Skip to main content

Advertisement

Log in

Integrated multiresolution framework for spatialized population synthesis

  • Published:
Transportation Aims and scope Submit manuscript

Abstract

Large-scale agent-based microsimulation platforms, increasingly used in transportation demand modelling, require fully enumerated and spatialized lists of the population and its sociodemographic characteristics as input. The quality of the synthetic population, measured as its ability to reproduce the sociodemographic characteristics of the real population and their spatial distributions, is thus a determinant factor of the model reliability. While many efforts were devoted to improving the sociodemographic accuracy of synthetic populations, less attention was paid to perfecting their spatial precision. Conventional spatialized population synthesis methods, where the generation and spatialization processes are separated, are vulnerable to inconsistencies between zonal synthetic populations, and the built environments on which they are then distributed. These methods also present transferability issues that lie in their high reliance on rich spatialized datasets and knowledge of the local context. Hence, we propose an integrated multiresolution framework (IMF) that overcomes the limitations of the conventional framework (CF) by its ability to directly generate synthetic populations at the building resolution with minimal data requirements. The IMF includes an extension of an optimization-based method to multiresolution applications where any number and aggregation of spatial resolutions can efficiently be controlled. The CF and the IMF are applied to generate synthetic populations for Montreal, Canada. We define and measure sociodemographic accuracy, spatial precision, overall quality, and building-resolution fit of the synthetic populations to compare the frameworks’ performances. Despite a small loss in accuracy, the IMF achieves drastically better spatial precision, overall quality and building-resolution fit of synthetic populations, compared to the CF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abraham, J.E., Stefan, K.J., Hunt, J.D.: Population synthesis using combinatorial optimization at multiple levels. In: Papers Presented at the 91st Annual Meeting of Transportation Research Board, Washington DC (2012)

  • Adnan, M., Pereira, F.C., Azevedo, C.M.L., Basak, K., Lovric, M., Raveau, S., Zhu, Y., Ferreira, J., Zegras, C., Ben-Akiva, M.: SimMobility: a multi-scale integrated agent-based simulation platform. In: Transportation Research Board 95th Annual Meeting, Transportation Research Board, p. 18 (2016)

  • Anderson, B.: Estimating small-area income deprivation: an iterative proportional fitting approach. In: Tanton, R., Edwards, K. (eds.) Spatial Microsimulation: A Reference Guide for Users. Understanding Population Trends and Processes, vol. 6. Springer, Dordrecht (2012). https://doi.org/10.1007/978-94-007-4623-7_4

    Chapter  Google Scholar 

  • Badu-Marf, G., Farooq, B., Patterson, Z.: Composite travel generative adversarial networks for tabular and sequential population synthesis. IEEE Trans. Intell. Transp. Syst. (2022). https://doi.org/10.1109/TITS.2022.3168232

    Article  Google Scholar 

  • Ballas, D., Clarke, G., Dorling, D., Rossiter, D.: Using simbritain to model the geographical impact of national government policies. Geogr. Anal. 39(1), 44–77 (2007)

    Article  Google Scholar 

  • Balmer, M., Rieser, M., Meister, K., Charypar, D., Lefebvre, N., Nagel, K.: MATSim-T: architecture and simulation times. In: Bazzan, A., Klugl, F. (eds.) Multi-Agent Systems for Traffic and Transportation Engineering, pp. 57–78. IGI Global, Pennsylvania (2009)

    Chapter  Google Scholar 

  • Bar-Gera, H., Konduri, K., Sana, B., Ye, X., Pendyala, R.M.: Estimating survey weights with multiple constraints using entropy optimization methods. In: Proceedings of the 88th Annual Meeting of the Transportation Research Board, Washington, DC, USA, 11–15 (2009)

  • Barthelemy, J., Toint, P.L.: Synthetic population generation without a sample. Transp. Sci. 47(2), 266–279 (2013)

    Article  Google Scholar 

  • Bast, H., Storandt, S., Weidner, S.: Fine-grained population estimation. In: Proceedings of the ACM International Symposium on Advances in Geographic Information systems, 03–06-November (2015). https://doi.org/10.1145/2820783.2820828

  • Basu, R., Ferreira, J.: Understanding household vehicle ownership in Singapore through a comparison of econometric and machine learning models. Transp. Res. Procedia 48, 1674–1693 (2020). https://doi.org/10.1016/j.trpro.2020.08.207

    Article  Google Scholar 

  • Beckman, R.J., Baggerly, K.A., McKay, M.D.: Creating synthetic baseline populations. Transp. Res. Part A Policy Pract. 30(6), 415–429 (1996)

    Article  Google Scholar 

  • Birkin, M.H., Turner, A., Wu, B.: A synthetic demographic model of the UK population: methods, progress and problems. In: Regional Science Association International British and Irish Section, 36th Annual Conference (2006)

  • Borysov, S.S., Rich, J.: Introducing synthetic pseudo panels: application to transport behaviour dynamics. Transportation 48, 2493–2520 (2021). https://doi.org/10.1007/s11116-020-10137-5

    Article  Google Scholar 

  • Borysov, S.S., Rich, J., Pereira, F.C.: How to generate micro-agents? A deep generative modeling approach to population synthesis. Transp. Res. Part C Emerg. Technol. 106, 73–97 (2019)

    Article  Google Scholar 

  • Bowman, J.L, Bradley, M., Castiglione, J., Yoder, S.L.: Making Advanced Travel Forecasting Models Affordable Through Model Transferability. Technical Report, Bowman Research and Consulting. http://jbowman.net (2014)

  • Calka, B., Bielecka, E., Zdunkiewicz, K.: Redistribution population data across a regular spatial grid according to buildings characteristics. Geod. Cartogr. 65, 149–162 (2016)

    Article  Google Scholar 

  • Casati, D., Müller, K., Fourie, P.J., Erath, A., Axhausen, K.W.: Synthetic population generation by combining a hierarchical, simulation-based approach with reweighting by generalized raking. Transp. Res. Rec. J. Transp. Res. Board 2493, 107–116 (2015)

    Article  Google Scholar 

  • Chapuis, K., Taillandier, P., Misslin, R., Drogoul, A.: Gen*: a generic toolkit to generate spatially explicit synthetic populations. Int. J. Geogr. Inf. Sci. 32, 1–17 (2018). https://doi.org/10.1080/13658816.2018.1440563

    Article  Google Scholar 

  • Chen, H., Wu, B., Yu, B., Chen, Z., Wu, Q., Lian, T., Wang, C., Li, Q., Wu, J.: A new method for building-level population estimation by integrating LiDAR, nighttime light, and POI data. J. Remote. Sens. (2021). https://doi.org/10.34133/2021/9803796

  • City of Montreal: Property Assessment Units. 2022. Available online: https://donnees.montreal.ca/ville-de-montreal/unites-evaluation-fonciere. Accessed on 27 August 2021

  • Deming, W.E., Stephan, F.F.: On a least squares adjustment of a sampled frequency table when the expected marginal totals are known. Ann. Math. Stat. 11(4), 427–444 (1940)

    Article  Google Scholar 

  • De Palma, A., Picard, N., Waddell, P.: Discrete choice models with capacity constraints: an empirical analysis of the housing market of the greater Paris region. J. Urban Econ. 62, 204–230 (2007)

    Article  Google Scholar 

  • Deville, J.C., Särndal, C.E., Sautory, O.: Generalized raking procedures in survey sampling. J. Am. Stat. Assoc. 88(423), 1013–1020 (1993)

    Article  Google Scholar 

  • Fabre, L., Morency, C.: Enriching travel demand forecasting models with a household typology. Transp Res Rec J Transp Res Board 2673, 975–987 (2019)

    Article  Google Scholar 

  • Farooq, B., Bierlaire, M., Hurtubia, R., Flötteröd, G.: Simulation based population synthesis. Transp. Res. Part B Methodol. 58, 243–263 (2013)

    Article  Google Scholar 

  • Farrell, N., Morrissey, K., O;Donoghue, C.: Creating a spatial microsimulation model of the Irish local economy. In: Tanton, R., Edwards, K. (eds.) Spatial Microsimulation: A Reference Guide for Users. Understanding Population Trends and Processes, vol. 6. Springer, Dordrecht (2012). https://doi.org/10.1007/978-94-007-4623-7_7

    Chapter  Google Scholar 

  • Fournier, N., Christofa, E., Akkinepally, A.P., Azevedo, C.L.: Integrated population synthesis and workplace assignment using an efficient optimization-based person-household matching method. Transportation 48, 1061–1087 (2021). https://doi.org/10.1007/s11116-020-10090-3

    Article  Google Scholar 

  • Friedman J., Hastie, T., Tibshirani, R., Simon, N., Narasimhan, B., Qian, J.: glmnet: lasso and elastic-net regularized generalized linear models. https://cran.r-project.org/package=glmnet (2019)

  • Gallagher, S., Richardson, L.F., Ventura, S.L., Eddy, W.F.: SPEW: synthetic populations and ecosystems of the world. J. Comput. Graph. Stat. 27(4), 773–784 (2018). https://doi.org/10.1080/10618600.2018.1442342

    Article  Google Scholar 

  • Gargiulo, F., Ternes, S., Huet, S., Deffuant, G.: An iterative approach for generating statistically realistic populations of households. PLOS ONE 5(1), e8828 (2010). https://doi.org/10.1371/journal.pone.0008828

    Article  Google Scholar 

  • Garrido, S., Borysov, S.S., Pereira, F.C., Rich, J.: Prediction of rare feature combinations in population synthesis: application of deep generative modelling. Transp. Res. Part C Emerg. Technol. 120, 102787 (2020). https://doi.org/10.1016/j.trc.2020.102787

    Article  Google Scholar 

  • Guo, J., Bhat, C.: Population synthesis for microsimulating travel behavior. Transp. Res. Rec. J. Transp. Res. Board 2014, 92–101 (2007)

    Article  Google Scholar 

  • Harding, A., Vidyattama, Y., Tanton, R.: Demographic change and the needs-based planning of government services: projecting small area populations using spatial microsimulation. J. Pop. Res. 28, 203–224 (2011). https://doi.org/10.1007/s12546-011-9061-6

    Article  Google Scholar 

  • Harland, K., Heppenstall, A.J., Smith, D., Birkin, M.: Creating realistic synthetic populations at varying spatial scales: a comparative critique of population synthesis techniques. J. Artif. Soc. Soc. Simul. 15(1), 1 (2012)

    Article  Google Scholar 

  • Hynes, S., Morrissey, K., Odonoghue, C., Clarke, G.: A spatial micro-simulation analysis of methane emissions from Irish agriculture. Ecol. Complex 6, 135–146 (2009). https://doi.org/10.1016/j.ecocom.2008.10.014

    Article  Google Scholar 

  • Ilahi, A., Axhausen, K.W.: Integrating Bayesian network and generalized raking for population synthesis in Greater Jakarta. Reg. Stud. Reg. Sci. 6(1), 623–636 (2019). https://doi.org/10.1080/21681376.2019.1687011

    Article  Google Scholar 

  • Ireland, C.T., Kullback, S.: Contingency tables with given marginals. Biometrika 55(1), 179–188 (1968)

    Article  Google Scholar 

  • Jiang, N., Crooks, A.T., Kavak, H., Burger, A., Kennedy, W.G.: A method to create a synthetic population with social networks for geographically-explicit agent-based models. Comput. Urban Sci. 2, 7 (2022). https://doi.org/10.1007/s43762-022-00034-1

    Article  Google Scholar 

  • Johnsen, M., Brandt, O., Garrido, S., Pereira, F.: Population synthesis for urban resident modeling using deep generative models. Neural Comput. Appl. 34, 4677–4692 (2022). https://doi.org/10.1007/s00521-021-06622-2

    Article  Google Scholar 

  • Kalter, M.J.O., Geurs, K.T.: Exploring the Impact of Household Interactions on car use for home-based tours: a multilevel analysis of mode choice using data from the first two waves of the netherlands mobility panel. Eur. J. Transp. Infrastruct. Res. 16, 698–712 (2016)

    Google Scholar 

  • Khachman, M., Morency, C., Ciari, F.: Impact of the geographic resolution on population synthesis quality. ISPRS Int. J. Geo-Inf. 10, 790 (2021). https://doi.org/10.3390/ijgi10110790

    Article  Google Scholar 

  • Kitamura, R., Chen, C., Pendyala, R.M., Narayanan, R.: Micro-simulation of daily activity-travel patterns for travel demand forecasting. Transportation 27(1), 25–51 (2000)

    Article  Google Scholar 

  • Konduri, K.C., You, D., Garikapati, V.M., Pendyala, R.M.: Enhanced synthetic population generator that accommodates control variables at multiple geographic resolutions. Transp. Res. Rec. J. Transp. Res. Board 2563(1), 40–50 (2016). https://doi.org/10.3141/2563-08

    Article  Google Scholar 

  • Lee, D.H., Fu, Y.: Cross-entropy optimization model for population synthesis in activity-based microsimulation models. Transp. Res. Rec. J. Transp. Res. Board 2255(1), 20–27 (2011)

    Article  Google Scholar 

  • Liu, J., Ma, X., Zhu, Y., Li, J., He, Z., Ye, S.: Generating and visualizing spatially disaggregated synthetic population using a web-based geospatial service. Sustainability 13, 1587 (2021). https://doi.org/10.3390/su13031587

    Article  Google Scholar 

  • Loo, B., Lam, W.: A multilevel investigation of differential individual mobility of working couples with children: a case study of Hong Kong. Transp. A Transp. Sci. 9, 1–24 (2011). https://doi.org/10.1080/18128602.2011.643509

    Article  Google Scholar 

  • Lovelace, R., Ballas, D.: Truncate, replicate, sample: a method for creating integer weights for spatial microsimulation. Comput. Environ. Urban Syst. 41, 1–11 (2013)

    Article  Google Scholar 

  • Ma, L., Srinivasan, S.: Synthetic population generation with multilevel controls: a fitness-based synthesis approach and validations. Comput. Aided Civ. Infrastruct. Eng. 30, 135–150 (2015)

    Article  Google Scholar 

  • Miller, E.J., Roorda, M.J.: Prototype model of household activity-travel scheduling. Transp. Res. Rec. J. Transp. Res. Board 1831(1), 114–121 (2003). https://doi.org/10.3141/1831-13

    Article  Google Scholar 

  • Moreno, A.T., Moeckel, R.: Population synthesis handling three geographical resolutions. ISPRS Int. J. Geo-Inf. 7, 174 (2018). https://doi.org/10.3390/ijgi7050174

    Article  Google Scholar 

  • Müller, K., Axhausen, K.W.: Hierarchical IPF: Generating a synthetic population for Switzerland. In: Proceedings of the 51st Congress of the European Regional Science Association, Barcelona, Spain (2011)

  • Muñoz, E., Peters, I.: Constructing an urban microsimulation model to assess the influence of demographics on heat consumption. Int. J. Microsimul. 7(1), 127–157 (2014). https://doi.org/10.34196/ijm.00096

    Article  Google Scholar 

  • Openshaw, S., Rao, L.: Algorithms for reengineering 1991 census geography. Environ. Plan A 27(3), 425–446 (1995). https://doi.org/10.1068/a270425

    Article  Google Scholar 

  • Pajares, E., Muñoz Nieto, R., Meng, L., Wulfhorst, G.: Population disaggregation on the building level based on outdated census data. ISPRS Int. J. Geo-Inf. 10, 662 (2021). https://doi.org/10.3390/ijgi10100662

    Article  Google Scholar 

  • Panori, A., Ballas, D., Psycharis, Y.: Simathens: a spatial microsimulation approach to the estimation and analysis of small area income distributions and poverty rates in the city of Athens, Greece. Comput. Environ. Urban Syst. 63, 15–25 (2017)

    Article  Google Scholar 

  • Ryan, J., Maoh, H., Kanaroglou, P.: Population synthesis: comparing the major techniques using a small, complete population of firms. Geogr. Anal. 41, 181–203 (2009). https://doi.org/10.1111/j.1538-4632.2009.00750.x

    Article  Google Scholar 

  • Saadi, I., Mustafa, A., Teller, J., Farooq, B., Cools, M.: Hidden Markov model-based population synthesis. Transp. Res. Part B Methodol. 90, 1–21 (2016)

    Article  Google Scholar 

  • Saadi, I., Farooq, B., Mustafa, A., Teller, J., Cools, M.: An efficient hierarchical model for multi-source information fusion. Expert Syst. Appl. 110, 352–362 (2018)

    Article  Google Scholar 

  • Smith, L., Beckman, R., Anson, D., Nagel, K., Williams, M.E.: TRANSIMS: transportation analysis and simulation system. In: Fifth National Conference on Transportation Planning Methods Applications, Seattle, Washington (1995)

  • Srinivasan, S., Ma, L., Yathindra, K.: Procedure for forecasting household characteristics for input to travel-demand models. In: Project Report of University of Florida, Gainesville; Florida department of transportation. Technical Report, TRC-FDOT-64011-2008 (2008)

  • Statistics Canada: Census. 2016. Available online: https://www12.statcan.gc.ca/census-recensement/2016/dp-pd/index-eng.cfm. Accessed on 27 August 2021

  • Sun, L., Erath, A.: A Bayesian network approach for population synthesis. Transp. Res. Part C Emerg. Technol. 61, 49–62 (2015)

    Article  Google Scholar 

  • Sun, L., Erath, A., Cai, M.: A hierarchical mixture modeling framework for population synthesis. Transp. Res. Part B Methodol. 114, 199–212 (2018)

    Article  Google Scholar 

  • Swarup, S., Marathe, M.V.: Generating synthetic populations for social modeling: tutorial at the Autonomous Agents and Multi-Agents Systems (AAMAS) Conference. May, Singapore (2016)

  • Tanton, R.: A review of spatial microsimulation methods. Int. J. Microsimulation 7(1), 4–25 (2014)

    Article  Google Scholar 

  • Tanton, R., Vidyattama, Y., Nepal, B., McNamara, J.: Small area estimation using a reweighting algorithm. J. R. Stat. Soc. Ser. A Stat. Soc. 174(4), 931–951 (2011)

    Article  Google Scholar 

  • Vidyattama, Y., Biddle, N., Tanton, R.: Small area social indicators for the indigenous population: synthetic data methodology for creating small area estimates of indigenous disadvantage. In: NATSEM Working Paper Series 13/24, University of Canberra, National Centre for Social and Economic Modelling (2013)

  • Voas, D., Williamson, P.: An evaluation of the combinatorial optimisation approach to the creation of synthetic microdata. Popul. Space Place 6(5), 349–366 (2000)

    Google Scholar 

  • Waddell, P.: UrbanSim: modeling urban development for land use, transportation, and environmental planning. J. Am. Plan. Assoc. 68(3), 297–314 (2002)

    Article  Google Scholar 

  • Williamson, P., Birkin, M., Rees, P.H.: The estimation of population microdata by using data from small area statistics and samples of anonymised records. Environ. Plan A 30(5), 785–816 (1998). https://doi.org/10.1068/a300785

    Article  Google Scholar 

  • Xie, Y., Weng, A., Weng, Q.: Population estimation of urban residential communities using remotely sensed morphologic data. IEEE Geosci. Remote Sens. Lett. 12(5), 1111–1115 (2015). https://doi.org/10.1109/LGRS.2014.2385597

    Article  Google Scholar 

  • Yameogo, F.B., Gastineau, P., Hankach, P., Vandanjon, P.-O.: Comparing methods for generating a two-layered synthetic population. Transp. Res. Rec. J. Transp. Res. Board 2675(1), 136–147 (2021). https://doi.org/10.1177/0361198120964734

    Article  Google Scholar 

  • Ye, X., Konduri, K., Pendyala, R.M., Sana, B., Waddell, P.: A methodology to match distributions of both household and person attributes in the generation of synthetic populations. In: 88th Annual Meeting of the Transportation Research Board. Washington, DC (2009)

  • Zhang, D., Cao, J., Feygin, S., Tang, D., Shen, Z.J., Pozdnoukhov, A.: Connected population synthesis for transportation simulation. Transp. Res. Part C Emerg. Technol. 103, 1–16 (2019)

    Article  Google Scholar 

  • Zhou, M., Li, J., Basu, R., Ferreira, J.: Creating spatially-detailed heterogeneous synthetic populations for agent-based microsimulation. Comput. Environ. Urban Syst. 91, 101717 (2022)

    Article  Google Scholar 

  • Zhu, Y., Diao, M., Ferreira, J., Zegras, P.C.: An integrated microsimulation approach to land-use and mobility modeling. J. Transp. Land Use 11(1), 633–659 (2018)

    Article  Google Scholar 

  • Zhu, Y., Ferreira, J.: Synthetic population generation at disaggregated spatial scales for land use and transportation microsimulation. Transp. Res. Rec. J. Transp. Res. Board 2429, 168–177 (2014)

    Article  Google Scholar 

  • Zhu, Y., Ferreira, J.: Data integration to create large-scale spatially detailed synthetic populations. Lect Notes Geoinform. Cartogr 213, 121–141 (2015). https://doi.org/10.1007/978-3-319-18368-8_7

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the contribution and financial support of the Mobilité research chair partners: Ministère des transports du Québec (MTQ), Société de Transport de Montréal (STM), Autorité Régionale de Transport Métropolitain, exo, and Ville de Montréal.

Author information

Authors and Affiliations

Authors

Contributions

The authors confirm contribution to the paper as follows: study conception and design: Mohamed Khachman, Catherine Morency, Francesco Ciari; analysis and interpretation of results: Mohamed Khachman; draft manuscript preparation: Mohamed Khachman, Catherine Morency, Francesco Ciari. All authors reviewed the results and approved the final version of the manuscript.

Corresponding author

Correspondence to Mohamed Khachman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1: code (ZIP 29 kb)

Supplementary file2: input (ZIP 316310 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khachman, M., Morency, C. & Ciari, F. Integrated multiresolution framework for spatialized population synthesis. Transportation (2022). https://doi.org/10.1007/s11116-022-10358-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11116-022-10358-w

Keywords

Navigation