Skip to main content
Log in

The on–off-on Fluorescence Sensor of Hollow Carbon Dots for Detecting Hg2+ and Ascorbic Acid

  • Research
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Carbon dots (CDs) have excellent fluorescence properties and can be used in many research fields. In this paper, carbon dots were prepared by microwave-assisted pyrolysis of citric acid and urea, characterized by transmission electron microscope (TEM), X-ray diffractometer (XRD), 13C-NMR spectrum, zeta potential, Fourier transform infrared spectroscopy (FT-IR), ultraviolet–visible (UV–vis) absorption and fluorescence spectra, and detected the Hg2+ and ascorbic acid (AA) sequentially. It showed that carbon dots were hollow, spherical particles and less than 10 nm, photoluminescence quantum yield of carbon dots was about 15%. The CDs were selective and sensitive to Hg2+ and AA based on the “on–off-on” fluorescence behavior. The detection limits of CDs for Hg2+ and AA were 0.138 μM and 0.212 μM, respectively. Fluorescence response mechanism of CDs was also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All authors conform that the data of this article is available inside the article.

References

  1. Lin Y, Chen Y, Mo W, Li X, Ma H, Zhao X (2021) An “on-off-on” fluorescent system based on the microwave-assisted preparation of copper-functionalized carbon quantum dots for sensitive detection of ascorbic acid. Opt Mater 115:111041. https://doi.org/10.1016/j.optmat.2021.111041

    Article  CAS  Google Scholar 

  2. Erxleben H, Ruzicka J (2005) Atomic absorption spectroscopy for mercury, automated by sequential injection and miniaturized in lab-on-valve system. Anal Chem 77:5124–5128. https://doi.org/10.1021/ac058007s

    Article  CAS  PubMed  Google Scholar 

  3. Chen Y, Wu LH, Chen YH, Bi N, Zheng X, Qi HB, Qin MH, Liao X, Zhang HQ, Tian Y (2012) Determination of mercury (II) by surface-enhanced Raman scattering spectroscopy based on thiol-functionalized silver nanoparticles. Microchim Acta 177:341–348. https://doi.org/10.1007/s00604-012-0777-6

    Article  CAS  Google Scholar 

  4. Fong BMW, Siu TS, Lee JSK, Tam S (2007) Determination of mercury in whole blood and urine by inductively coupled plasma mass spectrometry. J Anal Toxicol 31:281–287. https://doi.org/10.1093/jat/31.5.281

    Article  CAS  PubMed  Google Scholar 

  5. Zhou L, Lin YH, Huang ZZ, Ren JS, Qu XG (2012) Carbon nanodots as fluorescence probes for rapid, sensitive, and label-free detection of Hg2+ and biothiols in complex matrices. Chem Commun 48:1147–1149. https://doi.org/10.1039/C2CC16791C

    Article  CAS  Google Scholar 

  6. Huo FJ, Su J, Sun YQ, Yin CX, Tong HB, Nie ZX (2010) A rhodamine-based dual chemosensor for the visual detection of copper and the ratiometric fluorescent detection of vanadium. Dyes Pigm 86:50–55. https://doi.org/10.1016/j.dyepig.2009.11.007

    Article  CAS  Google Scholar 

  7. Wen QL, Pu ZF, Yang YJ, Wang J, Wu BC, Hu YL, Liu P, Ling J, Cao Q (2020) Hyaluronic acid as a material for the synthesis of fluorescent carbon dots and its application for selective detection of Fe3+ ion and folic acid. Microchem J 159:105364. https://doi.org/10.1016/j.microc.2020.105364

    Article  CAS  Google Scholar 

  8. Wei S, Tan L, Yin X, Wang R, Shan X, Chen Q, Li T, Zhang X, Jiang C, Sun G (2020) A sensitive “on-off” fluorescent probe based on carbon dots for Fe2+ detection and cell imaging. Analyst 145:2357–2366. https://doi.org/10.1039/C9AN02309G

    Article  CAS  PubMed  Google Scholar 

  9. Sahoo NK, Jana GC, Aktara MN, Das S, Nayim S, Patra A, Bhattacharjee P, Bhadra K, Hossain M (2020) Carbon dots derived from lychee waste: Application for Fe3+ ions sensing in real water and multicolor cell imaging of skin melanoma cells. Mater Sci Eng C 108:110429. https://doi.org/10.1016/j.msec.2019.110429

    Article  CAS  Google Scholar 

  10. Ji C, Zhou Y, Leblanc RM, Peng Z (2020) Recent Developments of carbon dots in biosensing: a Review. ACS Sens 5:2724–2741. https://doi.org/10.1021/acssensors.0c01556

    Article  CAS  PubMed  Google Scholar 

  11. Gong P, Sun L, Wang F, Liu X, Yan Z, Wang M, Zhang L, Tian Z, Liu Z, You J (2019) Highly fluorescent N-doped carbon dots with two-photon emission for ultrasensitive detection of tumor marker and visual monitor anticancer drug loading and delivery. Chem Eng J 356:994–1002. https://doi.org/10.1016/j.cej.2018.09.100

    Article  CAS  Google Scholar 

  12. Lesani P, Singh G, Viray C, Ramaswamy Y, Zhu D, Kingshott P, Lu ZF, Zreiqat H (2020) Two-photon dual-emissive carbon dot-based probe: deep-tissue imaging and ultrasensitive sensing of intracellular ferric ions. ACS Appl Mater Interfaces 12:18395–18406. https://doi.org/10.1021/acsami.0c05217

    Article  CAS  PubMed  Google Scholar 

  13. Konar S, Kumar BNP, Mahto MK, Samanta D, Shaik MAS, Shaw M, Mandal M, Pathak A (2019) N-doped carbon dot as fluorescent probe for detection of cysteamine and multicolor cell imaging. Sens Actuators B 286:77–85. https://doi.org/10.1016/j.snb.2019.01.117

    Article  CAS  Google Scholar 

  14. Wang M, Shi R, Gao M, Zhang K, Deng L, Fu Q, Wang L, Gao D (2020) Sensitivity fluorescent switching sensor for Cr (VI) and ascorbic acid detection based on orange peels-derived carbon dots modified with EDTA. Food Chem 318:126506. https://doi.org/10.1016/j.foodchem.2020.126506

    Article  CAS  PubMed  Google Scholar 

  15. Shu Y, Lu J, Mao Q-X, Song RS, Wang XY, Chen XW, Wang JH (2017) Ionic liquid mediated organophilic carbon dots for drug delivery and bioimaging. Carbon 114:324–333. https://doi.org/10.1016/j.carbon.2016.12.038

    Article  CAS  Google Scholar 

  16. Yang Q, Duan J, Yang W, Li X, Mo J, Yang P, Tang Q (2018) Nitrogen-doped carbon quantum dots from biomass via simple one-pot method and exploration of their application. Appl Surf Sci 434:1079–1085. https://doi.org/10.1016/j.apsusc.2017.11.040

    Article  CAS  Google Scholar 

  17. Filippini G, Amato F, Rosso C, Ragazzon G, Vega-Peñaloza A, Companyó X, Dell’Amico L, Bonchio M, Prato M (2020) Mapping the surface groups of amine-rich carbon dots enables covalent catalysis in aqueous media. Chem 6:3022–3037. https://doi.org/10.1016/j.chempr.2020.08.009

    Article  CAS  Google Scholar 

  18. Deng H, Tian C, Gao Z, Chen SW, Li Y, Zhang Q, Yu R, Wang J (2020) Highly luminescent N-doped carbon dots as a fluorescence detecting platform for Fe3+ in solutions and living cells. Analyst 145:4931–4936. https://doi.org/10.1039/D0AN00208A

    Article  CAS  PubMed  Google Scholar 

  19. Chaudhary N, Gupta PK, Eremin S, Solanki PR (2020) One-step green approach to synthesize highly fluorescent carbon quantum dots from banana juice for selective detection of copper ions. J Environ Chem Eng 8:103720. https://doi.org/10.1016/j.jece.2020.103720

    Article  CAS  Google Scholar 

  20. Li DY, Wang SP, Azad F, Su SC (2020) Single-step synthesis of polychromatic carbon quantum dots for macroscopic detection of Hg2+. Ecotoxicol Environ Saf 190:110141. https://doi.org/10.1016/j.ecoenv.2019.110141

    Article  CAS  PubMed  Google Scholar 

  21. Qureashi A, Pandith AH, Bashir A, Malik LA (2021) Biomass-derived carbon quantum dots: a novel and sustainable fluorescent “on-off-on” sensor for ferric ions. Anal Methods 13:4756–4766. https://doi.org/10.1039/D1AY01112J

    Article  CAS  PubMed  Google Scholar 

  22. Yang X, Zhang M, Zhang Y, Wang N, Bian W, Choi MMF (2019) Nitrogen and phosphorus co-doped carbon dots as a “turn-off-on” fluorescence probe for the detection of Hg2+ and GSH and cell imaging. Anal Methods 11:5803–5809. https://doi.org/10.1039/C9AY01723B

    Article  CAS  Google Scholar 

  23. Gao X, Zhou X, Ma Y, Qian T, Wang C, Chu F (2019) Facile and cost-effective preparation of carbon quantum dots for Fe3+ ion and ascorbic acid detection in living cells based on the “on-off-on” fluorescence principle. Appl Surf Sci 469:911–916. https://doi.org/10.1016/j.apsusc.2018.11.095

    Article  CAS  Google Scholar 

  24. Huang H, Weng Y, Zheng L, Yao B, Weng W, Lin X (2017) Nitrogen-doped carbon quantum dots as fluorescent probe for “off-on” detection of mercury ions, l-cysteine and iodide ions. J Colloid Interface Sci 506:373–378. https://doi.org/10.1016/j.jcis.2017.07.076

    Article  CAS  PubMed  Google Scholar 

  25. Dang VD, Ganganboina AB, Doong RA (2020) Bipyridine- and Copper-Functionalized N-doped Carbon dots for fluorescence turn off-on detection of ciprofloxacin. ACS Appl Mater Interfaces 12:32247–32258. https://doi.org/10.1021/acsami.0c04645

    Article  CAS  PubMed  Google Scholar 

  26. Thakur M, Dan A (2021) Poly-l-lysine-functionalized green-light-emitting carbon dots as a fluorescence turn-on sensor for ultrasensitive detection of endotoxin. ACS Appl Bio Mater 4:3410–3422. https://doi.org/10.1021/acsabm.1c00006

    Article  CAS  PubMed  Google Scholar 

  27. Xu O, Wan S, Zhang Y, Li J, Zhu X (2021) A unique dual-excitation carbon quantum dots: facile synthesis and application as a dual “on-off-on” fluorescent probe. Sens Actuators B 340:129904. https://doi.org/10.1016/j.snb.2021.129904

    Article  CAS  Google Scholar 

  28. Xu J, Wang Y, Sun L, Qi Q, Zhao X (2021) Chitosan and kappa-carrageenan-derived nitrogen and sulfur co-doped carbon dots “on-off-on” fluorescent probe for sequential detection of Fe3+ and ascorbic acid. Int J Biol Macromol 191:1221–1227. https://doi.org/10.1016/j.ijbiomac.2021.09.165

    Article  CAS  PubMed  Google Scholar 

  29. Li J, Xu O, Zhu X (2021) A facile green and one-pot synthesis of grape seed-derived carbon quantum dots as a fluorescence probe for Cu (ii) and ascorbic acid. RSC Adv 11:34107–34116. https://doi.org/10.1039/d1ra05656e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hu C, Zhu Y, Zhao X (2021) On-off-on nanosensors of carbon quantum dots derived from coal tar pitch for the detection of Cu2+, Fe3+, and L-ascorbic acid. Spectrochim Acta Part A 250:119325. https://doi.org/10.1016/j.saa.2020.119325

    Article  CAS  Google Scholar 

  31. Fan R, Xiang J, Zhou P, Mei H, Li Y, Wang H, Liu X, Wang X (2022) Reuse of waste Myrica rubra for green synthesis of nitrogen-doped carbon dots as an “on-off-on” fluorescent probe for Fe3+ and ascorbic acid detection. Ecotoxicol Environ Saf 233:113350. https://doi.org/10.1016/j.ecoenv.2022.113350

    Article  CAS  PubMed  Google Scholar 

  32. Shi NN, Sun KY, Zhang ZD, Zhao J, Geng LN, Lei YH (2021) Amino-modified carbon dots as a functional platform for drug delivery: load-release mechanism and cytotoxicity. J Ind Eng Chem 101:372–378. https://doi.org/10.1016/j.jiec.2021.05.046

    Article  CAS  Google Scholar 

  33. Zhang ZD, Lei YH, Yang XH, Shi NN, Geng LN, Wang SP, Zhang JJ, Shi SK (2019) High drug-loading system of hollow carbon dots-doxorubicin: preparation, in vitro release and pH-targeted research. J Mat Chem B 7:2130–2137. https://doi.org/10.1039/c9tb00032a

    Article  CAS  Google Scholar 

  34. Huang Z, Lin F, Hu M, Li C, Xu T, Chen C, Guo X (2014) Carbon dots with tunable emission, controllable size and their application for sensing hypochlorous acid. J Lumin 151:100–105. https://doi.org/10.1016/j.jlumin.2014.02.013

    Article  CAS  Google Scholar 

  35. Yue J, Li L, Cao L, Zan M, Yang D, Wang Z, Chang Z, Mei Q, Miao P, Dong WF (2019) Two-step hydrothermal preparation of carbon dots for calcium ion detection. ACS Appl Mater Interfaces 11:44566–44572. https://doi.org/10.1021/acsami.9b13737

    Article  CAS  PubMed  Google Scholar 

  36. Wang Q, Huang X, Long Y, Wang X, Zhang H, Zhu R, Liang L, Teng P, Zheng H (2013) Hollow luminescent carbon dots for drug delivery. Carbon 59:192–199. https://doi.org/10.1016/j.carbon.2013.03.009

    Article  CAS  Google Scholar 

  37. Qu S, Wang X, Lu Q, Liu X, Wang L (2012) A biocompatible fluorescent ink based on water-soluble luminescent carbon nanodots. Angew Chem Int Ed Engl 51:12215–12218. https://doi.org/10.1002/anie.201206791

    Article  CAS  PubMed  Google Scholar 

  38. Ghanem A, Al-Marjeh RAQB, Atassi Y (2020) Novel nitrogen-doped carbon dots prepared under microwave-irradiation for highly sensitive detection of mercury ions. Heliyon 6:e03750. https://doi.org/10.1016/j.heliyon.2020.e0375

    Article  PubMed  PubMed Central  Google Scholar 

  39. Tian R, Hu S, Wu L, Chang Q, Yang J, Liu J (2014) Tailoring surface groups of carbon quantum dots to improve photoluminescence behaviors. Appl Surf Sci 301:156–160. https://doi.org/10.1016/j.apsusc.2014.02.028

    Article  CAS  Google Scholar 

  40. Song YB, Zhu SJ, Zhang ST, Fu Y, Wang L, Zhao XH, Yang B (2015) Investigation from chemical structure to photoluminescent mechanism: a type of carbon dots from the pyrolysis of citric acid and an amine. J Mater Chem C 3:5976–5984. https://doi.org/10.1039/c5tc00813a

    Article  CAS  Google Scholar 

  41. Li LS, Jiao XY, Zhang Y, Cheng C, Huang K, Xu L (2018) Green synthesis of fluorescent carbon dots from Hongcaitai for selective detection of hypochlorite and mercuric ions and cell imaging. Sens Actuators B 263:426–435. https://doi.org/10.1016/j.snb.2018.02.141

    Article  CAS  Google Scholar 

  42. Chen X, Bai J, Ma Y, Yuan G, Mei J, Zhang L, Ren L (2019) Multifunctional sensing applications of biocompatible N-doped carbon dots as pH and Fe3+ sensors. Microchem J 149:103981. https://doi.org/10.1016/j.microc.2019.103981

    Article  CAS  Google Scholar 

  43. Zhang T, Zhu J, Zhai Y, Wang H, Bai X, Dong B, Wang H, Song H (2017) A novel mechanism for red emission carbon dots: hydrogen bond dominated molecular states emission. Nanoscale 9:13042–13051. https://doi.org/10.1039/c7nr03570e

    Article  CAS  PubMed  Google Scholar 

  44. Wu X, Xu M, Wang S, Abbas K, Huang X, Zhang R, Tedesco AC, Bi HF (2022) N-Doped carbon dots as efficient Type I photosensitizers for photodynamic therapy. Dalton Trans 51:2296–2303. https://doi.org/10.1039/d1dt03788a

    Article  CAS  PubMed  Google Scholar 

  45. Wu Q, Li W, Wu Y, Huang Z, Liu S (2014) Pentosan-derived water-soluble carbon nano dots with substantial fluorescence: Properties and application as a photosensitizer. Appl Surf Sci 315:66–72. https://doi.org/10.1016/j.apsusc.2014.06.127

    Article  CAS  Google Scholar 

  46. Wang BB, Jin JC, Xu ZQ, Jiang ZW, Li X, Jiang FL, Liu Y (2019) Single-step synthesis of highly photoluminescent carbon dots for rapid detection of Hg2+ with excellent sensitivity. J Colloid Interface Sci 551:101–110. https://doi.org/10.1016/j.jcis.2019.04.088

    Article  CAS  PubMed  Google Scholar 

  47. Li L, Yu B, You T (2015) Nitrogen and sulfur co-doped carbon dots for highly selective and sensitive detection of Hg (II) ions. Biosens Bioelectron 74:263–269. https://doi.org/10.1016/j.bios.2015.06.050

    Article  CAS  PubMed  Google Scholar 

  48. He J, Zhang H, Zou J, Liu Y, Zhuang J, Xiao Y, Lei B (2016) Carbon dots-based fluorescent probe for “off-on” sensing of Hg (II) and I-. Biosens Bioelectron 79:531–535. https://doi.org/10.1016/j.bios.2015.12.084

    Article  CAS  PubMed  Google Scholar 

  49. Wang Y, Kim SH, Feng L (2015) N, S Co-doped carbon dots and their direct use as mercury (II) sensor. Anal Chim Acta 890:134–142. https://doi.org/10.1016/j.aca.2015.07.051

    Article  CAS  PubMed  Google Scholar 

  50. Zhang RZ, Chen W (2014) Nitrogen-doped carbon quantum dots: Facile synthesis and application as a "turn-off’ fluorescent probe for detection of Hg2+ ions. Biosens Bioelectron 55:83–90. https://doi.org/10.1016/j.bios.2013.11.074

    Article  CAS  PubMed  Google Scholar 

  51. Pajewska-Szmyt M, Buszewski B, Gadzała-Kopciuch R (2020) Carbon dots as rapid assays for detection of mercury (II) ions based on turn-off mode and breast milk. Spectrochim Acta Part A 236:118320. https://doi.org/10.1016/j.saa.2020.118320

    Article  CAS  Google Scholar 

  52. Hu G, Ge L, Li Y, Mukhtar M, Shen B, Yang D, Li J (2020) Carbon dots derived from flax straw for highly sensitive and selective detections of cobalt, chromium, and ascorbic acid. J Colloid Interface Sci 579:96–108. https://doi.org/10.1016/j.jcis.2020.06.034

    Article  CAS  PubMed  Google Scholar 

  53. Zhang Y, Fang X, Zhao H, Li Z (2018) A highly sensitive and selective detection of Cr (VI) and ascorbic acid based on nitrogen-doped carbon dots. Talanta 181:318–325. https://doi.org/10.1016/j.talanta.2018.01.027

    Article  CAS  PubMed  Google Scholar 

  54. Zhao P, He K, Han Y, Zhang Z, Yu M, Wang H, Huang Y, Nie Z, Yao S (2015) Near-infrared dual-emission quantum dots-gold nanoclusters nanohybrid via co-template synthesis for ratiometric fluorescent detection and bioimaging of ascorbic acid in vitro and in vivo. Anal Chem 87:9998–10005. https://doi.org/10.1021/acs.analchem.5b02614

    Article  CAS  PubMed  Google Scholar 

  55. Gong X, Liu Y, Yang Z, Shuang S, Zhang Z, Dong C (2017) An “on-off-on” fluorescent nanoprobe for recognition of chromium (VI) and ascorbic acid based on phosphorus/nitrogen dual-doped carbon quantum dot. Anal Chim Acta 968:85–96. https://doi.org/10.1016/j.aca.2017.02.038

    Article  CAS  PubMed  Google Scholar 

  56. Yan F, Bai Z, Chen Y, Zu F, Li X, Xu J, Chen L (2018) Ratiometric fluorescent detection of copper ions using coumarin-functionalized carbon dots based on FRET. Sens Actuators B Chem 275:86–94. https://doi.org/10.1016/j.snb.2018.08.034

    Article  CAS  Google Scholar 

  57. Yan F, Bai Z, Ma T, Sun X, Zu F, Luo Y, Chen L (2019) Surface modification of carbon quantum dots by fluorescein derivative for dual-emission ratiometric fluorescent hypochlorite biosensing and in vivo bioimaging. Sens Actuators B Chem 296:126638. https://doi.org/10.1016/j.snb.2019.126638

    Article  CAS  Google Scholar 

  58. Zhang Y, Jing N, Zhang JQ, Wang YT (2017) Hydrothermal synthesis of nitrogen-doped carbon dots as a sensitive fluorescent probe for the rapid, selective determination of Hg2+. Int J Environ Anal Chem 97:841–853. https://doi.org/10.1080/03067319.2017.1355969

    Article  CAS  Google Scholar 

  59. Zu F, Yan F, Bai Z, Xu J, Wang Y, Huang Y, Huang Y, Zhou X (2017) The quenching of the fluorescence of carbon dots: A review on mechanisms and applications. Microchim Acta 184:1899–1914. https://doi.org/10.1007/s00604-017-2318-9

    Article  CAS  Google Scholar 

  60. Bai Z, Yan F, Xu J, Zhang J, Wei J, Luo Y, Chen L (2018) Dual-channel fluorescence detection of mercuric (II) and glutathione by down-and up-conversion fluorescence carbon dots. Spectrochim Acta A Mol Biomol Spectrosc 205:29–39. https://doi.org/10.1016/j.saa.2018.07.012

    Article  CAS  PubMed  Google Scholar 

  61. Yan F, Bai Z, Zu F, Zhang Y, Sun X, Ma T, Chen L (2019) Yellow-emissive carbon dots with a large Stokes shift are viable fluorescent probes for detection and cellular imaging of silver ions and glutathione. Microchim Acta 186:113. https://doi.org/10.1007/s00604-018-3221-8

    Article  CAS  Google Scholar 

Download references

Funding

This work is funded by the National Natural Science Foundation of China (31201305), the Natural Science Foundation of Hebei Province (B2019205054, B2019205108, B2021205001), the Teaching Reform Project of Hebei Normal University (2021XJJG047), and the Foundation of Hebei Normal University (L2020B07).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation and characterization were carried out by Yunping Hao, the fluorescence sensitivity of the production was tested by Ronghui Li. data collection and analyses were performed by Yanxu Liu and Xuhong Zhang. The first draft of the manuscript was written by Lina Geng, and the check of the manuscript was done by Shenna Chen. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Lina Geng or Shenna Chen.

Ethics declarations

Ethics Approval

None.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflicts of Interest

The authors declare they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, Y., Li, R., Liu, Y. et al. The on–off-on Fluorescence Sensor of Hollow Carbon Dots for Detecting Hg2+ and Ascorbic Acid. J Fluoresc 33, 459–469 (2023). https://doi.org/10.1007/s10895-022-03057-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-022-03057-3

Keywords

Navigation