1932

Abstract

T cells and natural killer (NK) cells have complementary roles in tumor immunity, and dual T cell and NK cell attack thus offers opportunities to deepen the impact of immunotherapy. Recent work has also shown that NK cells play an important role in recruiting dendritic cells to tumors and thus enhance induction of CD8 T cell responses, while IL-2 secreted by T cells activates NK cells. Targeting of immune evasion mechanisms from the activating NKG2D receptor and its MICA and MICB ligands on tumor cells offers opportunities for therapeutic intervention. Interestingly, T cells and NK cells share several important inhibitory and activating receptors that can be targeted to enhance T cell– and NK cell–mediated immunity. These inhibitory receptor-ligand systems include CD161-CLEC2D, TIGIT-CD155, and NKG2A/CD94-HLA-E. We also discuss emerging therapeutic strategies based on inhibitory and activating cytokines that profoundly impact the function of both lymphocyte populations within tumors.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-101921-044122
2023-04-26
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/immunol/41/1/annurev-immunol-101921-044122.html?itemId=/content/journals/10.1146/annurev-immunol-101921-044122&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Turajlic S, Sottoriva A, Graham T, Swanton C. 2019. Resolving genetic heterogeneity in cancer. Nat. Rev. Genet. 20:404–16
    [Google Scholar]
  2. 2.
    Vitale I, Shema E, Loi S, Galluzzi L. 2021. Intratumoral heterogeneity in cancer progression and response to immunotherapy. Nat. Med. 27:212–24
    [Google Scholar]
  3. 3.
    Yuan S, Norgard RJ, Stanger BZ. 2019. Cellular plasticity in cancer. Cancer Discov. 9:837–51
    [Google Scholar]
  4. 4.
    Vegliante R, Pastushenko I, Blanpain C. 2022. Deciphering functional tumor states at single-cell resolution. EMBO J. 41:e109221
    [Google Scholar]
  5. 5.
    Thiery J, Lieberman J. 2014. Perforin: a key pore-forming protein for immune control of viruses and cancer. Subcell. Biochem. 80:197–220
    [Google Scholar]
  6. 6.
    Garcia KC, Teyton L, Wilson IA. 1999. Structural basis of T cell recognition. Annu. Rev. Immunol. 17:369–97
    [Google Scholar]
  7. 7.
    Alspach E, Lussier DM, Schreiber RD. 2019. Interferon gamma and its important roles in promoting and inhibiting spontaneous and therapeutic cancer immunity. Cold Spring Harb. Perspect. Biol. 11:a028480
    [Google Scholar]
  8. 8.
    Huang J, Brameshuber M, Zeng X, Xie J, Li QJ et al. 2013. A single peptide-major histocompatibility complex ligand triggers digital cytokine secretion in CD4+ T cells. Immunity 39:846–57
    [Google Scholar]
  9. 9.
    Huppa JB, Axmann M, Mortelmaier MA, Lillemeier BF, Newell EW et al. 2010. TCR-peptide-MHC interactions in situ show accelerated kinetics and increased affinity. Nature 463:963–67
    [Google Scholar]
  10. 10.
    Sykulev Y, Cohen RJ, Eisen HN. 1995. The law of mass action governs antigen-stimulated cytolytic activity of CD8+ cytotoxic T lymphocytes. PNAS 92:11990–92
    [Google Scholar]
  11. 11.
    Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A. 2017. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 168:707–23
    [Google Scholar]
  12. 12.
    Zaretsky JM, Garcia-Diaz A, Shin DS, Escuin-Ordinas H, Hugo W et al. 2016. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N. Engl. J. Med. 375:819–29
    [Google Scholar]
  13. 13.
    Ljunggren HG, Karre K. 1990. In search of the ‘missing self’: MHC molecules and NK cell recognition. Immunol. Today 11:237–44
    [Google Scholar]
  14. 14.
    Hilton HG, Parham P. 2017. Missing or altered self: human NK cell receptors that recognize HLA-C. Immunogenetics 69:567–79
    [Google Scholar]
  15. 15.
    Böttcher JP, Bonavita E, Chakravarty P, Blees H, Cabeza-Cabrerizo M et al. 2018. NK cells stimulate recruitment of cDC1 into the tumor microenvironment promoting cancer immune control. Cell 172:1022–37.e14
    [Google Scholar]
  16. 16.
    Barry KC, Hsu J, Broz ML, Cueto FJ, Binnewies M et al. 2018. A natural killer-dendritic cell axis defines checkpoint therapy-responsive tumor microenvironments. Nat. Med. 24:1178–91
    [Google Scholar]
  17. 17.
    Sharma P, Allison JP. 2015. The future of immune checkpoint therapy. Science 348:56–61
    [Google Scholar]
  18. 18.
    Leach DR, Krummel MF, Allison JP. 1996. Enhancement of antitumor immunity by CTLA-4 blockade. Science 271:1734–36
    [Google Scholar]
  19. 19.
    Baumeister SH, Freeman GJ, Dranoff G, Sharpe AH. 2016. Coinhibitory pathways in immunotherapy for cancer. Annu. Rev. Immunol. 34:539–73
    [Google Scholar]
  20. 20.
    June CH, O'Connor RS, Kawalekar OU, Ghassemi S, Milone MC. 2018. CAR T cell immunotherapy for human cancer. Science 359:1361–65
    [Google Scholar]
  21. 21.
    Sadelain M. 2015. CAR therapy: the CD19 paradigm. J. Clin. Investig. 125:3392–400
    [Google Scholar]
  22. 22.
    Alspach E, Lussier DM, Miceli AP, Kizhvatov I, DuPage M et al. 2019. MHC-II neoantigens shape tumour immunity and response to immunotherapy. Nature 574:696–701
    [Google Scholar]
  23. 23.
    Morvan MG, Lanier LL. 2016. NK cells and cancer: You can teach innate cells new tricks. Nat. Rev. Cancer 16:7–19
    [Google Scholar]
  24. 24.
    Wolf NK, Kissiov DU, Raulet DH. 2023. Roles of natural killer cells in immunity to cancer, and applications to immunotherapy. Nat. Rev. Immunol. 23:90–105
    [Google Scholar]
  25. 25.
    Cooper MA, Fehniger TA, Caligiuri MA. 2001. The biology of human natural killer-cell subsets. Trends Immunol. 22:633–40
    [Google Scholar]
  26. 26.
    Wang C, Cui A, Bukenya M, Aung A, Pradhan D et al. 2021. Reprogramming NK cells and macrophages via combined antibody and cytokine therapy primes tumors for elimination by checkpoint blockade. Cell Rep. 37:110021
    [Google Scholar]
  27. 27.
    Guillerey C, Huntington ND, Smyth MJ. 2016. Targeting natural killer cells in cancer immunotherapy. Nat. Immunol. 17:1025–36
    [Google Scholar]
  28. 28.
    Glasner A, Ghadially H, Gur C, Stanietsky N, Tsukerman P et al. 2012. Recognition and prevention of tumor metastasis by the NK receptor NKp46/NCR1. J. Immunol. 188:2509–15
    [Google Scholar]
  29. 29.
    Dogra P, Rancan C, Ma W, Toth M, Senda T et al. 2020. Tissue determinants of human NK cell development, function, and residence. Cell 180:749–63.e13
    [Google Scholar]
  30. 30.
    Paoletti C, Hayes DF. 2016. Circulating tumor cells. Adv. Exp. Med. Biol. 882:235–58
    [Google Scholar]
  31. 31.
    Massague J, Obenauf AC. 2016. Metastatic colonization by circulating tumour cells. Nature 529:298–306
    [Google Scholar]
  32. 32.
    Salles G, Barrett M, Foa R, Maurer J, O'Brien S et al. 2017. Rituximab in B-cell hematologic malignancies: a review of 20 years of clinical experience. Adv. Ther. 34:2232–73
    [Google Scholar]
  33. 33.
    Ochoa MC, Minute L, Rodriguez I, Garasa S, Perez-Ruiz E et al. 2017. Antibody-dependent cell cytotoxicity: immunotherapy strategies enhancing effector NK cells. Immunol. Cell Biol. 95:347–55
    [Google Scholar]
  34. 34.
    Koene HR, Kleijer M, Algra J, Roos D, von dem Borne AE, de Haas M. 1997. FcγRIIIa-158V/F polymorphism influences the binding of IgG by natural killer cell FcγRIIIa, independently of the FcγRIIIa-48L/R/H phenotype. Blood 90:1109–14
    [Google Scholar]
  35. 35.
    Dall'Ozzo S, Tartas S, Paintaud G, Cartron G, Colombat P et al. 2004. Rituximab-dependent cytotoxicity by natural killer cells: influence of FCGR3A polymorphism on the concentration-effect relationship. Cancer Res. 64:4664–69
    [Google Scholar]
  36. 36.
    Weng WK, Levy R. 2003. Two immunoglobulin G fragment C receptor polymorphisms independently predict response to rituximab in patients with follicular lymphoma. J. Clin. Oncol. 21:3940–47
    [Google Scholar]
  37. 37.
    Treon SP, Hansen M, Branagan AR, Verselis S, Emmanouilides C et al. 2005. Polymorphisms in FcγRIIIA (CD16) receptor expression are associated with clinical response to rituximab in Waldenstrom's macroglobulinemia. J. Clin. Oncol. 23:474–81
    [Google Scholar]
  38. 38.
    Balan S, Saxena M, Bhardwaj N. 2019. Dendritic cell subsets and locations. Int. Rev. Cell Mol. Biol. 348:1–68
    [Google Scholar]
  39. 39.
    Roberts EW, Broz ML, Binnewies M, Headley MB, Nelson AE et al. 2016. Critical role for CD103+/CD141+ dendritic cells bearing CCR7 for tumor antigen trafficking and priming of T cell immunity in melanoma. Cancer Cell 30:324–36
    [Google Scholar]
  40. 40.
    Ferris ST, Durai V, Wu R, Theisen DJ, Ward JP et al. 2020. cDC1 prime and are licensed by CD4+ T cells to induce anti-tumour immunity. Nature 584:624–29
    [Google Scholar]
  41. 41.
    Sancho D, Joffre OP, Keller AM, Rogers NC, Martinez D et al. 2009. Identification of a dendritic cell receptor that couples sensing of necrosis to immunity. Nature 458:899–903
    [Google Scholar]
  42. 42.
    Dorner BG, Dorner MB, Zhou X, Opitz C, Mora A et al. 2009. Selective expression of the chemokine receptor XCR1 on cross-presenting dendritic cells determines cooperation with CD8+ T cells. Immunity 31:823–33
    [Google Scholar]
  43. 43.
    Ruhland MK, Roberts EW, Cai E, Mujal AM, Marchuk K et al. 2020. Visualizing synaptic transfer of tumor antigens among dendritic cells. Cancer Cell 37:786–99.e5
    [Google Scholar]
  44. 44.
    Spranger S, Dai D, Horton B, Gajewski TF. 2017. Tumor-residing Batf3 dendritic cells are required for effector T cell trafficking and adoptive T cell therapy. Cancer Cell 31:711–23.e4
    [Google Scholar]
  45. 45.
    Sanchez-Paulete AR, Cueto FJ, Martinez-Lopez M, Labiano S, Morales-Kastresana A et al. 2016. Cancer immunotherapy with immunomodulatory anti-CD137 and anti-PD-1 monoclonal antibodies requires BATF3-dependent dendritic cells. Cancer Discov. 6:71–79
    [Google Scholar]
  46. 46.
    Hildner K, Edelson BT, Purtha WE, Diamond M, Matsushita H et al. 2008. Batf3 deficiency reveals a critical role for CD8α+ dendritic cells in cytotoxic T cell immunity. Science 322:1097–100
    [Google Scholar]
  47. 47.
    Edelson BT, Kc W, Juang R, Kohyama M, Benoit LA et al. 2010. Peripheral CD103+ dendritic cells form a unified subset developmentally related to CD8α+ conventional dendritic cells. J. Exp. Med. 207:823–36
    [Google Scholar]
  48. 48.
    Zelenay S, van der Veen AG, Bottcher JP, Snelgrove KJ, Rogers N et al. 2015. Cyclooxygenase-dependent tumor growth through evasion of immunity. Cell 162:1257–70
    [Google Scholar]
  49. 49.
    Bonavita E, Bromley CP, Jonsson G, Pelly VS, Sahoo S et al. 2020. Antagonistic inflammatory phenotypes dictate tumor fate and response to immune checkpoint blockade. Immunity 53:1215–29.e8
    [Google Scholar]
  50. 50.
    Wculek SK, Cueto FJ, Mujal AM, Melero I, Krummel MF, Sancho D 2020. Dendritic cells in cancer immunology and immunotherapy. Nat. Rev. Immunol. 20:7–24
    [Google Scholar]
  51. 51.
    de Andrade LF, Lu Y, Luoma A, Ito Y, Pan D et al. 2019. Discovery of specialized NK cell populations infiltrating human melanoma metastases. JCI Insight 4:e133103
    [Google Scholar]
  52. 52.
    Lavin Y, Kobayashi S, Leader A, Amir ED, Elefant N et al. 2017. Innate immune landscape in early lung adenocarcinoma by paired single-cell analyses. Cell 169:750–65.e17
    [Google Scholar]
  53. 53.
    Wucherpfennig KW, Gagnon E, Call MJ, Huseby ES, Call ME. 2010. Structural biology of the T-cell receptor: insights into receptor assembly, ligand recognition, and initiation of signaling. Cold Spring Harb. Perspect. Biol. 2:a005140
    [Google Scholar]
  54. 54.
    Sharpe AH. 2009. Mechanisms of costimulation. Immunol. Rev. 229:5–11
    [Google Scholar]
  55. 55.
    Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA et al. 2010. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363:711–23
    [Google Scholar]
  56. 56.
    Wolchok JD, Hodi FS, Weber JS, Allison JP, Urba WJ et al. 2013. Development of ipilimumab: a novel immunotherapeutic approach for the treatment of advanced melanoma. Ann. N. Y. Acad. Sci. 1291:1–13
    [Google Scholar]
  57. 57.
    Pauken KE, Torchia JA, Chaudhri A, Sharpe AH, Freeman GJ. 2021. Emerging concepts in PD-1 checkpoint biology. Semin. Immunol. 52:101480
    [Google Scholar]
  58. 58.
    Ribas A, Wolchok JD. 2018. Cancer immunotherapy using checkpoint blockade. Science 359:1350–55
    [Google Scholar]
  59. 59.
    Topalian SL, Drake CG, Pardoll DM. 2015. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell 27:450–61
    [Google Scholar]
  60. 60.
    Greenwald RJ, Latchman YE, Sharpe AH. 2002. Negative co-receptors on lymphocytes. Curr. Opin. Immunol. 14:391–96
    [Google Scholar]
  61. 61.
    Tivol EA, Borriello F, Schweitzer AN, Lynch WP, Bluestone JA, Sharpe AH. 1995. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 3:541–47
    [Google Scholar]
  62. 62.
    Esensten JH, Helou YA, Chopra G, Weiss A, Bluestone JA. 2016. CD28 costimulation: from mechanism to therapy. Immunity 44:973–88
    [Google Scholar]
  63. 63.
    Krummel MF, Allison JP. 1995. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J. Exp. Med. 182:459–65
    [Google Scholar]
  64. 64.
    Chambers CA, Kuhns MS, Egen JG, Allison JP. 2001. CTLA-4-mediated inhibition in regulation of T cell responses: mechanisms and manipulation in tumor immunotherapy. Annu. Rev. Immunol. 19:565–94
    [Google Scholar]
  65. 65.
    Ahn E, Araki K, Hashimoto M, Li W, Riley JL et al. 2018. Role of PD-1 during effector CD8 T cell differentiation. PNAS 115:4749–54
    [Google Scholar]
  66. 66.
    Barber DL, Wherry EJ, Masopust D, Zhu B, Allison JP et al. 2006. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439:682–87
    [Google Scholar]
  67. 67.
    McLane LM, Abdel-Hakeem MS, Wherry EJ. 2019. CD8 T cell exhaustion during chronic viral infection and cancer. Annu. Rev. Immunol. 37:457–95
    [Google Scholar]
  68. 68.
    Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T et al. 2000. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J. Exp. Med. 192:1027–34
    [Google Scholar]
  69. 69.
    Taube JM, Anders RA, Young GD, Xu H, Sharma R et al. 2012. Colocalization of inflammatory response with B7-H1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci. Transl. Med. 4:127ra37
    [Google Scholar]
  70. 70.
    Ruffo E, Wu RC, Bruno TC, Workman CJ, Vignali DAA. 2019. Lymphocyte-activation gene 3 (LAG3): the next immune checkpoint receptor. Semin. Immunol. 42:101305
    [Google Scholar]
  71. 71.
    Woo SR, Turnis ME, Goldberg MV, Bankoti J, Selby M et al. 2012. Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res. 72:917–27
    [Google Scholar]
  72. 72.
    Tawbi HA, Schadendorf D, Lipson EJ, Ascierto PA, Matamala L et al. 2022. Relatlimab and nivolumab versus nivolumab in untreated advanced melanoma. N. Engl. J. Med. 386:24–34
    [Google Scholar]
  73. 73.
    Gasser S, Orsulic S, Brown EJ, Raulet DH. 2005. The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor. Nature 436:1186–90
    [Google Scholar]
  74. 74.
    Raulet DH, Gasser S, Gowen BG, Deng W, Jung H. 2013. Regulation of ligands for the NKG2D activating receptor. Annu. Rev. Immunol. 31:413–41
    [Google Scholar]
  75. 75.
    Le Bert N, Lam AR, Ho SS, Shen YJ, Liu MM, Gasser S 2014. STING-dependent cytosolic DNA sensor pathways regulate NKG2D ligand expression. Oncoimmunology 3:e29259
    [Google Scholar]
  76. 76.
    Santara SS, Crespo Â, Lee D-J, Hu JJ, Zhang Y et al. 2021. The NK receptor NKp46 recognizes ecto-calreticulin on ER-stressed cells. bioRxiv 2021.10.31.466654, Nov. 3
  77. 77.
    Delahaye NF, Rusakiewicz S, Martins I, Menard C, Roux S et al. 2011. Alternatively spliced NKp30 isoforms affect the prognosis of gastrointestinal stromal tumors. Nat. Med. 17:700–7
    [Google Scholar]
  78. 78.
    Kaifu T, Escaliere B, Gastinel LN, Vivier E, Baratin M. 2011. B7-H6/NKp30 interaction: a mechanism of alerting NK cells against tumors. Cell Mol. Life Sci. 68:3531–39
    [Google Scholar]
  79. 79.
    Barrow AD, Edeling MA, Trifonov V, Luo J, Goyal P et al. 2018. Natural killer cells control tumor growth by sensing a growth factor. Cell 172:534–48.e19
    [Google Scholar]
  80. 80.
    Sivori S, Vacca P, Del Zotto G, Munari E, Mingari MC, Moretta L. 2019. Human NK cells: surface receptors, inhibitory checkpoints, and translational applications. Cell Mol. Immunol. 16:430–41
    [Google Scholar]
  81. 81.
    Dohring C, Colonna M. 1996. Human natural killer cell inhibitory receptors bind to HLA class I molecules. Eur. J. Immunol. 26:365–69
    [Google Scholar]
  82. 82.
    Yokoyama WM, Kim S 2006. Licensing of natural killer cells by self-major histocompatibility complex class I. Immunol. Rev. 214:143–54
    [Google Scholar]
  83. 83.
    Rosen DB, Bettadapura J, Alsharifi M, Mathew PA, Warren HS, Lanier LL. 2005. Cutting edge: lectin-like transcript-1 is a ligand for the inhibitory human NKR-P1A receptor. J. Immunol. 175:7796–99
    [Google Scholar]
  84. 84.
    Aldemir H, Prod'homme V, Dumaurier MJ, Retiere C, Poupon G et al. 2005. Cutting edge: Lectin-like transcript 1 is a ligand for the CD161 receptor. J. Immunol. 175:7791–95
    [Google Scholar]
  85. 85.
    Mathewson ND, Ashenberg O, Tirosh I, Gritsch S, Perez EM et al. 2021. Inhibitory CD161 receptor identified in glioma-infiltrating T cells by single-cell analysis. Cell 184:1281–98.e26
    [Google Scholar]
  86. 86.
    Sun Y, Wu L, Zhong Y, Zhou K, Hou Y et al. 2021. Single-cell landscape of the ecosystem in early-relapse hepatocellular carcinoma. Cell 184:404–21.e16
    [Google Scholar]
  87. 87.
    Fergusson JR, Smith KE, Fleming VM, Rajoriya N, Newell EW et al. 2014. CD161 defines a transcriptional and functional phenotype across distinct human T cell lineages. Cell Rep. 9:1075–88
    [Google Scholar]
  88. 88.
    Germain C, Guillaudeux T, Galsgaard ED, Hervouet C, Tekaya N et al. 2015. Lectin-like transcript 1 is a marker of germinal center-derived B-cell non-Hodgkin's lymphomas dampening natural killer cell functions. Oncoimmunology 4:e1026503
    [Google Scholar]
  89. 89.
    Llibre A, Lopez-Macias C, Marafioti T, Mehta H, Partridge A et al. 2016. LLT1 and CD161 expression in human germinal centers promotes B cell activation and CXCR4 downregulation. J. Immunol. 196:2085–94
    [Google Scholar]
  90. 90.
    Germain C, Meier A, Jensen T, Knapnougel P, Poupon G et al. 2011. Induction of lectin-like transcript 1 (LLT1) protein cell surface expression by pathogens and interferon-gamma contributes to modulate immune responses. J. Biol. Chem. 286:37964–75
    [Google Scholar]
  91. 91.
    Fergusson JR, Huhn MH, Swadling L, Walker LJ, Kurioka A et al. 2016. CD161intCD8+ T cells: a novel population of highly functional, memory CD8+ T cells enriched within the gut. Mucosal Immunol. 9:401–13
    [Google Scholar]
  92. 92.
    Good CR, Aznar MA, Kuramitsu S, Samareh P, Agarwal S et al. 2021. An NK-like CAR T cell transition in CAR T cell dysfunction. Cell 184:6081–100.e26
    [Google Scholar]
  93. 93.
    Borst L, van der Burg SH, van Hall T. 2020. The NKG2A-HLA-E axis as a novel checkpoint in the tumor microenvironment. Clin. Cancer Res. 26:5549–56
    [Google Scholar]
  94. 94.
    Lee N, Llano M, Carretero M, Ishitani A, Navarro F et al. 1998. HLA-E is a major ligand for the natural killer inhibitory receptor CD94/NKG2A. PNAS 95:5199–204
    [Google Scholar]
  95. 95.
    Braud VM, Allan DS, O'Callaghan CA, Soderstrom K, D'Andrea A et al. 1998. HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C. Nature 391:795–99
    [Google Scholar]
  96. 96.
    Jensen PE, Sullivan BA, Reed-Loisel LM, Weber DA. 2004. Qa-1, a nonclassical class I histocompatibility molecule with roles in innate and adaptive immunity. Immunol. Res. 29:81–92
    [Google Scholar]
  97. 97.
    Abd Hamid M, Wang RZ, Yao X, Fan P, Li X et al. 2019. Enriched HLA-E and CD94/NKG2A interaction limits antitumor CD8+ tumor-infiltrating T lymphocyte responses. Cancer Immunol. Res. 7:1293–306
    [Google Scholar]
  98. 98.
    van Montfoort N, Borst L, Korrer MJ, Sluijter M, Marijt KA et al. 2018. NKG2A blockade potentiates CD8 T cell immunity induced by cancer vaccines. Cell 175:1744–55.e15
    [Google Scholar]
  99. 99.
    André P, Denis C, Soulas C, Bourbon-Caillet C, Lopez J et al. 2018. Anti-NKG2A mAb is a checkpoint inhibitor that promotes anti-tumor immunity by unleashing both T and NK cells. Cell 175:1731–43.e13
    [Google Scholar]
  100. 100.
    Herbst RS, Majem M, Barlesi F, Carcereny E, Chu Q et al. 2022. COAST: an open-label, phase II, multidrug platform study of durvalumab alone or in combination with oleclumab or monalizumab in patients with unresectable, stage III non-small-cell lung cancer. J. Clin. Oncol. 40:3383–93
    [Google Scholar]
  101. 101.
    O'Donnell JS, Madore J, Li XY, Smyth MJ. 2020. Tumor intrinsic and extrinsic immune functions of CD155. Semin. Cancer Biol. 65:189–96
    [Google Scholar]
  102. 102.
    de Andrade LF, Smyth MJ, Martinet L. 2014. DNAM-1 control of natural killer cells functions through nectin and nectin-like proteins. Immunol. Cell Biol. 92:237–44
    [Google Scholar]
  103. 103.
    Iguchi-Manaka A, Kai H, Yamashita Y, Shibata K, Tahara-Hanaoka S et al. 2008. Accelerated tumor growth in mice deficient in DNAM-1 receptor. J. Exp. Med. 205:2959–64
    [Google Scholar]
  104. 104.
    Alteber Z, Kotturi MF, Whelan S, Ganguly S, Weyl E et al. 2021. Therapeutic targeting of checkpoint receptors within the DNAM1 axis. Cancer Discov. 11:1040–51
    [Google Scholar]
  105. 105.
    Chauvin JM, Pagliano O, Fourcade J, Sun Z, Wang H et al. 2015. TIGIT and PD-1 impair tumor antigen-specific CD8+ T cells in melanoma patients. J. Clin. Investig. 125:2046–58
    [Google Scholar]
  106. 106.
    Zhang Q, Bi J, Zheng X, Chen Y, Wang H et al. 2018. Blockade of the checkpoint receptor TIGIT prevents NK cell exhaustion and elicits potent anti-tumor immunity. Nat. Immunol. 19:723–32
    [Google Scholar]
  107. 107.
    Anderson AC, Joller N, Kuchroo VK. 2016. Lag-3, Tim-3, and TIGIT: co-inhibitory receptors with specialized functions in immune regulation. Immunity 44:989–1004
    [Google Scholar]
  108. 108.
    Cho BC, Abreu DR, Hussein M, Cobo M, Patel AJ et al. 2022. Tiragolumab plus atezolizumab versus placebo plus atezolizumab as a first-line treatment for PD-L1-selected non-small-cell lung cancer (CITYSCAPE): primary and follow-up analyses of a randomised, double-blind, phase 2 study. Lancet Oncol. 23:781–92
    [Google Scholar]
  109. 109.
    Banta KL, Xu X, Chitre AS, Au-Yeung A, Takahashi C et al. 2022. Mechanistic convergence of the TIGIT and PD-1 inhibitory pathways necessitates co-blockade to optimize anti-tumor CD8+ T cell responses. Immunity 55:512–26.e9
    [Google Scholar]
  110. 110.
    Mittal D, Lepletier A, Madore J, Aguilera AR, Stannard K et al. 2019. CD96 is an immune checkpoint that regulates CD8+ T-cell antitumor function. Cancer Immunol. Res. 7:559–71
    [Google Scholar]
  111. 111.
    Chan CJ, Martinet L, Gilfillan S, Souza-Fonseca-Guimaraes F, Chow MT et al. 2014. The receptors CD96 and CD226 oppose each other in the regulation of natural killer cell functions. Nat. Immunol. 15:431–38
    [Google Scholar]
  112. 112.
    Whelan S, Ophir E, Kotturi MF, Levy O, Ganguly S et al. 2019. PVRIG and PVRL2 are induced in cancer and inhibit CD8+ T-cell function. Cancer Immunol. Res. 7:257–68
    [Google Scholar]
  113. 113.
    Lanier LL. 2015. NKG2D receptor and its ligands in host defense. Cancer Immunol. Res. 3:575–82
    [Google Scholar]
  114. 114.
    Wu J, Song Y, Bakker AB, Bauer S, Spies T et al. 1999. An activating immunoreceptor complex formed by NKG2D and DAP10. Science 285:730–32
    [Google Scholar]
  115. 115.
    Bauer S, Groh V, Wu J, Steinle A, Phillips JH et al. 1999. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285:727–29
    [Google Scholar]
  116. 116.
    Spear P, Wu M-R, Sentman M-L, Sentman CL. 2013. NKG2D ligands as therapeutic targets. Cancer Immun. 13:8
    [Google Scholar]
  117. 117.
    Raulet DH, Marcus A, Coscoy L. 2017. Dysregulated cellular functions and cell stress pathways provide critical cues for activating and targeting natural killer cells to transformed and infected cells. Immunol. Rev. 280:93–101
    [Google Scholar]
  118. 118.
    Guerra N, Tan YX, Joncker NT, Choy A, Gallardo F et al. 2008. NKG2D-deficient mice are defective in tumor surveillance in models of spontaneous malignancy. Immunity 28:571–80
    [Google Scholar]
  119. 119.
    Kaiser BK, Yim D, Chow IT, Gonzalez S, Dai Z et al. 2007. Disulphide-isomerase-enabled shedding of tumour-associated NKG2D ligands. Nature 447:482–6
    [Google Scholar]
  120. 120.
    Ferrari de Andrade L, Tay RE, Pan D, Luoma AM, Ito Y et al. 2018. Antibody-mediated inhibition of MICA and MICB shedding promotes NK cell-driven tumor immunity. Science 359:1537–42
    [Google Scholar]
  121. 121.
    Groh V, Wu J, Yee C, Spies T 2002. Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature 419:734–38
    [Google Scholar]
  122. 122.
    Arase H, Mocarski ES, Campbell AE, Hill AB, Lanier LL. 2002. Direct recognition of cytomegalovirus by activating and inhibitory NK cell receptors. Science 296:1323–26
    [Google Scholar]
  123. 123.
    Ferrari de Andrade L, Kumar S, Luoma AM, Ito Y, Alves da Silva PH et al. 2020. Inhibition of MICA and MICB shedding elicits NK-cell-mediated immunity against tumors resistant to cytotoxic T cells. Cancer Immunol. Res. 8:769–80
    [Google Scholar]
  124. 124.
    Shemesh CS, Hsu JC, Hosseini I, Shen BQ, Rotte A et al. 2021. Personalized cancer vaccines: clinical landscape, challenges, and opportunities. Mol. Ther. 29:555–70
    [Google Scholar]
  125. 125.
    Badrinath S, Dellacherie MO, Li A, Zheng S, Zhang X et al. 2022. A vaccine targeting resistant tumors by dual T cell plus NK cell attack. Nature 606:7916992–98
    [Google Scholar]
  126. 126.
    Batlle E, Massague J. 2019. Transforming growth factor-beta signaling in immunity and cancer. Immunity 50:924–40
    [Google Scholar]
  127. 127.
    MO Li, Flavell RA. 2008. TGF-beta: a master of all T cell trades. Cell 134:392–404
    [Google Scholar]
  128. 128.
    Viel S, Marcais A, Guimaraes FS, Loftus R, Rabilloud J et al. 2016. TGF-beta inhibits the activation and functions of NK cells by repressing the mTOR pathway. Sci. Signal. 9:ra19
    [Google Scholar]
  129. 129.
    Lazarova M, Steinle A. 2019. Impairment of NKG2D-mediated tumor immunity by TGF-beta. Front. Immunol. 10:2689
    [Google Scholar]
  130. 130.
    Castriconi R, Cantoni C, Della Chiesa M, Vitale M, Marcenaro E et al. 2003. Transforming growth factor beta 1 inhibits expression of NKp30 and NKG2D receptors: consequences for the NK-mediated killing of dendritic cells. PNAS 100:4120–25
    [Google Scholar]
  131. 131.
    Dong X, Zhao B, Iacob RE, Zhu J, Koksal AC et al. 2017. Force interacts with macromolecular structure in activation of TGF-beta. Nature 542:55–59
    [Google Scholar]
  132. 132.
    Munger JS, Huang X, Kawakatsu H, Griffiths MJ, Dalton SL et al. 1999. The integrin αvβ6 binds and activates latent TGF β1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell 96:319–28
    [Google Scholar]
  133. 133.
    Niu J, Li Z. 2017. The roles of integrin αvβ6 in cancer. Cancer Lett. 403:128–37
    [Google Scholar]
  134. 134.
    Eberlein C, Kendrew J, McDaid K, Alfred A, Kang JS et al. 2013. A human monoclonal antibody 264RAD targeting αvβ6 integrin reduces tumour growth and metastasis, and modulates key biomarkers in vivo. Oncogene 32:4406–16
    [Google Scholar]
  135. 135.
    Bagati A, Kumar S, Jiang P, Pyrdol J, Zou AE et al. 2021. Integrin αvβ6-TGFβ-SOX4 pathway drives immune evasion in triple-negative breast cancer. Cancer Cell 39:54–67.e9
    [Google Scholar]
  136. 136.
    Martin CJ, Datta A, Littlefield C, Kalra A, Chapron C et al. 2020. Selective inhibition of TGFβ1 activation overcomes primary resistance to checkpoint blockade therapy by altering tumor immune landscape. Sci. Transl. Med. 12:eaay8456
    [Google Scholar]
  137. 137.
    Kalinski P. 2012. Regulation of immune responses by prostaglandin E2. J. Immunol. 188:21–28
    [Google Scholar]
  138. 138.
    Chen JH, Perry CJ, Tsui YC, Staron MM, Parish IA et al. 2015. Prostaglandin E2 and programmed cell death 1 signaling coordinately impair CTL function and survival during chronic viral infection. Nat. Med. 21:327–34
    [Google Scholar]
  139. 139.
    Algra AM, Rothwell PM. 2012. Effects of regular aspirin on long-term cancer incidence and metastasis: a systematic comparison of evidence from observational studies versus randomised trials. Lancet Oncol. 13:518–27
    [Google Scholar]
  140. 140.
    Burn J, Sheth H, Elliott F, Reed L, Macrae F et al. 2020. Cancer prevention with aspirin in hereditary colorectal cancer (Lynch syndrome), 10-year follow-up and registry-based 20-year data in the CAPP2 study: a double-blind, randomised, placebo-controlled trial. Lancet 395:1855–63
    [Google Scholar]
  141. 141.
    Leonard WJ, Lin JX, O'Shea JJ. 2019. The γc family of cytokines: basic biology to therapeutic ramifications. Immunity 50:832–50
    [Google Scholar]
  142. 142.
    Levin AM, Bates DL, Ring AM, Krieg C, Lin JT et al. 2012. Exploiting a natural conformational switch to engineer an interleukin-2 ‘superkine’. Nature 484:529–33
    [Google Scholar]
  143. 143.
    Silva DA, Yu S, Ulge UY, Spangler JB, Jude KM et al. 2019. De novo design of potent and selective mimics of IL-2 and IL-15. Nature 565:186–91
    [Google Scholar]
  144. 144.
    Charych DH, Hoch U, Langowski JL, Lee SR, Addepalli MK et al. 2016. NKTR-214, an engineered cytokine with biased IL2 receptor binding, increased tumor exposure, and marked efficacy in mouse tumor models. Clin. Cancer Res. 22:680–90
    [Google Scholar]
  145. 145.
    Bentebibel SE, Hurwitz ME, Bernatchez C, Haymaker C, Hudgens CW et al. 2019. A first-in-human study and biomarker analysis of NKTR-214, a novel IL2Rβγ-biased cytokine, in patients with advanced or metastatic solid tumors. Cancer Discov. 9:711–21
    [Google Scholar]
  146. 146.
    Guo Y, Luan L, Patil NK, Sherwood ER. 2017. Immunobiology of the IL-15/IL-15Rα complex as an antitumor and antiviral agent. Cytokine Growth Factor Rev. 38:10–21
    [Google Scholar]
  147. 147.
    Rubinstein MP, Kovar M, Purton JF, Cho JH, Boyman O et al. 2006. Converting IL-15 to a superagonist by binding to soluble IL-15Rα. PNAS 103:9166–71
    [Google Scholar]
  148. 148.
    Romee R, Cooley S, Berrien-Elliott MM, Westervelt P, Verneris MR et al. 2018. First-in-human phase 1 clinical study of the IL-15 superagonist complex ALT-803 to treat relapse after transplantation. Blood 131:2515–27
    [Google Scholar]
  149. 149.
    Spangler JB, Moraga I, Mendoza JL, Garcia KC. 2015. Insights into cytokine-receptor interactions from cytokine engineering. Annu. Rev. Immunol. 33:139–67
    [Google Scholar]
  150. 150.
    Conlon KC, Miljkovic MD, Waldmann TA. 2019. Cytokines in the treatment of cancer. J. Interferon Cytokine Res. 39:16–21
    [Google Scholar]
  151. 151.
    Kaplanski G. 2018. Interleukin-18: biological properties and role in disease pathogenesis. Immunol. Rev. 281:138–53
    [Google Scholar]
  152. 152.
    Zhou T, Damsky W, Weizman OE, McGeary MK, Hartmann KP et al. 2020. IL-18BP is a secreted immune checkpoint and barrier to IL-18 immunotherapy. Nature 583:609–14
    [Google Scholar]
  153. 153.
    Moynihan KD, Opel CF, Szeto GL, Tzeng A, Zhu EF et al. 2016. Eradication of large established tumors in mice by combination immunotherapy that engages innate and adaptive immune responses. Nat. Med. 22:1402–10
    [Google Scholar]
  154. 154.
    Nicolai CJ, Wolf N, Chang IC, Kirn G, Marcus A et al. 2020. NK cells mediate clearance of CD8+ T cell-resistant tumors in response to STING agonists. Sci. Immunol. 5:eaaz2738
    [Google Scholar]
  155. 155.
    Wolf NK, Blaj C, Picton LK, Snyder G, Zhang L et al. 2022. Synergy of a STING agonist and an IL-2 superkine in cancer immunotherapy against MHC I-deficient and MHC I+ tumors. PNAS 119:e2200568119
    [Google Scholar]
  156. 156.
    Schurch CM, Bhate SS, Barlow GL, Phillips DJ, Noti L et al. 2020. Coordinated cellular neighborhoods orchestrate antitumoral immunity at the colorectal cancer invasive front. Cell 182:1341–59.e19
    [Google Scholar]
  157. 157.
    Goltsev Y, Samusik N, Kennedy-Darling J, Bhate S, Hale M et al. 2018. Deep profiling of mouse splenic architecture with CODEX multiplexed imaging. Cell 174:968–81.e15
    [Google Scholar]
/content/journals/10.1146/annurev-immunol-101921-044122
Loading
/content/journals/10.1146/annurev-immunol-101921-044122
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error