Skip to main content
Log in

A DFT/TDDFT Investigation on Fluorescence and Electronic Properties of Chromone Derivatives

  • Research
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The development of quick and precise detection technologies for active compounds in vivo is critical for disease prevention, diagnosis and pathological investigation. The fluorescence signal of the fluorophore usually defines the probe's sensitivity to the chemical being examined. Many natural compounds containing flavone and isoflavone scaffolds exhibit a certain amount fluorescence, albeit with poor fluorescence quantum yields. Therefore, we used density functional theory (DFT) and time-dependent density functional theory (TDDFT) calculations to investigate the fluorescence characteristics of chromium-derived fluorophores in more depth. Different substituents are introduced at different positions of the chromone. As weak electron donor groups, alkyl and aromatic groups were discovered to have varying quantum yields on the fluorophore scaffold, and longer alkyl chains are favorable to enhance fluorescence quantum yield. In comparison to the amino group, substituted amino group can avoid group rotation, and the introduction of cyclic amines such as pyrrolidine and heterocyclic amines can improve optical characteristics. The electron-donating methoxy group at position 6 helps to increase the fluorescence quantum yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Data and material information is provided and will be shared on request.

References

  1. Chabosseau P, Woodier J, Cheung R, Rutter GA (2018) Sensors for measuring subcellular zinc pools. Metallomics 10:229–239

    Article  CAS  PubMed  Google Scholar 

  2. Šimić G, Babić Leko M, Wray S, Harrington CR, Delalle I, Jovanov-Milošević N, Bažadona D, Buée L, De Silva R, Di Giovanni G, Wischik CM, Hof PR (2017) Monoaminergic neuropathology in Alzheimer’s disease. Prog Neurobiol 151:101–138

    Article  PubMed  Google Scholar 

  3. Mancini A, Di Battista JA (2006) Transcriptional regulation of matrix metalloprotease gene expression in health and disease. Front Biosci 11:423–446

    Article  CAS  PubMed  Google Scholar 

  4. Masuko UF (2006) Redox signaling in angiogenesis: role of NADPH oxidase. Cardiovasc Res 71(2):226–235

    Article  Google Scholar 

  5. Schulz JB, Lindenau J, Seyfried J, Dichgans J (2000) Glutathione, oxidative stress and neurodegeneration. Eur J Biochem 267:4904–4911

    Article  CAS  PubMed  Google Scholar 

  6. Petrine JCP, Del Bianco-Borges B (2021) The influence of phytoestrogens on different physiological and pathological processes: An overview. Phytother Res 35(1):180–197

    Article  CAS  PubMed  Google Scholar 

  7. Wei MH, Wang PG (2019) Chapter two-desialylation in physiological and pathological processes: new target for diagnostic and therapeutic development. Prog Mol Biol Transl Sci 162:25–57

    Article  CAS  PubMed  Google Scholar 

  8. Li GY, Liu D, Zhang H, Li WW, Wang F, Liang YH (2015) TDDFT study on the sensing mechanism of a fluorescent sensor for fluoride anion: inhibition of the ESPT process. Spectrochim Acta A Mol Biomol Spectrosc 149:17–22

    Article  CAS  PubMed  Google Scholar 

  9. Lou Z, Li P, Han K (2015) Redox-responsive fluorescent probes with different design strategies. Acc Chem Res 48(5):1358–1368

    Article  CAS  PubMed  Google Scholar 

  10. Liu YY, Jiao CP, Lu WJ, Zhang PP, Wang YF (2019) Research progress in the development of organic small molecule fluorescent probes for detecting H2O2. RSC Adv 9:18027–18041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zheng DJ, Yang YS, Zhu HL (2019) Recent progress in the development of small-molecule fluorescent probes for the detection of hydrogen peroxide. Trends Anal Chem 118:625–651

    Article  CAS  Google Scholar 

  12. Sroor H, Huang YW, Sephton B, Naidoo D, Vallés A, Ginis V, Qiu CW, Ambrosio A, Capasso F, Forbes A (2020) High-purity orbital angular momentum states from a visible metasurface laser. Nat Photonics 14:498–503

    Article  CAS  Google Scholar 

  13. Cao D, Liu Z, Verwilst P, Koo S, Jangili P, Kim JS, Lin W (2019) Coumarin-based small-molecule fluorescent chemosensors (vol 119, pg 10403, 2019). Chem Rev 21:119

    Google Scholar 

  14. Di Wu, Sedgwick AC, Gunnlaugsson T, Akkaya EU, Yoon J, James TD (2017) Fluorescent chemosensors: the past, present and future. Chem Soc Rev 46:7105–7123

    Article  Google Scholar 

  15. Zeng XD, Jiang C, Zhang Q, Chai DK, Ma MS, Chen J, Liu ZG (2021) A novel simple fluorescent probe for the detection of hydrogen peroxide in vivo with high selectivity. J Lumin 240:118422

    Article  CAS  Google Scholar 

  16. Zhou RR, Peng QY, Wan D, Yu C, Zhang Y, Hou Y, Luo Q, Li X, Zhang SH, Xie L, Ou PH, Peng YB (2021) Construction of a lysosome-targetable ratiometric fluorescent probe for H2O2 tracing and imaging in living cells and an inflamed model. RSC Adv 11:24032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Abo M, Urano Y, Hanaoka K, Terai T, Komatsu T, Nagano T (2011) Development of a highly sensitive fluorescence probe for hydrogen peroxide. J Am Chem Soc 133(27):10629–10637

    Article  CAS  PubMed  Google Scholar 

  18. Singh AP, Lee KM, Murale DP, Jun T, Liew H, Suhb YH, Churchill DG (2012) Novel sulphur-rich BODIPY systems that enable stepwise fluorescent O-atom turn-on and H2O2 neuronal system probing. Chem Commun 48:7298–7300

    Article  CAS  Google Scholar 

  19. Gaspar A, Matos MJ, Garrido J, Uriarte E, Borges F (2014) Chromone: a valid scaffold in medicinal chemistry. Chem Rev 114:4960–4992

    Article  CAS  PubMed  Google Scholar 

  20. Abu-Hashem AA, Youssef MM (2011) Synthesis of new visnagen and khellin furochromone pyrimidine derivatives and their antiinflammatory and analgesic activity. Molecules 16:1956–1972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Keri RS, Budagumpi S, Pai RK, Balakrishna RG (2014) Chromones as a privileged scaffold in drug discovery: a review. Eur J Med Chem 78:340–374

    Article  CAS  PubMed  Google Scholar 

  22. Miao J, Cui H, Jin J, Lai F, Wen H, Zhang X, Ruda GF, Chen X, Yin D (2015) Development of 3-alkyl-6-methoxy-7-hydroxychromones (AMHCs) from natural isoflavones, a new class of fluorescent scaffolds for biological imaging. Chem Commun 51:881–884

    Article  CAS  Google Scholar 

  23. Dunford CL, Smith GJ, Swinny EE, Markham KR (2003) The fluorescence and photostabilities of naturally occurring isoflavones. Photochem Photobiol Sci 2:611–615

    Article  CAS  PubMed  Google Scholar 

  24. Dyrager C, Friberg A, Dahlén K, Fridén-Saxin M, Börjesson K, Wilhelmsson LM, Smedh M, Grøtli M, Luthman K (2009) 2,6,8-Trisubstituted 3-hydroxychromone derivatives as fluorophores for live-cell imaging. Chemistry 15(37):9417–9423

    Article  CAS  PubMed  Google Scholar 

  25. Chen Y, Gao Y, He Y, Zhang G, Wen H, Wang Y, Wu QP, Cui H (2021) Determining Essential Requirements for Fluorophore Selection in Various Fluorescence Applications Taking Advantage of Diverse Structure-Fluorescence Information of Chromone Derivatives. J Med Chem 64(2):1001–1017

    Article  CAS  PubMed  Google Scholar 

  26. Akmak E, In DZ (2020) A theoretical evaluation on free radical scavenging activity of 3-styrylchromone derivatives: the dft study. J Mol Model 26(5):1–11

    Google Scholar 

  27. Huang P, Jin LX, Lu JF, Gao YH, Guo SB (2021) A theoretical study of radical scavenging antioxidant activity of 3-styrylchromone derivatives using DFT based on quantum chemical descriptors. Theor Chem Acc 140:48

    Article  CAS  Google Scholar 

  28. Bhat HR, Jha PC (2017) Cyanide anion sensing mechanism of 1,3,5,7-tetratolyl aza-BODIPY: intramolecular charge transfer and partial configuration change. Chem Phys Lett 669:9–16

    Article  CAS  Google Scholar 

  29. Ma Y, Zhao L, Li Y, Liu J, Yang Y, Chu T (2018) Investigation on sensing mechanism of a fluorescent probe for TNP detection in aqueous solution. Tetrahedron 74(21):2684–2691

    Article  CAS  Google Scholar 

  30. Tang Z, Bai T, Zhou P (2020) Sensing mechanism of a fluorescent probe for cysteine: photoinduced electron transfer and invalidity of excited-state intramolecular proton transfer. J Phys Chem A 124:6920–6927

    Article  CAS  PubMed  Google Scholar 

  31. Schäfer A, Horn H, Ahlrichs R (1992) Fully optimized contracted Gaussian basis sets for atoms Li to Kr. J Chem Phys 97:2571–2577

    Article  Google Scholar 

  32. Cancès E, Mennucci B, Tomasi J (1997) A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics. J Chem Phys 107:3032–3041

    Article  Google Scholar 

  33. Cammi R, Tomasi J (1995) Remarks on the use of the apparent surface charges (ASC) methods in solvation problems: Iterative versus matrix-inversion procedures and the renormalization of the apparent charges. J Comput Chem 16:1449–1458

    Article  CAS  Google Scholar 

  34. Becke AD (2014) Perspective: fifty years of density-functional heory in chemical physics. J Chem Phys 140(18):18A301

    Article  PubMed  Google Scholar 

  35. Stratmann RE, Scuseria GE, Frisch MJ (1998) An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules. J Chem Phys 109(19):8218–8224

    Article  CAS  Google Scholar 

  36. Fan Gh, Han Kl, He Gz (2013) Time-dependent density functional-based tight-bind method efficiently implemented with OpenMP parallel and GPU acceleration. Chin J Chem Phys 26(6):635–645

    Article  CAS  Google Scholar 

  37. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision C 01. Gaussian Inc, Wallingford

    Google Scholar 

  38. Lee C, Yang W, Parr RG (1988) Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys Res B 37(2):785–789

    Article  CAS  Google Scholar 

  39. Becke AD (1993) Density-functional thermochemistry III The role of exact exchange. J Chem Phys 98(7):5648

    Article  CAS  Google Scholar 

  40. Zhao Y, Truhlar DG (2008) How well can new-generation density functionals describe the energetics of bond-dissociation reactions producing radicals? J Phys Chem A 112(6):1095–1099

    Article  CAS  PubMed  Google Scholar 

  41. Lu T, Chen F (2012) Multiwfn: A multifunctional wavefunction analyzer. J Comput Chem 33(5):580–592

    Article  PubMed  Google Scholar 

  42. Humphrey W, Dalke A, Schulten K, Molec VJ (1996) VMD: Visual molecular dynamics. J Mol Graph 14(1):33–38

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work is supported by the team of syngas catalytic conversion of Shaanxi University of Technology, Natural Science Basic Research Program of Shaanxi (2021JQ-751), the Shaanxi Province Education Ministry Research Foundation (21JK0565), the project of Shaanxi University of Technology (SLGKYXM2207).

Author information

Authors and Affiliations

Authors

Contributions

Pei Huang contributed to the conception of the study and performed the calculation; Lingxia Jin contributed significantly to analysis and manuscript preparation; Jiufu Lu performed the data analyses and wrote the manuscript; Ernu Liu and Li Li helped perform the analysis with constructive discussions.

Corresponding author

Correspondence to Pei Huang.

Ethics declarations

Ethics Approval

There are no ethic approvals required for this research work.

Consent to Participate (Include Appropriate Statements)

All authors have participated in the revision of the manuscript.

Consent for Publication (Include Appropriate Statements)

All authors agree for the publication.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 268 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, P., Lu, J., Jin, L. et al. A DFT/TDDFT Investigation on Fluorescence and Electronic Properties of Chromone Derivatives. J Fluoresc 33, 453–458 (2023). https://doi.org/10.1007/s10895-022-03095-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-022-03095-x

Keywords

Navigation