Skip to main content
Log in

Fluorescence Signal Amplification: Red Carbon Dots@SiO2-Induced Ultra-sensitive Immunoassay for Diethyl Phthalate

  • Research
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Carbon dots as new nanomaterials, have been widely used in rapid detection because of their nondestructive, real-time detection characteristics. Improving the sensitivity and selectivity of the method in complex real samples is new challenge and requirement for sensing technology. Here, we report an ultrasensitive fluorescence immunoassay (FIA) for trace diethyl phthalate (DEP) using red carbon dots@SiO2 (R-CDs@SiO2) as tags. SiO2 as a nanocarrier can effectively improve the bio-functionalization and utilization rate of carbon dots. Moreover, several R-CDs embedded in SiO2 nanospheres can magnify the fluorescence signal and improve sensitivity. R-CDs@SiO2 conjugate anti-DEP antibody (Ab) as fluorescent immunosensor, which can specifically recognize DEP. Under optimization conditions, the detection limit (LOD) of this FIA was calculated as 0.0011 ng/mL. In addition, the recoveries of this established FIA ranged from 96.8 to 108.5%, showing satisfactory accuracy. Compared with GC-MS/MS (LOD µg/mL), the sensitivity of the FIA was significantly improved. As a result, the FIA developed using R-CDs@SiO2 as tags has a high potential for determining trace DEP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Wang XM, Chen C, Xu LH et al (2019) Development of molecularly imprinted biomimetic immunoassay method based on quantum dot marker for detection of phthalates. Food Agric Immunol 30(1):1007–1019. https://doi.org/10.1080/09540105.2019.1649371

    Article  CAS  Google Scholar 

  2. Xu ZL, Ye SL, Luo L et al (2020) Fluorescent enzyme-linked immunoassay based on silane-doped carbon dots for sensitive detection of microcystin-LR in water and crucian samples. Sci Total Environ 708(134614). https://doi.org/10.1016/j.scitotenv.2019.134614

  3. Wang Y, Li L, Li H et al (2021) A fluorometric sandwich biosensor based on rationally imprinted magnetic particles and aptamer modified carbon dots for the detection of tropomyosin in seafood products. Food Control 108552. https://doi.org/10.1016/j.foodcont.2021.108552

    Article  Google Scholar 

  4. Yan C, Wang C, Hou T et al (2021) Lasting Tracking and Rapid discrimination of live gram-positive Bacteria by Peptidoglycan-Targeting Carbon Quantum Dots. ACS Appl Mater Inter 13(1):1277–1287. https://doi.org/10.1021/acsami.0c19651

    Article  CAS  Google Scholar 

  5. Su W, Guo R, Yuan F et al (2020) Red-Emissive Carbon Quantum Dots for Nuclear Drug Delivery in Cancer Stem cells. J Phys Chem Lett 11(4):1357–1363. https://doi.org/10.1021/acs.jpclett.9b03891

    Article  CAS  PubMed  Google Scholar 

  6. Li L, Lian ZY, Yan X et al (2018) An evaporation induced self-assembly approach to prepare polymorphic carbon dot fluorescent nanoprobes for protein labelling. Chem Commun (Camb) 54(93):13123–13126. https://doi.org/10.1039/c8cc05860a

    Article  CAS  PubMed  Google Scholar 

  7. Xiao P, Ke Y, Lu J et al (2018) Photoluminescence immunoassay based on grapefruit peel-extracted carbon quantum dots encapsulated into silica nanospheres for p53 protein. Biochem Eng J 139:109–116. https://doi.org/10.1016/j.bej.2018.08.012

    Article  CAS  Google Scholar 

  8. Chen Y, Ma Q, Li Z et al (2020) An autocatalytic route of CuO/Co3O4@SiO2 nanocapsules as excellent performance supercapacitor materials. New J Chem 44(29):12430–12434. https://doi.org/10.1039/d0nj02356f

    Article  CAS  Google Scholar 

  9. Kumar K, Kumar Doddi S, Arunasree MK et al (2015) CPMV-induced synthesis of hollow mesoporous SiO2 nanocapsules with excellent performance in drug delivery. Dalton Trans 44(9):4308–4317. https://doi.org/10.1039/c4dt02549k

    Article  CAS  PubMed  Google Scholar 

  10. Singh RK, Patel KD, Leong KW et al (2017) Progress in Nanotheranostics based on mesoporous silica Nanomaterial Platforms. ACS Appl Mater Inter 9(12):10309–10337. https://doi.org/10.1021/acsami.6b16505

    Article  CAS  Google Scholar 

  11. Boyle MD, Kavi LK, Louis LM et al (2021) Occupational exposures to phthalates among black and Latina U.S. Hairdressers serving an ethnically diverse clientele: a pilot study. Environ Sci Technol 55(12):8128–8138. https://doi.org/10.1021/acs.est.1c00427

    Article  CAS  PubMed  Google Scholar 

  12. Norwegian Institute of, Public H, Gkrillas A, Dirven H et al (2020) Risk assessment of phthalates based on aggregated exposure from foods and personal care products and comparison with biomonitoring data. EFSA J 18:e181105. https://doi.org/10.2903/j.efsa.2020.e181105

    Article  CAS  Google Scholar 

  13. Liu T, He L, Peng J et al (2022) Occurrence and dietary exposure risk assessment of phthalate esters in chinese mitten crabs (Eriocheir sinensis) from Hubei, central China. Food Control 133(108618). https://doi.org/10.1016/j.foodcont.2021.108618

  14. Ranjan VP, Joseph A, Goel S (2021) Microplastics and other harmful substances released from disposable paper cups into hot water. J Hazard Mater 404(Pt B) 124118. https://doi.org/10.1016/j.jhazmat.2020.124118

  15. Wu HT, Kupsco AJ, Deierlein AL et al (2020) Trends and patterns of phthalates and Phthalate Alternatives exposure in pregnant women from Mexico City during 2007–2010. Environ Sci Technol 54(3):1740–1749. https://doi.org/10.1021/acs.est.9b05836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Praveena SM, Fong CS, Amaruddin AF (2021) Phthalates in children Toys available in malaysian market: quantification and potential Human Health risk. J Steroid Biochem Mol Biol 105955. https://doi.org/10.1016/j.jsbmb.2021.105955

    Article  Google Scholar 

  17. Golestanzadeh M, Riahi R, Kelishadi R (2020) Association of phthalate exposure with precocious and delayed pubertal timing in girls and boys: a systematic review and meta-analysis. Environ Sci Process Impacts 22(4):873–894. https://doi.org/10.1039/c9em00512a

    Article  CAS  PubMed  Google Scholar 

  18. Zhang JJ, Wang L, Trasande L et al (2021) Occurrence of polyethylene terephthalate and polycarbonate microplastics in infant and adult feces. Environ Sci Tech Let https://. doi:https://doi.org/10.1021/acs.estlett.1c00559

    Article  Google Scholar 

  19. Erickson B (2021) TOXICOLOGY Congress urges reduction of phthalates in medical equipment. Chem Eng News 99(7):17–17. https://doi.org/10.1021/cen-09907-polcon3

    Article  CAS  Google Scholar 

  20. Morse PM (2011) PHTHALATES FACE MURKY FUTURE. Chem Eng News 89(22):28–31. https://doi.org/10.1021/cen-v089n022.p028

    Article  Google Scholar 

  21. Draviam EJ, Kerkay J, Pearson KH (2006) Separation and quantitation of urinary phthalates by HPLC. Anal Lett 13(13):1137–1155. https://doi.org/10.1080/00032718008055721

    Article  Google Scholar 

  22. Insuan W, Khawmodjod P, Whitlow HJ et al (2016) High-throughput and low-cost analysis of Trace Volatile Phthalates in Seafood by Online Coupling of monolithic Capillary Adsorbent with GC-MS. J Agric Food Chem 64(16):3287–3292. https://doi.org/10.1021/acs.jafc.6b00742

    Article  CAS  PubMed  Google Scholar 

  23. Vavrous A, Sevcik V, Dvorakova M et al (2019) Easy and Inexpensive Method for Multiclass Analysis of 41 food contact related contaminants in fatty food by Liquid Chromatography-Tandem Mass Spectrometry. J Agric Food Chem 67(39):10968–10976. https://doi.org/10.1021/acs.jafc.9b02544

    Article  CAS  PubMed  Google Scholar 

  24. Sanchis A, Bosch-Orea C, Salvador JP et al (2019) Development and validation of a multianalyte immunoassay for the quantification of environmental pollutants in seawater samples from the Catalonia coastal area. Anal Bioanal Chem 411(22):5897–5907. https://doi.org/10.1007/s00216-019-01971-3

    Article  CAS  PubMed  Google Scholar 

  25. Shin J, Kasama T, Miyake R (2022) Development of cellulosic material-based microchannel device capable of fluorescence immunoassay of microsamples. Anal Bioanal Chem https://. doi:https://doi.org/10.1007/s00216-022-03963-2

    Article  Google Scholar 

  26. Long F, Gu C, Gu AZ et al (2012) Quantum dot/carrier-protein/haptens conjugate as a detection nanobioprobe for FRET-based immunoassay of small analytes with all-fiber microfluidic biosensing platform. Anal Chem 84(8):3646–3653. https://doi.org/10.1021/ac3000495

    Article  CAS  PubMed  Google Scholar 

  27. Zhang J, Li T, Zhang T et al (2016) Receptor-based fluorescence polarization assay to detect Phthalate Esters in Chinese spirits. Food Anal Method 10(5):1293–1300

    Article  Google Scholar 

  28. Zhang M, Cong Y, Sheng YL et al (2010) A direct competitive enzyme-linked immunosorbent assay by antibody coated for diethyl phthalate analysis. Anal Biochem 406(1):24–28. https://doi.org/10.1016/j.ab.2010.06.040

    Article  CAS  PubMed  Google Scholar 

  29. Li L, Yan X, Xia M et al (2022) Nanoparticle/Nanocarrier formulation as an Antigen: the immunogenicity and antigenicity of itself. Mol Pharm 19(1):148–159. https://doi.org/10.1021/acs.molpharmaceut.1c00704

    Article  CAS  PubMed  Google Scholar 

  30. Ding H, Wei JS, Zhong N et al (2017) Highly efficient Red-Emitting Carbon Dots with Gram-Scale yield for Bioimaging. Langmuir 33(44):12635–12642. https://doi.org/10.1021/acs.langmuir.7b02385

    Article  CAS  PubMed  Google Scholar 

  31. Liu X, Wang T, Lu Y et al (2019) Constructing carbon dots and CdTe quantum dots multi-functional composites for ultrasensitive sensing and rapid degrading ciprofloxacin. Sens Actuat B: Chem 289:242–251. https://doi.org/10.1016/j.snb.2019.03.094

    Article  CAS  Google Scholar 

  32. Zhou D, Li D, Jing P et al (2017) Conquering Aggregation-Induced solid-state luminescence quenching of Carbon Dots through a Carbon Dots-Triggered silica gelation process. Chem Mater 29(4):1779–1787. https://doi.org/10.1021/acs.chemmater.6b05375

    Article  CAS  Google Scholar 

  33. Wu SM, Chen J, Ai XX et al (2013) Detection of Escherichia coli in drugs with antibody conjugated quantum dots as immunofluorescence probes. J Pharm Biomed Anal 78–79:9–13. https://doi.org/10.1016/j.jpba.2013.01.005

    Article  CAS  PubMed  Google Scholar 

  34. Bai Z, Yan F, Xu J et al (2018) Dual-channel fluorescence detection of mercuric (II) and glutathione by down- and up-conversion fluorescence carbon dots. Spectrochim Acta A Mol Biomol Spectrosc 205:29–39. https://doi.org/10.1016/j.saa.2018.07.012

    Article  CAS  PubMed  Google Scholar 

  35. Yan F, Bai Z, Chen Y et al (2018) Ratiometric fluorescent detection of copper ions using coumarin-functionalized carbon dots based on FRET. Sens Actuat B: Chem 275:86–94. https://doi.org/10.1016/j.snb.2018.08.034

    Article  CAS  Google Scholar 

  36. Yan F, Bai Z, Zu F et al (2019) Yellow-emissive carbon dots with a large Stokes shift are viable fluorescent probes for detection and cellular imaging of silver ions and glutathione. Mikrochim Acta 186(2):113. https://doi.org/10.1007/s00604-018-3221-8

    Article  CAS  PubMed  Google Scholar 

  37. Kumari R, Sahu SK (2020) Effect of Solvent-Derived highly luminescent Multicolor Carbon Dots for White-Light-Emitting Diodes and Water Detection. Langmuir 36(19):5287–5295. https://doi.org/10.1021/acs.langmuir.0c00631

    Article  CAS  PubMed  Google Scholar 

  38. Chen BR, Li L, Hu Y et al (2022) Fluorescence turn-on immunoassay of endocrine diethyl phthalate in daily supplies using red fluorescent carbon dots. Microchem J 178. https://doi.org/10.1016/j.microc.2022.107350

  39. Sun RY, Zhuang HS (2015) An ultrasensitive gold nanoparticles improved real-time immuno-PCR assay for detecting diethyl phthalate in foodstuff samples. Anal Biochem 480:49–57. https://doi.org/10.1016/j.ab.2015.04.010

    Article  CAS  PubMed  Google Scholar 

  40. Zhang MC, Yu XN, Wang Y et al (2012) A highly sensitive indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) by Antigen Coating for Diethyl Phthalate Analysis in Foods. Food Anal Method 6(4):1223–1228. https://doi.org/10.1007/s12161-012-9529-9

    Article  Google Scholar 

  41. Sun RY, Zhuang HS (2015) Development of a highly sensitive biotin–streptavidin enzyme-linked immunosorbent assay for detecting diethyl phthalate based on a specific polyclonal antibody. Food Agric Immunol 26(5):746–760. https://doi.org/10.1080/09540105.2015.1027666

    Article  CAS  Google Scholar 

  42. Tian X, Dong YQ, Wang YF et al (2015) Quantification of Diethyl Phthalate by a Rapid and homogenous fluorescence polarization immunoassay. Anal Lett 48(18):2843–2855. https://doi.org/10.1080/00032719.2015.1060600

    Article  CAS  Google Scholar 

  43. Zhu F, Mao C, Du DL (2017) Time-resolved immunoassay based on magnetic particles for the detection of diethyl phthalate in environmental water samples. Sci Total Environ 601–602:723–731. https://doi.org/10.1016/j.scitotenv.2017.05.111

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by the National Natural Science Foundation of China (21175004), the Anhui provincial Natural Science Foundation (2108085MB68) and the University Synergy Innovation Program of Anhui Province (GXXT-2020-074).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Biru Chen, Lei Li, Bolin Liu, Qianqian Yang, Yue Hu. The first draft of the manuscript was written by Biru Chen. Supervision, writing-review and project administration were performed by Mingcui Zhang, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mingcui Zhang.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest.

Ethical Approval

This article does not any studies with human subjects.

Informed Consent

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, B., Li, L., Yang, Q. et al. Fluorescence Signal Amplification: Red Carbon Dots@SiO2-Induced Ultra-sensitive Immunoassay for Diethyl Phthalate. J Fluoresc 33, 487–495 (2023). https://doi.org/10.1007/s10895-022-03100-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-022-03100-3

Keywords

Navigation