Skip to main content
Log in

Microstructure, mechanical properties and corrosion behavior of friction stir processed AA2014 alloy

  • Original Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

In the present study, a large-area stir zone (SZ) was fabricated in AA2014 alloy using multi-pass friction stir processing (FSP) with pin overlapping. The microstructure evolution, crystallographic texture, precipitation phenomenon, and tensile behavior were studied and reported. The microstructure of the large-area SZ consists of equiaxed fine grains with a high density of high angle boundaries caused by dynamic recovery (DRV) and continuous-dynamic recrystallization (C-DRX), and the grain refining has been uniform in each overlapping pass (the grain size within 4–7 μm range). The material flow around the pin caused by the stirring action of the tool contributed to the creation of a strong Brass-{110} < 112 > and A-{110} < 111 > components in the first pass of SZ. Unlike first pass SZ, the second to fifth-pass SZ presents Copper-{112} < 111 > and Cube-{001} < 100 > components due to an increase of heat input by the shoulder to participate multiple times on each overlapping SZ. The hardness and strength of the FSP sample were found to be lowered relative to a base metal. Simultaneously, the SZ ductility increased after FSP by 155% due to the material softening and dissolution of Al2Cu precipitates in the SZ. Kocks-Mecking plots of the BM and FSP samples witnessed the Stage-III of work-hardening behavior. The fine-grain structure and precipitation phenomenon in the FSP sample resulted in better corrosion resistance than the base metal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data availability

The data sets generated for this study are available upon request from the corresponding author.

References

  1. Weglowski MS. Friction stir processing—state of the art. Arch Civil Mech Eng. 2018;18:114–29.

    Article  Google Scholar 

  2. Mishra RS, Ma ZY. Friction stir welding and processing. Mater Sci Eng R. 2005;50:1–78.

    Article  Google Scholar 

  3. Nandan R, Debroy T, Bhadeshia HKDH. Recent advances in friction-stir welding-processing, weldment structure and properties. Prog Mater Sci. 2008;53:980–1023.

    Article  CAS  Google Scholar 

  4. Ebrahimi M, Par MA. Twenty-year uninterrupted endeavour of friction stir processing by focusing on copper and its alloys. J Alloy Compd. 2019;781:1074–90.

    Article  CAS  Google Scholar 

  5. Charith I, Mishra RS. Effect of friction stir processed microstructure on tensile properties of an Al-Zn-Mg-Si alloy upon subsequent ageing treatment. Mater Sci Technol. 2018;34:214–8.

    Article  Google Scholar 

  6. Gandra J, Miranda RM, Vilaca P. Effect of overlapping direction in multipass friction stir processing. Mater Sci Eng, A. 2011;528:5592–9.

    Article  CAS  Google Scholar 

  7. Johannes LB, Mishra RS. Multiple passes of friction stir processing for the creation of superplastic 7075 aluminum. Mater Sci Eng, A. 2007;464:255–60.

    Article  Google Scholar 

  8. Kwon YJ, Shigematsu I, Saito N. Mechanical properties of fine-grained aluminum alloy produced by friction stir process. Scripta Mater. 2003;49:785–9.

    Article  CAS  Google Scholar 

  9. Jian-Qing Su, Nelson TW, Sterling CJ. Friction stir processing of large-area bulk UFG aluminum alloys. Scripta Mater. 2005;52:135–40.

    Article  Google Scholar 

  10. Al-Fadhalaa KJ, Almazrouee AI, Alorai AS. Microstructure and mechanical properties of multi-pass friction stir processed aluminum alloy 6063. Mater Des. 2014;53:550–60.

    Article  Google Scholar 

  11. Rajamanickam N, Balusamy V, Madhusudhana Reddy G, Natarajan K. Effect of process parameters on thermal history and mechanical properties of friction stir welds. Mater Des. 2009;30:2726–31.

    Article  CAS  Google Scholar 

  12. Ramesh KN, Pradeep S. Vivek Pancholi, multipass friction-stir processing and its effect on mechanical properties of aluminum alloy 5086. Min Metall Mater Soc Trans A. 2012;43A:4311–9.

    Article  ADS  Google Scholar 

  13. Alavi Ni A, Omidvar H, Nourbakhsh SH. Effects of an overlapping multi-pass friction stir process and rapid cooling on the mechanical properties and microstructure of AZ31magnesium alloy. Mater Des. 2014;58:298–304.

    Article  Google Scholar 

  14. Venkateswarlu G, Devaraju D, Davidson MJ, Kotiveerachari B, Tagore GRN. Effect of overlapping ratio on mechanical properties and formability of friction stir processed Mg AZ31B alloy. Mater Des. 2013;43:480–6.

    Article  Google Scholar 

  15. Weifeng Xu, Liu J. Microstructure and pitting corrosion of friction stir welded joints in 2219-O aluminum alloy thick plate. Corros Sci. 2009;51:2743–51.

    Article  Google Scholar 

  16. Zhao Y, Wang Q, Chen H, Yan K. Microstructure and mechanical properties of spray formed 7055 aluminum alloy by underwater friction stir welding. Mater Des. 2014;56:725–30.

    Article  CAS  Google Scholar 

  17. Khodabakhshi F, Nosko M, Gerlich AP. Effects of graphene nano-platelets (GNPs) on the microstructural characteristics and textural development of an Al-Mg alloy during friction stir processing. Surf Coat Technol. 2018;335:288–305.

    Article  CAS  Google Scholar 

  18. Zhao H, Pan Q, Qin Q, Yujiao Wu, Xiangdong Su. Effect of the processing parameters of friction stir processing on the microstructure and mechanical properties of 6063 aluminum alloy. Mater Sci Eng, A. 2019;751:70–9.

    Article  CAS  Google Scholar 

  19. McNelley TR, Swaminathan S, Su JQ. Recrystallization mechanisms during friction stir welding/processing of aluminum alloys. Scripta Mater. 2008;58:349–54.

    Article  CAS  Google Scholar 

  20. Jian-Qing Su, Nelson TW, McNelley TR, Mishra RS. Development of nanocrystalline structure in Cu during friction stir processing (FSP). Mater Sci Eng A. 2011;528:5458–64.

    Article  Google Scholar 

  21. Jian-Qing Su, Nelson TW, Sterling CJ. Microstructure evolution during FSW/FSP of high strength aluminum alloys. Mater Sci Eng, A. 2005;405:277–86.

    Article  Google Scholar 

  22. Yazdipour A, Shafiei AM, Dehghani K. Modeling the microstructural evolution and effect of cooling rate on the nanograins formed during the friction stir processing of Al5083. Mater Sci Eng A. 2009;527:192–7.

    Article  Google Scholar 

  23. Vikram KS, Jain KU, Yazar SM. Development and characterization of Al5083-CNTs/SiC composites via friction stir processing. J Alloys Compd. 2019;798:82–92.

    Article  Google Scholar 

  24. Shahuddin UFHR, Mironov S, Sato YS, Kokawa H. Grain structure and texture evolution during friction stir welding of thin 6016 aluminum alloy sheets. Mater Sci Eng, A. 2010;527:1962–9.

    Article  Google Scholar 

  25. Fonda RW, Bingert JF. Texture variations in an aluminum friction stir weld. Scripta Mater. 2007;57:1052–5.

    Article  CAS  Google Scholar 

  26. Satyanarayana MVNV. Adepu Kumar, Influence of cooling media in achieving grain refinement of AA2014 alloy using friction stir processing. Proc IMechE Part C: J Mech Eng Sci. 2020;234(22):4520–34.

    Article  CAS  Google Scholar 

  27. Chen Yu. Hua Ding, Jizhong L, Zhi-Hui Cai, Wenjing Yang, Influence of multipass friction stir processing on microstructure and mechanical properties of Al5083 alloy. Mater Sci Eng A. 2016;650:281–9.

    Article  CAS  Google Scholar 

  28. Satyanarayana MVNV, Adepu K, Chauhan K. Efect of overlapping friction stir processing on microstructure, mechanical properties and corrosion behavior of AA6061 alloy. Metals Mater Int. 2021;27(9):3563–73.

    Article  CAS  Google Scholar 

  29. Kocks UF, Mecking H. Physics and phenomenology of strainhardening: the FCC case. Prog Mater Sci. 2003;48:171–273.

    Article  CAS  Google Scholar 

  30. Kuhlmann-Wilsdorf D. Advancing towards constitutive equations for the metal industry via the LEDS theory. Metall Mater Trans A. 2004;35:369–418.

    Article  Google Scholar 

  31. Kocks UF. Laws for work-hardening and low-temperature creep. J Eng Mater Technol. 1976;98:76–85.

    Article  CAS  Google Scholar 

  32. Rollett AD, Kocks UF. A review of the stages of work hardening. Solid State Phenom. 1993;35–36:1–18.

    Article  Google Scholar 

  33. Kocks UF. The relation between polycrystal deformation and single-crystal deformation. Metall Mater Trans A. 1970;1(1970):1121–43.

    Article  ADS  Google Scholar 

  34. Voce E. A practical strain hardening function. Metallurgia. 1955;51:219–26.

    Google Scholar 

  35. Ludwigson DC. Modified stress-strain relation for FCC metals and alloys. Metall Trans. 1971;2:2825–8.

    Article  CAS  Google Scholar 

  36. Sainath G, Choudhary BK, Christopher J, Isaac Samuel E, Mathew MD. Applicability of voce equation for tensile flow and work hardening behaviour of P92 ferritic steel. Int J Press Vessel Piping. 2015;132–133:1–9.

    Article  Google Scholar 

  37. Kalita SJ. Microstructure and corrosion properties of diode laser melted friction stir weld of aluminum alloy 2024 T351. Appl Surf Sci. 2011;257(9):3985–97. https://doi.org/10.1016/j.apsusc.2010.11.163.

    Article  ADS  CAS  Google Scholar 

  38. Sinhmar S, Dwivedi DK. A study on corrosion behavior of friction stir welded and tungsten inert gas welded AA2014 aluminum alloy. Corros Sci. 2018;133:25–35. https://doi.org/10.1016/j.corsci.2018.01.012.

    Article  CAS  Google Scholar 

  39. Navaser M, Atapour M. Effect of friction stir processing on pitting corrosion and intergranular attack of 7075 aluminum alloy. J Mater Sci Technol. 2017;33(2):155–65. https://doi.org/10.1016/j.jmst.2016.07.008.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author acknowledges AR&DB (DRDO), New Delhi, for financial assistance for the entire project through the grant CCMT/TM/ARDB/16-17/0332 /GIA dated September 17, 2017. The authors acknowledge IIT Bombay for supporting Texture studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. N. V. Satyanarayana.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Satyanarayana, M.V.N.V., Kumar, A., jain, V.K.S. et al. Microstructure, mechanical properties and corrosion behavior of friction stir processed AA2014 alloy. Archiv.Civ.Mech.Eng 23, 43 (2023). https://doi.org/10.1007/s43452-022-00565-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-022-00565-8

Keywords

Navigation