Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Extreme γ-ray radiation hardness and high scintillation yield in perovskite nanocrystals

Abstract

Radiation detection is of utmost importance in fundamental scientific research, as well as medical diagnostics, homeland security, environmental monitoring and industrial control. Lead halide perovskites (LHPs) are attracting growing attention as high-atomic-number materials for next-generation scintillators and photoconductors for ionizing radiation detection. To unlock their full potential as reliable and cost-effective alternatives to conventional materials, it is necessary for LHPs to conjugate high scintillation yields with emission stability under high doses of ionizing radiation. To date, no definitive solution has been devised to optimize the scintillation efficiency and kinetics of LHPs and nothing is known of their radiation hardness for doses above a few kilograys, to the best of our knowledge. Here we demonstrate that CsPbBr3 nanocrystals exhibit exceptional radiation hardness for γ-radiation doses as high as 1 MGy. Spectroscopic and radiometric experiments highlight that despite their defect tolerance, standard CsPbBr3 nanocrystals suffer from electron trapping in dense surface defects that are eliminated by post-synthesis fluorination. This results in >500% enhancement in scintillation efficiency, which becomes comparable to commercial scintillators, and still retaining exceptional levels of radiation hardness. These results have important implications for the widespread use of LHPs in ultrastable and efficient radiation detectors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structural and spectroscopic properties of untreated and fluoride-treated CsPbBr3 NCs.
Fig. 2: Extreme radiation hardness experiments.
Fig. 3: Thermal liberation of electrons from shallow defect states.
Fig. 4: Long-lived non-radiative traps and detrapping processes.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Dujardin, C. et al. Needs, trends, and advances in inorganic scintillators. IEEE Trans. Nucl. Sci. 65, 1977–1997 (2018).

    Article  ADS  Google Scholar 

  2. Kim, C. et al. A review of inorganic scintillation crystals for extreme environments. Crystals 11, 669 (2021).

  3. Knoll, G. F. Radiation Detection and Measurement (John Wiley & Sons, 2010).

  4. Xu, Q. et al. Bulk organic-inorganic methylammonium lead halide perovskite single crystals for indirect gamma ray detection. ACS Appl. Mater. Interfaces 11, 47485–47490 (2019).

    Article  Google Scholar 

  5. Chen, W. et al. X-ray radioluminescence effect of all-inorganic halide perovskite CsPbBr3 quantum dots. J. Radioanal. Nucl. Chem. 314, 2327–2337 (2017).

    Article  Google Scholar 

  6. Gandini, M. et al. Efficient, fast and reabsorption-free perovskite nanocrystal-based sensitized plastic scintillators. Nat. Nanotechnol. 15, 462–468 (2020).

    Article  ADS  Google Scholar 

  7. Yu, D. et al. Two-dimensional halide perovskite as β-ray scintillator for nuclear radiation monitoring. Nat. Commun. 11, 3395 (2020).

    Article  ADS  Google Scholar 

  8. Rodà, C. et al. Understanding thermal and a‐thermal trapping processes in lead halide perovskites towards effective radiation detection schemes. Adv. Funct. Mater. 31, 2104879 (2021).

  9. Xu, Z. et al. CsPbBr3 quantum dot films with high luminescence efficiency and irradiation stability for radioluminescent nuclear battery application. ACS Appl. Mater. Interfaces 11, 14191–14199 (2019).

    Article  Google Scholar 

  10. Liu, X. Y., Pilania, G., Talapatra, A. A., Stanek, C. R. & Uberuaga, B. P. Band-edge engineering to eliminate radiation-induced defect states in perovskite scintillators. ACS Appl. Mater. Interfaces 12, 46296–46305 (2020).

    Article  Google Scholar 

  11. Stroyuk, O. et al. Origin and dynamics of highly efficient broadband photoluminescence of aqueous glutathione-capped size-selected Ag–In–S quantum dots. J. Phys. Chem. C 122, 13648–13658 (2018).

    Article  Google Scholar 

  12. Birowosuto, M. et al. X-ray scintillation in lead halide perovskite crystals. Sci. Rep. 6, 37254 (2016).

  13. Berger, M. J. et al. XCOM: Photon Cross Section Database (Version 1.5) (National Institute of Standards and Technology, 2010).

  14. Stroyuk, O. et al. Inherently broadband photoluminescence in Ag–In–S/ZnS quantum dots observed in ensemble and single-particle studies. J. Phys. Chem. C 123, 2632–2641 (2019).

    Article  Google Scholar 

  15. Chen, Q. et al. All-inorganic perovskite nanocrystal scintillators. Nature 561, 88–93 (2018).

    Article  ADS  Google Scholar 

  16. Wei, W. et al. Monolithic integration of hybrid perovskite single crystals with heterogenous substrate for highly sensitive X-ray imaging. Nat. Photon. 11, 315–321 (2017).

    Article  ADS  Google Scholar 

  17. Wei, H. & Huang, J. Halide lead perovskites for ionizing radiation detection. Nat. Commun. 10, 1066 (2019).

    Article  ADS  Google Scholar 

  18. Protesescu, L. et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 15, 3692–3696 (2015).

    Article  ADS  Google Scholar 

  19. Imran, M. et al. Colloidal synthesis of strongly fluorescent CsPbBr3 nanowires with width tunable down to the quantum confinement regime. Chem. Mat. 28, 6450–6454 (2016).

    Article  Google Scholar 

  20. Shamsi, J. et al. Bright-emitting perovskite films by large-scale synthesis and photoinduced solid-state transformation of CsPbBr3 nanoplatelets. ACS Nano 11, 10206–10213 (2017).

    Article  Google Scholar 

  21. Nedelcu, G. et al. Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). Nano Lett. 15, 5635–5640 (2015).

    Article  ADS  Google Scholar 

  22. Liu, J. et al. Flexible, printable soft-X-ray detectors based on all-inorganic perovskite quantum dots. Adv. Mater. 31, e1901644 (2019).

    Article  ADS  Google Scholar 

  23. Vedda, A. et al. Trap-center recombination processes by rare earth activators in YAlO3 single crystal host. Phys. Rev. B 80, 045113 (2009).

  24. Nikl, M., Laguta, V. V. & Vedda, A. Complex oxide scintillators: material defects and scintillation performance. Phys. Stat. Sol. B 245, 1701–1722 (2008).

    Article  ADS  Google Scholar 

  25. Nikl, M. & Yoshikawa, A. Recent R&D trends in inorganic single-crystal scintillator materials for radiation detection. Adv. Opt. Mat. 3, 463–481 (2015).

    Article  Google Scholar 

  26. Kitaura, M., et al. Shallow electron traps formed by Gd2+ ions adjacent to oxygen vacancies in cerium-doped Gd3Al2Ga3O12 crystals. Appl. Phys. Lett. 113, 041906 (2018).

  27. Babin, V. et al. Effect of Mg2+ ions co-doping on luminescence and defects formation processes in Gd3(Ga,Al)5O12:Ce single crystals. Opt. Mater. 66, 48–58 (2017).

    Article  ADS  Google Scholar 

  28. Ito, M., Hong, S. J. & Lee, J. S. Positron emission tomography (PET) detectors with depth-of- interaction (DOI) capability. Biomed. Eng. Lett. 1, 70–81 (2011).

    Article  Google Scholar 

  29. Lecoq, P. Pushing the limits in time-of-flight PET imaging. IEEE Trans. Radiat. Plasma Med. Sci. 1, 473–485 (2017).

    Article  Google Scholar 

  30. Yang, F., Zhang, L. Y. & Zhu, R. Y. Performances of crystal scintillators in a severe radiation environment caused by gamma rays. J. Phys. Conf. Ser. 928, 012032 (2017).

    Article  Google Scholar 

  31. Olszacki, M. et al. Measurement of the high gamma radiation dose using the MEMS based dosimeter and radiolisys effect. in MicroMechanics Europe Workshop 31–35 (2013).

  32. Todesco, E. et al. The high luminosity LHC interaction region magnets towards series production. Supercond. Sci. Technol. 34, 053001 (2021).

  33. Forde, A. & Kilin, D. Defect tolerance mechanism revealed! Influence of polaron occupied surface trap states on CsPbBr3 nanocrystal photoluminescence: ab initio excited-state dynamics. J. Chem. Theory Comput. 17, 7224–7236 (2021).

    Article  Google Scholar 

  34. Mykhaylyk, V. B. et al. Bright and fast scintillations of an inorganic halide perovskite CsPbBr3 crystal at cryogenic temperatures. Sci. Rep. 10, 8601 (2020).

    Article  ADS  Google Scholar 

  35. Birowosuto, M. D. et al. X-ray scintillation in lead halide perovskite crystals. Sci. Rep. 6, 37254 (2016).

    Article  ADS  Google Scholar 

  36. Liu, M. et al. Suppression of temperature quenching in perovskite nanocrystals for efficient and thermally stable light-emitting diodes. Nat. Photon. 15, 379–385 (2021).

  37. Holl, I., Lorenz, E. & Mageras, G. A measurement of the light yield of common inorganic scintillators. IEEE Trans. Nucl. Sci. 35, 105–109 (1988).

    Article  ADS  Google Scholar 

  38. Kapusta, M., Pawelke, J. & Moszyński, M. Comparison of YAP and BGO for high-resolution PET detectors. Nucl. Instrum. Methods Phys. Res. A: Accel. Spectrom. Detect. Assoc. Equip. 404, 413–417 (1998).

    Article  ADS  Google Scholar 

  39. Moszynski, M., Kapusta, M., Mayhugh, M., Wolski, D. & Flyckt, S. O. Absolute light output of scintillators. IEEE Trans. Nucl. Sci. 44, 1052–1061 (1997).

    Article  ADS  Google Scholar 

  40. van Eijk, C. W. E. Inorganic-scintillator development. Nucl. Instrum. Methods Phys. Res. A: Accel. Spectrom. Detect. Assoc. Equip. 460, 1–14 (2001).

    Article  ADS  Google Scholar 

  41. Pokorný, M. et al. Gd-admixed (Lu,Gd)AlO3 single crystals: breakthrough in heavy perovskite scintillators. npg Asia Mater. 13, 66 (2021).

  42. Cao, F. et al. Shining emitter in a stable host: design of halide perovskite scintillators for X-ray imaging from commercial concept. ACS Nano 14, 5183–5193 (2020).

    Article  Google Scholar 

  43. Yang, H. et al. A novel scintillation screen for achieving high-energy ray detection with fast and full-color emission. J. Mater. Chem. C 9, 7905–7909 (2021).

    Article  Google Scholar 

  44. Xu, Y., Zhao, X., Xia, M. & Zhang, X. Perovskite nanocrystal doped all-inorganic glass for X-ray scintillators. J. Mater. Chem. C 9, 5452–5459 (2021).

    Article  Google Scholar 

  45. Cho, S. et al. Hybridisation of perovskite nanocrystals with organic molecules for highly efficient liquid scintillators. Light Sci. Appl. 9, 156 (2020).

    Article  ADS  Google Scholar 

  46. Li, Z. et al. Aqueous synthesis of lead halide perovskite nanocrystals with high water stability and bright photoluminescence. ACS Appl. Mater. Interfaces 10, 43915–43922 (2018).

    Article  Google Scholar 

  47. Wei, J.-H., Wang, X.-D., Liao, J.-F. & Kuang, D.-B. High photoluminescence quantum yield (>95%) of MAPbBr3 nanocrystals via reprecipitation from methylamine-MAPbBr3 liquid. ACS Appl. Electron. Mater. 2, 2707–2715 (2020).

    Article  Google Scholar 

  48. Yang, L. et al. High-stable X-ray imaging from all-inorganic perovskite nanocrystals under a high dose radiation. J. Phys. Chem. Lett. 11, 9203–9209 (2020).

    Article  Google Scholar 

  49. Xu, Q. et al. Effect of methylammonium lead tribromide perovskite based-photoconductor under gamma photons radiation. Radiat. Phys. Chem. 181, 109337 (2021).

  50. Boldyreva, A. G. et al. Unravelling the material composition effects on the gamma ray stability of lead halide perovskite solar cells: MAPbI3 breaks the records. J. Phys. Chem. Lett. 11, 2630–2636 (2020).

    Article  Google Scholar 

  51. Xu, Q. et al. A solution-processed zero-dimensional all-inorganic perovskite scintillator for high resolution gamma-ray spectroscopy detection. Nanoscale 12, 9727–9732 (2020).

    Article  Google Scholar 

  52. Xu, Q. et al. Lead halide perovskite quantum dots based liquid scintillator for X-ray detection. Nanotechnology 32, 205201 (2021).

    Article  ADS  Google Scholar 

  53. Mannino, G. et al. Temperature-dependent optical band gap in CsPbBr3, MAPbBr3, and FAPbBr3 single crystals. J. Phys. Chem. Lett. 11, 2490–2496 (2020).

    Article  Google Scholar 

  54. Butkus, J. et al. The evolution of quantum confinement in CsPbBr3 perovskite nanocrystals. Chem. Mat. 29, 3644–3652 (2017).

    Article  Google Scholar 

  55. Auffray, E. et al. Irradiation effects on Gd3Al2Ga3O12 scintillators prospective for application in harsh irradiation environments. Radiat. Phys. Chem. 164, 108365 (2019).

  56. Lao, X. et al. Luminescence and thermal behaviors of free and trapped excitons in cesium lead halide perovskite nanosheets. Nanoscale 10, 9949–9956 (2018).

    Article  Google Scholar 

  57. Shibata, K., Yan, J., Hazama, Y., Chen, S. & Akiyama, H. Exciton localization and enhancement of the exciton–LO phonon interaction in a CsPbBr3 single crystal. J. Phys. Chem. C 124, 18257–18263 (2020).

    Article  Google Scholar 

  58. Wei, K. et al. Temperature-dependent excitonic photoluminescence excited by two-photon absorption in perovskite CsPbBr3 quantum dots. Opt. Lett. 41, 3821–3824 (2016).

    Article  ADS  Google Scholar 

  59. Becker, M. A. et al. Bright triplet excitons in caesium lead halide perovskites. Nature 553, 189–193 (2018).

    Article  ADS  Google Scholar 

  60. Nikl, M. et al. Shallow traps and radiative recombination processes in Lu3Al5O12:Ce single crystal scintillator. Phys. Rev. B 76, 195121 (2007).

  61. Vedda, A. & Fasoli, M. Tunneling recombinations in scintillators, phosphors, and dosimeters. Radiat. Meas. 118, 86–97 (2018).

    Article  Google Scholar 

  62. McKeever, S. W. Thermoluminescence of Solids Vol. 3 (Cambridge Univ. Press, 1988).

  63. Baccaro, S., Cemmi, A., Di Sarcina, I. & Ferrara, G. Gamma irradiation Calliope facility at ENEA-Casaccia Research Centre (Rome, Italy) (2019).

  64. Hubbell, J. H. & Seltzer, S. M. NIST standard reference database 126. MD: National Institute of Standards and Technology (1996).

Download references

Acknowledgements

This work received funding from the European Union’s Horizon 2020 Research and Innovation programme under grant agreement no. 101004761 (AIDAINNOVA) and financial support from Guangdong Province’s 2018–2019 Key R&D Program (2019B010924001) and the National Natural Science Foundation of China (NSFC 22175113). We thank R. Huang from East China Normal University for help with the aberration-corrected scanning transmission electron microscopy measurements and analyses.

Author information

Authors and Affiliations

Authors

Contributions

S.B. conceived this study. M.L. synthesized and characterized the NCs under the supervision of L.L. A. Cemmi and I.D.S. performed the irradiation procedures. J.P. performed the XRD characterization under the supervision of A. Comotti M.L.Z. performed the optical experiments under the supervision of F.M. and S.B. F. Cova performed the radiometric characterization under the supervision of M.F. and A.V. F.R. performed the CL experiments. M.L.Z., F. Cova, F. Carulli, C.R., A.E. and S.B. analysed the data. S.B. wrote the paper in consultation with all the authors. M.L.Z. and F. Cova contributed equally to this work.

Corresponding authors

Correspondence to Liang Li, Anna Vedda or Sergio Brovelli.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–13 and Table 1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaffalon, M.L., Cova, F., Liu, M. et al. Extreme γ-ray radiation hardness and high scintillation yield in perovskite nanocrystals. Nat. Photon. 16, 860–868 (2022). https://doi.org/10.1038/s41566-022-01103-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-022-01103-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing