doped with ferroelectric nanoparticles: electrical behavior and ion trapping phenomenon,” J. Mol. Liq., vol. 357, p. 119142, 2022. https://doi.org/10.1016/j.molliq.2022.119142.Search in Google Scholar

[28] P. R. Punnam, B. Krishnamurthy, and V. K. Surasani, “Investigations of structural and residual trapping phenomena during CO2 sequestration in deccan volcanic province of the Saurashtra region, Gujarat,” Int. J. Chem. Eng., vol. 2021, pp. 1–16, 2021. https://doi.org/10.1155/2021/7762127.Search in Google Scholar

Received: 2022-09-16
Revised: 2022-10-28
Accepted: 2022-11-23
Published Online: 2022-12-05
Published in Print: 2023-04-28

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.1515/jnet-2022-0063/html
Scroll to top button