Skip to main content

Advertisement

Log in

Is Deep Brain Stimulation an Effective Treatment for Psychostimulant Dependency? A Preclinical and Clinical Systematic Review

  • Review
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Addiction to psychostimulants significantly affects public health. Standard medical therapy is often not curative. Deep brain stimulation (DBS) is a promising treatment that has attracted much attention for addiction treatment in recent years. The present review aimed to systematically identify the positive and adverse effects of DBS in human and animal models to evaluate the feasibility of DBS as a treatment for psychostimulant abuse. The current study also examined the possible mechanisms underlying the therapeutic effects of DBS. In February 2022, a comprehensive search of four databases, including Web of Science, PubMed, Cochrane, and Scopus, was carried out to identify all reports that DBS was a treatment for psychostimulant addiction. The selected studies were extracted, summarized, and evaluated using the appropriate methodological quality assessment tools. The results indicated that DBS could reduce relapse and the desire for the drug in human and animal subjects without any severe side effects. The underlying mechanisms of DBS are complex and likely vary from region to region in terms of stimulation parameters and patterns. DBS seems a promising therapeutic option. However, clinical experiences are currently limited to several uncontrolled case reports. Further studies with controlled, double-blind designs are needed. In addition, more research on animals and humans is required to investigate the precise role of DBS and its mechanisms to achieve optimal stimulation parameters and develop new, less invasive methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Data will be made available upon request. The datasets generated during and/or analyzed during the current study are not publicly available, but are available from the corresponding author on reasonable request.

References

  1. Koob GF et al (2004) Neurobiological mechanisms in the transition from drug use to drug dependence. Neurosci Biobehav Rev 27(8):739–749

    Article  CAS  PubMed  Google Scholar 

  2. Belin D et al (2013) Addiction: failure of control over maladaptive incentive habits. Curr Opin Neurobiol 23(4):564–572

    Article  CAS  PubMed  Google Scholar 

  3. Cano M, Huang Y (2021) Overdose deaths involving psychostimulants with abuse potential, excluding cocaine: state-level differences and the role of opioids. Drug Alcohol Depend 218:108384

    Article  CAS  PubMed  Google Scholar 

  4. O’Donnell J et al (2020) Vital signs: characteristics of drug overdose deaths involving opioids and stimulants—24 states and the District of Columbia, January–June 2019. Morb Mortal Wkly Rep 69(35):1189

    Article  Google Scholar 

  5. Downey LA, Loftis JM (2014) Altered energy production, lowered antioxidant potential, and inflammatory processes mediate CNS damage associated with abuse of the psychostimulants MDMA and methamphetamine. Eur J Pharmacol 727:125–129

    Article  CAS  PubMed  Google Scholar 

  6. Meredith CW et al (2005) Implications of chronic methamphetamine use: a literature review. Harv Rev Psychiatry 13(3):141–154

    Article  PubMed  Google Scholar 

  7. Salamone JD et al (2015) Mesolimbic dopamine and the regulation of motivated behavior. Behav Neurosci Motivat 2015:231–257

    Article  Google Scholar 

  8. Cami J, Farré M (2003) Drug addiction. N Engl J Med 349(10):975–986

    Article  CAS  PubMed  Google Scholar 

  9. Gipson CD, Kupchik YM, Kalivas PW (2014) Rapid, transient synaptic plasticity in addiction. Neuropharmacology 76:276–286

    Article  CAS  PubMed  Google Scholar 

  10. Volkow ND, Koob GF, McLellan AT (2016) Neurobiologic advances from the brain disease model of addiction. N Engl J Med 374(4):363–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Volkow ND et al (2019) Prevention and treatment of opioid misuse and addiction: a review. JAMA Psychiat 76(2):208–216

    Article  Google Scholar 

  12. Lozano AM, Lipsman N (2013) Probing and regulating dysfunctional circuits using deep brain stimulation. Neuron 77(3):406–424

    Article  CAS  PubMed  Google Scholar 

  13. Hofmann SG et al (2012) The efficacy of cognitive behavioral therapy: a review of meta-analyses. Cogn Ther Res 36(5):427–440

    Article  Google Scholar 

  14. Rawson RA, Gonzales R, Brethen P (2002) Treatment of methamphetamine use disorders: an update. J Subst Abuse Treat 23(2):145–150

    Article  PubMed  Google Scholar 

  15. Kalia SK, Sankar T, Lozano AM (2013) Deep brain stimulation for Parkinson’s disease and other movement disorders. Curr Opin Neurol 26(4):374–380

    Article  PubMed  Google Scholar 

  16. Sharma M et al (2018) Deep brain stimulation for obsessive-compulsive disorder. Neuromodulation 2018:1033–1044

    Article  Google Scholar 

  17. Schlaepfer TE et al (2011) Modulating affect, cognition, and behavior–prospects of deep brain stimulation for treatment-resistant psychiatric disorders. Front Integr Neurosci 5:29

    Article  PubMed  PubMed Central  Google Scholar 

  18. Luigjes JV et al (2012) Deep brain stimulation in addiction: a review of potential brain targets. Mol Psychiatry 17(6):572–583

    Article  CAS  PubMed  Google Scholar 

  19. Ashkan K et al (2017) Insights into the mechanisms of deep brain stimulation. Nat Rev Neurol 13(9):548–554

    Article  PubMed  Google Scholar 

  20. Fattahi M et al (2022) Deep brain stimulation for opioid use disorder: a systematic review of preclinical and clinical evidence. Brain Res Bull 187:39–48

    Article  CAS  PubMed  Google Scholar 

  21. Kuhn J et al (2015) Neuromodulation for addiction. In: Rasche D (ed) Textbook of neuromodulation. Springer, New York, pp 247–255

    Chapter  Google Scholar 

  22. Ali R et al (2016) Attitudes toward treating addiction with deep brain stimulation. Brain Stimul 9(3):466–468

    Article  PubMed  Google Scholar 

  23. Voges J et al (2013) Deep brain stimulation surgery for alcohol addiction. World Neurosurg 80(3–4):S28.e21-S28.e31

    Article  PubMed  Google Scholar 

  24. Guo L et al (2013) DBS of nucleus accumbens on heroin seeking behaviors in self-administering rats. Drug Alcohol Depend 129(1–2):70–81

    Article  CAS  PubMed  Google Scholar 

  25. Hamilton, J.J., Deep brain stimulation of the nucleus accumbens for the treatment of cocaine addiction. 2014.

  26. Müller UJ et al (2013) Deep brain stimulation of the nucleus accumbens for the treatment of addiction. Ann N Y Acad Sci 1282(1):119–128

    Article  PubMed  Google Scholar 

  27. Vanegas N, Zaghloul KA (2015) Deep brain stimulation for substance abuse. Curr Behav Neurosci Rep 2(2):72–79

    Article  Google Scholar 

  28. Zhu R et al (2020) Deep brain stimulation of nucleus accumbens with anterior capsulotomy for drug addiction: a case report. Stereotact Funct Neurosurg 98(5):345–349

    Article  PubMed  Google Scholar 

  29. Zhou H, Xu J, Jiang J (2011) Deep brain stimulation of nucleus accumbens on heroin-seeking behaviors: a case report. Biol Psychiat 69(11):e41–e42

    Article  PubMed  Google Scholar 

  30. Chen L et al (2019) Long-term results after deep brain stimulation of nucleus accumbens and the anterior limb of the internal capsule for preventing heroin relapse: an open-label pilot study. Brain Stimul 12(1):175–183

    Article  PubMed  Google Scholar 

  31. Liberati A et al (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. J Clin Epidemiol 62(10):e1–e34

    Article  PubMed  Google Scholar 

  32. Goldenberg I et al (2015) Multiple sessions of deep brain stimulation using TMS-like protocols reduce cue-induced relapse to cocaine in a rat model. Brain Stimul 8(2):423

    Article  Google Scholar 

  33. Goncalves-Ferreira A et al (2012) Deep brain stimulation for the treatment of refractory cocaine dependence. Stereotact Funct Neurosurg 90(suppl 1):90

    Google Scholar 

  34. Barnea-Ygael N, Yaka R, Zangen A, The effect of deep brain stimulation on cocaine seeking, relapse and fear in the rat conflict model. J Mol Neurosci (2012) S12.

  35. Batra V et al (2016) A general method for evaluating deep brain stimulation effects on intravenous methamphetamine self-administration. JoVE (J Visual Exp) 107:e53266

    Google Scholar 

  36. Baunez C (2013) From patient to rat, from rat to patient: innovation for the treatment of addictions. Eur Psychiatry 28(S2):16–17

    Article  Google Scholar 

  37. Lax E et al (2011) P. 1.039 Lateral habenula stimulation restores glutamate receptor subunits levels in the ventral tegmental area and inhibits cocaine seeking behaviour. Eur Neuropsychopharmacol 21:S32

    Article  Google Scholar 

  38. Taepavarapruk P, Butts KA, Phillips AG (2014) Dopamine and glutamate interaction mediates reinstatement of drug-seeking behavior by stimulation of the ventral subiculum. Int J Neuropsychopharmacol 18(1):pyu008

    Article  PubMed  PubMed Central  Google Scholar 

  39. Slim K et al (2003) Methodological index for non-randomized studies (MINORS): development and validation of a new instrument. ANZ J Surg 73(9):712–716

    Article  PubMed  Google Scholar 

  40. Hooijmans CR et al (2014) SYRCLE’s risk of bias tool for animal studies. BMC Med Res Methodol 14(1):1–9

    Article  Google Scholar 

  41. Ma L-L et al (2020) Methodological quality (risk of bias) assessment tools for primary and secondary medical studies: what are they and which is better? Mil Med Res 7(1):1–11

    Google Scholar 

  42. Ge S et al (2019) Deep brain stimulation of nucleus accumbens for methamphetamine addiction: two case reports. World Neurosurg 122:512–517

    Article  PubMed  Google Scholar 

  43. Zhang C et al (2019) Increased dopamine transporter levels following nucleus accumbens deep brain stimulation in methamphetamine use disorder: a case report. Brain Stimul 12(4):1055–1057

    Article  CAS  PubMed  Google Scholar 

  44. Gonçalves-Ferreira A et al (2016) Deep brain stimulation for refractory cocaine dependence. Biol Psychiat 79(11):e87–e89

    Article  PubMed  Google Scholar 

  45. Vassoler FM et al (2008) Deep brain stimulation of the nucleus accumbens shell attenuates cocaine priming-induced reinstatement of drug seeking in rats. J Neurosci 28(35):8735–8739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Vassoler FM et al (2013) Deep brain stimulation of the nucleus accumbens shell attenuates cocaine reinstatement through local and antidromic activation. J Neurosci 33(36):14446–14454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Guercio LA, Schmidt HD, Pierce RC (2015) Deep brain stimulation of the nucleus accumbens shell attenuates cue-induced reinstatement of both cocaine and sucrose seeking in rats. Behav Brain Res 281:125–130

    Article  PubMed  Google Scholar 

  48. Hamilton J, Lee J, Canales J (2015) Chronic unilateral stimulation of the nucleus accumbens at high or low frequencies attenuates relapse to cocaine seeking in an animal model. Brain Stimul 8(1):57–63

    Article  CAS  PubMed  Google Scholar 

  49. Batra V et al (2017) Intermittent bilateral deep brain stimulation of the nucleus accumbens shell reduces intravenous methamphetamine intake and seeking in Wistar rats. J Neurosurg 126(4):1339–1350

    Article  PubMed  Google Scholar 

  50. Creed M, Pascoli VJ, Lüscher C (2015) Refining deep brain stimulation to emulate optogenetic treatment of synaptic pathology. Science 347(6222):659–664

    Article  CAS  PubMed  Google Scholar 

  51. Kallupi M et al (2022) Deep brain stimulation of the nucleus accumbens shell attenuates cocaine withdrawal but increases cocaine self-administration, cocaine-induced locomotor activity, and GluR1/GluA1 in the central nucleus of the amygdala in male cocaine-dependent rats. Brain Stimul 15(1):13–22

    Article  PubMed  Google Scholar 

  52. Hachem-Delaunay S et al (2015) Subthalamic nucleus high-frequency stimulation modulates neuronal reactivity to cocaine within the reward circuit. Neurobiol Dis 80:54–62

    Article  CAS  PubMed  Google Scholar 

  53. Pelloux Y et al (2018) Subthalamic nucleus high frequency stimulation prevents and reverses escalated cocaine use. Mol Psychiatry 23(12):2266–2276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rouaud T et al (2010) Reducing the desire for cocaine with subthalamic nucleus deep brain stimulation. Proc Natl Acad Sci 107(3):1196–1200

    Article  CAS  PubMed  Google Scholar 

  55. Degoulet M et al (2021) Subthalamic low-frequency oscillations predict vulnerability to cocaine addiction. Proc Natl Acad Sci 118(14):e2024121118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Guercio LA et al (2020) Deep brain stimulation of the infralimbic cortex attenuates cocaine priming-induced reinstatement of drug seeking. Brain Res 1746:147011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Levy D et al (2007) Repeated electrical stimulation of reward-related brain regions affects cocaine but not “natural” reinforcement. J Neurosci 27(51):14179–14189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Friedman A et al (2010) Electrical stimulation of the lateral habenula produces enduring inhibitory effect on cocaine seeking behavior. Neuropharmacology 59(6):452–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lax E et al (2013) Neurodegeneration of lateral habenula efferent fibers after intermittent cocaine administration: implications for deep brain stimulation. Neuropharmacology 75:246–254

    Article  CAS  PubMed  Google Scholar 

  60. Zhang L et al (2021) High-frequency deep brain stimulation of the substantia nigra pars reticulata facilitates extinction and prevents reinstatement of methamphetamine-induced conditioned place preference. Front Pharmacol 12:705813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wang TR et al (2018) Deep brain stimulation for the treatment of drug addiction. Neurosurg Focus 45(2):E11

    Article  PubMed  PubMed Central  Google Scholar 

  62. Koob GF (2015) The dark side of emotion: the addiction perspective. Eur J Pharmacol 753:73–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Volkow ND et al (2012) Addiction circuitry in the human brain. Annu Rev Pharmacol Toxicol 52:321–336

    Article  CAS  PubMed  Google Scholar 

  64. Stelten BM et al (2008) The neurosurgical treatment of addiction. Neurosurg Focus 25(1):E5

    Article  PubMed  Google Scholar 

  65. Luigjes J et al (2019) Efficacy of invasive and non-invasive brain modulation interventions for addiction. Neuropsychol Rev 29(1):116–138

    Article  PubMed  Google Scholar 

  66. Salling MC, Martinez D (2016) Brain stimulation in addiction. Neuropsychopharmacology 41(12):2798–2809

    Article  PubMed  PubMed Central  Google Scholar 

  67. Benazzouz A, Hallett M (2000) Mechanism of action of deep brain stimulation. Neurology 55(12 Suppl 6):S13–S16

    CAS  PubMed  Google Scholar 

  68. Kiss ZH et al (2002) Neuronal response to local electrical stimulation in rat thalamus: physiological implications for mechanisms of deep brain stimulation. Neuroscience 113(1):137–143

    Article  CAS  PubMed  Google Scholar 

  69. Gradinaru V et al (2009) Optical deconstruction of parkinsonian neural circuitry. Science 324(5925):354–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. McCracken CB, Grace AA (2007) High-frequency deep brain stimulation of the nucleus accumbens region suppresses neuronal activity and selectively modulates afferent drive in rat orbitofrontal cortex in vivo. J Neurosci 27(46):12601–12610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chiken S, Nambu A (2016) Mechanism of deep brain stimulation: inhibition, excitation, or disruption? Neuroscientist 22(3):313–322

    Article  PubMed  Google Scholar 

  72. Pisapia JM et al (2013) Ethical considerations in deep brain stimulation for the treatment of addiction and overeating associated with obesity. AJOB Neurosci 4(2):35–46

    Article  PubMed  PubMed Central  Google Scholar 

  73. Steketee JD, Sorg BA, Kalivas PW (1992) The role of the nucleus accumbens in sensitization to drugs of abuse. Prog Neuropsychopharmacol Biol Psychiatry 16(2):237–246

    Article  CAS  PubMed  Google Scholar 

  74. Koob GF, Volkow ND (2010) Neurocircuitry of addiction. Neuropsychopharmacology 35(1):217–238

    Article  PubMed  Google Scholar 

  75. Everitt BJ, Robbins TW (2005) Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat Neurosci 8(11):1481–1489

    Article  CAS  PubMed  Google Scholar 

  76. Russo SJ et al (2010) The addicted synapse: mechanisms of synaptic and structural plasticity in nucleus accumbens. Trends Neurosci 33(6):267–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Liu HY et al (2008) Chronic deep brain stimulation in the rat nucleus accumbens and its effect on morphine reinforcement. Addict Biol 13(1):40–46

    Article  PubMed  Google Scholar 

  78. Valencia-Alfonso CE et al (2012) Effective deep brain stimulation in heroin addiction: a case report with complementary intracranial electroencephalogram. Biol Psychiatry 71(8):e35–e37

    Article  PubMed  Google Scholar 

  79. Müller UJ et al (2016) Nucleus accumbens deep brain stimulation for alcohol addiction: safety and clinical long-term results of a pilot trial. Pharmacopsychiatry 49(4):170–173

    Article  PubMed  Google Scholar 

  80. Heldmann M et al (2012) Deep brain stimulation of nucleus accumbens region in alcoholism affects reward processing. PLoS ONE 7(5):e36572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kuhn J et al (2011) Successful deep brain stimulation of the nucleus accumbens in severe alcohol dependence is associated with changed performance monitoring. Addict Biol 16(4):620–623

    Article  PubMed  Google Scholar 

  82. Velasquez KM, Molfese DL, Salas R (2014) The role of the habenula in drug addiction. Front Hum Neurosci 8:174–174

    Article  PubMed  PubMed Central  Google Scholar 

  83. Lecourtier L, Defrancesco A, Moghaddam B (2008) Differential tonic influence of lateral habenula on prefrontal cortex and nucleus accumbens dopamine release. Eur J Neurosci 27(7):1755–1762

    Article  PubMed  PubMed Central  Google Scholar 

  84. Mathis V, Kenny PJ (2019) From controlled to compulsive drug-taking: the role of the habenula in addiction. Neurosci Biobehav Rev 106:102–111

    Article  PubMed  Google Scholar 

  85. Shabel SJ et al (2012) Input to the lateral habenula from the basal ganglia is excitatory, aversive, and suppressed by serotonin. Neuron 74(3):475–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Fiorillo CD, Tobler PN, Schultz W (2003) Discrete coding of reward probability and uncertainty by dopamine neurons. Science 299(5614):1898–1902

    Article  CAS  PubMed  Google Scholar 

  87. Yadid G, Gispan I, Lax E (2013) Lateral habenula deep brain stimulation for personalized treatment of drug addiction. Front Hum Neurosci 7:806–806

    Article  PubMed  PubMed Central  Google Scholar 

  88. Pelloux Y, Baunez C (2013) Deep brain stimulation for addiction: why the subthalamic nucleus should be favored. Curr Opin Neurobiol 23(4):713–720

    Article  CAS  PubMed  Google Scholar 

  89. Baunez C et al (2005) The subthalamic nucleus exerts opposite control on cocaine and “natural” rewards. Nat Neurosci 8(4):484–489

    Article  CAS  PubMed  Google Scholar 

  90. Rouaud T et al (2010) Reducing the desire for cocaine with subthalamic nucleus deep brain stimulation. Proc Natl Acad Sci U S A 107(3):1196–1200

    Article  CAS  PubMed  Google Scholar 

  91. Geday J, Ostergaard K, Gjedde A (2006) Stimulation of subthalamic nucleus inhibits emotional activation of fusiform gyrus. Neuroimage 33(2):706–714

    Article  PubMed  Google Scholar 

  92. Zarrabian S et al (2020) The potential role of the orexin reward system in future treatments for opioid drug abuse. Brain Res 1731:146028

    Article  CAS  PubMed  Google Scholar 

  93. Fattahi M et al (2019) Preventing morphine reinforcement with high-frequency deep brain stimulation of the lateral hypothalamic area. Addict Biol 24(4):685–695

    Article  CAS  PubMed  Google Scholar 

  94. Minbashi Moeini M, Sadr SS, Riahi E (2021) Deep brain stimulation of the lateral hypothalamus facilitates extinction and prevents reinstatement of morphine place preference in rats. Neuromodulation 24(2):240–247

    Article  PubMed  Google Scholar 

  95. Whiting DM et al (2013) Lateral hypothalamic area deep brain stimulation for refractory obesity: a pilot study with preliminary data on safety, body weight, and energy metabolism. J Neurosurg 119(1):56–63

    Article  PubMed  PubMed Central  Google Scholar 

  96. Franco RR et al (2018) Assessment of safety and outcome of lateral hypothalamic deep brain stimulation for obesity in a small series of patients with Prader-Willi syndrome. JAMA Netw Open 1(7):e185275

    Article  PubMed  PubMed Central  Google Scholar 

  97. Talakoub O et al (2017) Lateral hypothalamic activity indicates hunger and satiety states in humans. Ann Clin Transl Neurol 4(12):897–901

    Article  PubMed  PubMed Central  Google Scholar 

  98. Neumann WJ et al (2019) Toward electrophysiology-based intelligent adaptive deep brain stimulation for movement disorders. Neurotherapeutics 16(1):105–118

    Article  PubMed  PubMed Central  Google Scholar 

  99. Ramasubbu R, Lang S, Kiss ZHT (2018) Dosing of electrical parameters in deep brain stimulation (DBS) for intractable depression: a review of clinical studies. Front Psychiatry 9:302–302

    Article  PubMed  PubMed Central  Google Scholar 

  100. Rizzone M et al (2001) Deep brain stimulation of the subthalamic nucleus in Parkinson’s disease: effects of variation in stimulation parameters. J Neurol Neurosurg Psychiatry 71(2):215–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Aum DJ, Tierney TS (2018) Deep brain stimulation: foundations and future trends. Front Biosci (Landmark Ed) 23:162–182

    Article  CAS  PubMed  Google Scholar 

  102. Baizabal-Carvallo JF, Alonso-Juarez M (2016) Low-frequency deep brain stimulation for movement disorders. Parkinsonism Relat Disord 31:14–22

    Article  PubMed  Google Scholar 

  103. Martínez-Rivera FJ et al (2016) Bidirectional modulation of extinction of drug seeking by deep brain stimulation of the ventral striatum. Biol Psychiatry 80(9):682–690

    Article  PubMed  PubMed Central  Google Scholar 

  104. Price JB et al (2020) Clinical applications of neurochemical and electrophysiological measurements for closed-loop neurostimulation. Neurosurg Focus 49(1):E6–E6

    Article  PubMed  PubMed Central  Google Scholar 

  105. Little S et al (2016) Bilateral adaptive deep brain stimulation is effective in Parkinson’s disease. J Neurol Neurosurg Psychiatry 87(7):717–721

    Article  PubMed  Google Scholar 

  106. Bina RW, Langevin J-P (2018) Closed loop deep brain stimulation for PTSD, addiction, and disorders of affective facial interpretation: review and discussion of potential biomarkers and stimulation paradigms. Front Neurosci 12:300–300

    Article  PubMed  PubMed Central  Google Scholar 

  107. Bari A et al (2018) Neuromodulation for substance addiction in human subjects: a review. Neurosci Biobehav Rev 95:33–43

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study is related to the Project No. 1400/66/605 from Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran. We also, appreciate “Student Reseach Committee” and “Research & Technology Chancellor” in Shahid Beheshti University of Medical Sciences for their financial support of this study.

Funding

Funding for this study was provided by the grant (No. 1400/66/605) from Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran. The Student Research Committee had no further role in the design of the study; in the collection, analysis and interpretation of data; in the writing of the report; and in the decision to submit the paper for publication.

Author information

Authors and Affiliations

Authors

Contributions

AH was responsible for the study concept and design. KE and MF contributed to the search, screening, selection, and methodological quality assessment of eligible studies incorporated into the systematic review. KE and HY drafted the manuscript. AH provided critical revision of the manuscript for important intellectual content. All authors critically reviewed content and approved the final version for publication.

Corresponding author

Correspondence to Abbas Haghparast.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eskandari, K., Fattahi, M., Yazdanian, H. et al. Is Deep Brain Stimulation an Effective Treatment for Psychostimulant Dependency? A Preclinical and Clinical Systematic Review. Neurochem Res 48, 1255–1268 (2023). https://doi.org/10.1007/s11064-022-03818-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-022-03818-3

Keywords

Navigation