Skip to main content
Log in

A Coumarin-azo Derived Colorimetric Chemosensor for Hg2+ Detection in Organic and Aqueous Media and its Extended Real-world Applications

  • Research
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Pollution caused by the release of toxic heavy metals into the environment by industrial and farming processes has been regarded as a major problem worldwide. This has attracted a great deal of attention into restoration and remediation. Mercury is classified as a toxic heavy metal which has posed significant challenges to public and environmental health. To date, conventional methods for mercury detection rely on expensive, destructive, complex, and highly specialized methods. Evidently, there is a need to develop systems capable of easily identifying and quantifying mercury within the environment. In this way, organic-based colorimetric chemosensors are gaining increasing popularity due to their high sensitivity, selectivity, cost-effectiveness, ease of design, naked-eye, and on-site detection ability. The formation of coumarin-azo derivative AD1 was carried out by a conventional diazotization reaction with coumarin-amine 1c and N,N-dimethylaniline. Sensor AD1 displayed remarkable visual colour change upon mercury addition with appreciable selectivity and sensitivity. The detection limit was calculated as 0.24 µM. Additionally, the reversible nature of AD1 allowed for the construction of an IMPLICATION type logic gate and Molecular Keypad Lock. Chemosensor AD1 displayed further sensing applications in real-world water samples and towards on-site assay methods. Herein, we describe a coumarin-derived chemosensor bearing an azo (N = N) functionality for the colorimetric and quantitative determination of Hg2+ in organic and aqueous media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Availability of Data and Material

All data generated or analyzed during this study are included in this published article (and its supplementary information files).

References

  1. He HZ, Li KK, Yu KK, Lu PL, Feng ML, Chen SY, Yu XQ (2020) Additive- and column-free synthesis of rigid bis-coumarins as fluorescent dyes for G-quadruplex sensing via disaggregation-induced emission. Chem Commun 56:6870–6873. https://doi.org/10.1039/D0CC01437K

    Article  CAS  Google Scholar 

  2. Komijani M, Shamabadi NS, Shahin F, Eghbalpour F, Tahsili MR, Bahram M (2021) Heavy metal pollution promotes antibiotic resistance potential in the aquatic environmen. Environ Pollut 274:116569–116589. https://doi.org/10.1016/j.envpol.2021.116569

    Article  CAS  Google Scholar 

  3. Long Z, Huang Y, Zhang W, Shi Z, Yu D, Chen Y, Liu C, Wang R (2021) Effect of different industrial activities on soil heavy metal pollution, ecological risk, and health risk. Environ Monit Assess 193:20. https://doi.org/10.1007/s10661-020-08807-z

    Article  CAS  Google Scholar 

  4. Yu Z, Liu E, Lin Q, Zhang E, Yang F, Wei C, Shen J (2021) Comprehensive assessment of heavy metal pollution and ecological risk in lake sediment by combining total concentration and chemical partitioning. Environ Pollut 269:116212–116223. https://doi.org/10.1016/j.envpol.2020.116212

    Article  CAS  Google Scholar 

  5. Diarra I, Prasad S (2021) The current state of heavy metal pollution in Pacific Island Countries: a review. Appl Spectrosc Rev 56:27–51. https://doi.org/10.1080/05704928.2020.1719130

    Article  CAS  Google Scholar 

  6. Rai PK, Lee SS, Zhang M, Tsang YF, Kim KH (2019) Heavy metals in food crops: Health risks, fate, mechanisms, and management. Environ Int 125:365–385. https://doi.org/10.1016/j.envint.2019.01.067

    Article  CAS  Google Scholar 

  7. Liu J, Liu R, Yang Z, Kuikka S (2021) Quantifying and predicting ecological and human health risks for binary heavy metal pollution accidents at the watershed scale using Bayesian Networks. Environ Pollut 269:116125–116137. https://doi.org/10.1016/j.envpol.2020.116125

    Article  CAS  Google Scholar 

  8. Fuentes-Gandara F, Pinedo-Hernández J, Gutiérrez E, Marrugo-Negrete J, Díez S (2021) Heavy metal pollution and toxicity assessment in Mallorquin swamp: A natural protected heritage in the Caribbean Sea, Colombia. Mar Pollut Bull 167:112271–112279. https://doi.org/10.1016/j.marpolbul.2021.112271

    Article  CAS  Google Scholar 

  9. Elsagh A, Jalilian H, Ghader M, Aslshabestari MG (2021) Evaluation of heavy metal pollution in coastal sediments of Bandar Abbas, the Persian Gulf, Iran: Mercury pollution and environmental geochemical indices. Mar Pollut Bull 167:112314–112322. https://doi.org/10.1016/j.marpolbul.2021.112314

    Article  CAS  Google Scholar 

  10. Molina CI, Gibon FM, Duprey JL, Dominguez L, Guimarães JRD, Roulet M (2010) Transfer of mercury and methylmercury along macroinvertebrate food chains in a floodplain lake of the Beni River, Bolivian Amazonia. Sci Total Environ 408:3382–3391. https://doi.org/10.1016/j.scitotenv.2010.04.019

    Article  CAS  Google Scholar 

  11. Buaisha M, Balku S, Özalp-Yaman S (2021) Heavy metal inhibition on an alternating activated sludge system and its comparison to conventional methods: case study of Cu2+. Water Sci Technol 84:892–905. https://doi.org/10.2166/wst.2021.276

    Article  CAS  Google Scholar 

  12. Atangana E, Oberholster PJ (2021) Using heavy metal pollution indices to assess water quality of surface and groundwater on catchment levels in South Africa. J African Earth Sci 182:104254. https://doi.org/10.1016/j.jafrearsci.2021.104254

    Article  CAS  Google Scholar 

  13. Vanjare BD, Mahajan PG, Ryoo HI, Dige NC, Choi NG, Han Y, Kim SJ, Kim CH, Lee KH (2021) Novel rhodamine based chemosensor for detection of Hg2+: Nanomolar detection, real water sample analysis, and intracellular cell imaging. Sens Actuators B Chem 330:129308–129319. https://doi.org/10.1016/j.snb.2020.129308

    Article  CAS  Google Scholar 

  14. Ye F, Liang XM, Xu KX, Pang XX, Chai Q, Fu Y (2019) A novel dithiourea-appended naphthalimide “on-off” fluorescent probe for detecting Hg2+ and Ag+ and its application in cell imaging. Talanta 200:494–502. https://doi.org/10.1016/j.talanta.2019.03.076

    Article  CAS  Google Scholar 

  15. Lim JW, KimTY WMA (2021) Trends in sensor development toward next-generation point-of-care testing for mercury. Biosens Bioelectron 183:113228–115244. https://doi.org/10.1016/j.bios.2021.113228

    Article  CAS  Google Scholar 

  16. Pang X, Dong J, Gao L, Wang L, Yu S, Kong J, Li L (2020) Dansyl-peptide dual-functional fluorescent chemosensor for Hg2+ and biothiols. Dye Pigment 173:107888–107890. https://doi.org/10.1016/j.dyepig.2019.107888

    Article  CAS  Google Scholar 

  17. Wang H, Wang X, Liang M, Chen G, Kong RM, Xia L, Qu F (2020) A Boric Acid-Functionalized Lanthanide Metal-Organic Framework as a Fluorescence “Turn-on” Probe for Selective Monitoring of Hg2+ and CH3Hg+. Anal Chem 92:3366–3372. https://doi.org/10.1021/acs.analchem.9b05410

    Article  CAS  Google Scholar 

  18. Cao D, Chen W, Xiang Y, Mi Q, Liu H, Feng PY, Shen H, Zhang C, Wang Y, Wang D (2021) The efficiencies of inorganic mercury bio-methylation by aerobic bacteria under different oxygen concentrations. Ecotoxicol Environ Saf 207:111538–111547. https://doi.org/10.1016/j.ecoenv.2020.111538

    Article  CAS  Google Scholar 

  19. Aždajić M, Yumvihoze E, Blais JM, Poulain AJ (2021) The effect of legacy gold mining on methylmercury cycling and microbial community structure in northern freshwater lakes. Environ Sci Process Impacts 23:1220–1230

    Article  Google Scholar 

  20. Fuhrmann B, Beutel M, Ganguli P, Zhao L, Brower S, Funk A, Pasek J (2021) Seasonal patterns of methylmercury production, release, and degradation in profundal sediment of a hypereutrophic reservoir. Lake Reserv Manag 37:1940397–1940410. https://doi.org/10.1080/10402381.2021.1940397

    Article  CAS  Google Scholar 

  21. Donadt C, Cooke CA, Graydon JA, Poesch MS (2021) Mercury bioaccumulation in stream fish from an agriculturally-dominated watershed. Chemosphere 26:128059–128069. https://doi.org/10.1016/j.chemosphere.2020.128059

    Article  CAS  Google Scholar 

  22. Gentès S, Löhrer B, Legeay A, Mazel AF, Anschutz A, Charbonnier C, Tessier E, Maury-Brachet R (2020) Drivers of variability in mercury and methylmercury bioaccumulation and biomagnification in temperate freshwater lakes. Chemosphere 267:12890. https://doi.org/10.1016/j.chemosphere.2020.128890

    Article  CAS  Google Scholar 

  23. Feng L, Li P, Feng X (2021) Methylmercury bioaccumulation in rice and health effects: A systematic review. Curr Opin Environ Sci Heal 23:100285–100291. https://doi.org/10.1016/j.coesh.2021.100285

    Article  Google Scholar 

  24. Qian X, Yang C, Xu X, Ao M, Xu Z, Wu Y, Qiu G (2021) Extremely Elevated Total Mercury and Methylmercury in Forage Plants in a Large-Scale Abandoned Hg Mining Site: A Potential Risk of Exposure to Grazing Animals. Arch Environ Contam Toxicol 80:519–530. https://doi.org/10.1007/s00244-021-00826-2

    Article  CAS  Google Scholar 

  25. Briffa J, Sinagra E, Blundell R (2020) Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 6:e04691–e04697. https://doi.org/10.1016/j.heliyon.2020.e04691

    Article  CAS  Google Scholar 

  26. Zhang Y, Song Z, Huang S, Zhang P, Peng Y, Wu P, Gu J, Dutkiewicz S, Zhang H, Wu S, Wang F, Chen L, Wang S, Li P (2021) Global health effects of future atmospheric mercury emissions. Nat Commun. https://doi.org/10.1038/s41467-021-23391-7

    Article  Google Scholar 

  27. Guzzi G, Ronchi A, Pigatto P (2021) Toxic effects of mercury in humans and mammals. Chemosphere 263:127990–127990. https://doi.org/10.1016/j.chemosphere.2020.127990

    Article  CAS  Google Scholar 

  28. Mergler D (2021) Ecosystem approaches to mercury and human health: A way toward the future. Ambio 50:527–531. https://doi.org/10.1007/s13280-020-01455-0

    Article  Google Scholar 

  29. Bogireddy NKR, Barba V, Agarwal V (2019) Nitrogen-doped graphene oxide dots-based “Turn-OFF” H2O2, Au(III), and “Turn-OFF–ON” Hg(II) sensors as logic gates and molecular keypad locks. ACS Omega 4:10702–10713

    Article  CAS  Google Scholar 

  30. Sharma N, Nigam A, Lobanov D, Gupta A, Novikov A, Kumar M (2021) Mercury (II) ion detection using AgNWs-MoS2 nanocomposite on GaN HEMT for IoT enabled smart water quality analysis. IEEE Internet Things J 4662:1–8

    Google Scholar 

  31. Unnikrishnan B, Lien CW, Chu HW, Huang CC (2021) A review on metal nanozyme-based sensing of heavy metal ions: Challenges and future perspectives. J Hazard Mater 401:123397. https://doi.org/10.1016/j.jhazmat.2020.123397

    Article  CAS  Google Scholar 

  32. Zamora-Ledezma C, Negrete-Bolagay D, Figueroa F, Zamora-Ledezma E, Ni M, Alexis F, Guerrero VH (2021) Heavy metal water pollution: A fresh look about hazards, novel and conventional remediation methods. Environ Technol Innov 22:101504. https://doi.org/10.1016/j.eti.2021.101504

    Article  CAS  Google Scholar 

  33. Morgan VL, Casso-Hartmann L, Velez-Torres I, Vanegas DC, Muñoz-Carpena R, McLamore ES, Kiker GA (2021) Modeling exposure risk and prevention of mercury in drinking water for artisanal-small scale gold mining communities. Hum Ecol Risk Assess 27:1492–1508. https://doi.org/10.1080/10807039.2020.1855576

    Article  CAS  Google Scholar 

  34. Yu K, Fang S, Zhao Y (2021) Heavy metal Hg stress detection in tobacco plant using hyperspectral sensing and data-driven machine learning methods. Spectrochim Acta - Part A Mol Biomol Spectrosc 245:118917. https://doi.org/10.1016/j.saa.2020.118917

    Article  CAS  Google Scholar 

  35. Lu SM, Peng YY, Ying YL, Long YT (2020) Electrochemical sensing at a confined space. Anal Chem 92:5621–5644. https://doi.org/10.1021/acs.analchem.0c00931

    Article  CAS  Google Scholar 

  36. Kaewnok N, Sirirak J, Jungsuttiwong S, Wongnongwa Y, Kamkaew A, Petdum A, Panchan W, Sahasithiwat S, Sooksimuang T, Charoenpanich A, Wanichacheva N (2021) Detection of hazardous mercury ion using [5] helicene-based fluorescence probe with “Turn[sbnd]ON” sensing response for practical applications. J Hazard Mater 418:126242. https://doi.org/10.1016/j.jhazmat.2021.126242

    Article  CAS  Google Scholar 

  37. Bhardwaj V, Nurchi VM, Sahoo SK (2021) Mercury toxicity and detection using chromo-fluorogenic chemosensors. Pharmaceuticals 14:1–45. https://doi.org/10.3390/ph14020123

    Article  CAS  Google Scholar 

  38. Yang L, Li M, Ruan S, Xu X, Wang Z, Wang S (2021) Highly efficient coumarin-derived colorimetric chemosensors for sensitive sensing of fluoride ions and their applications in logic circuits. Spectrochim Acta - Part A Mol Biomol Spectrosc 255:1386–1425. https://doi.org/10.1016/j.saa.2021.119718

    Article  CAS  Google Scholar 

  39. Tripathy M, Subuddhi U, Patel S (2020) An azo dye based D-π-A chromogenic probe for selective naked-eye detection of Hg2+ ion: application in logic gate operation. ChemistrySelect 5:4803–4815. https://doi.org/10.1002/slct.202000659

    Article  CAS  Google Scholar 

  40. Erdogdu Y, Baskose UC, Saglam S, Erdogdu M, Ogutcu H, Özçelik S (2020) Structural, thermal, spectroscopic, electronic and biological activity properties of coumarin-153 dyes for DSSCs: A DFT benchmark study. J Mol Struct 1221:128873. https://doi.org/10.1016/j.molstruc.2020.128873

    Article  CAS  Google Scholar 

  41. Cao D, Liu Z, Verwilst P, Koo S, Jangjili P, Kim JS, Lin W (2019) Coumarin-based small-molecule fluorescent chemosensors. Chem Rev 119:10403–10519. https://doi.org/10.1021/acs.chemrev.9b00145

    Article  CAS  Google Scholar 

  42. Jung Y, Jung J, Huh Y, Kim D (2018) Benzo[g]coumarin-based fluorescent probes for bioimaging applications. J Anal Methods Chem 2018:1–11. https://doi.org/10.1155/2018/5249765

    Article  CAS  Google Scholar 

  43. Vashisht D, Kaur K, Jukaria R, Vashisht A, Sharma S (2019) Colorimetric chemosensor based on coumarin skeleton for selective naked eye detection of cobalt (II) ion in near aqueous medium. Sens Actuators B Chem 280:219–226

    Article  CAS  Google Scholar 

  44. Alothman AA, Albaqami MD, Alshgari RA (2021) Synthesis, spectral characterization, quantum chemical calculations, thermal studies and biological screening of nitrogen and oxygen donor atoms containing Azo-dye Cu(II), Ni(II) and Co(II) complexes. J Mol Struct 1223:128984. https://doi.org/10.1016/j.molstruc.2020.128984

    Article  CAS  Google Scholar 

  45. Manjunatha B, Bodke YD, Nagaraja O, Lohith TN, Nagaraju G, Sridhar MA (2021) Coumarin-benzothiazole based azo dyes: synthesis, characterization, computational, photophysical and biological studies. J Mol Struct 1244:130933. https://doi.org/10.1016/j.molstruc.2021.131170

    Article  CAS  Google Scholar 

  46. Benkhaya S, M’rabet S, El Harfi A (2020) Classifications, properties, recent synthesis and applications of azo dyes. Heliyon 6:e03271. https://doi.org/10.1016/j.heliyon.2020.e03271

    Article  Google Scholar 

  47. Nagaraja O, Bodke YD, Pushpavathi I, Kumar SR (2020) Synthesis, characterization and biological investigations of potentially bioactive heterocyclic compounds containing 4-hydroxy coumarin. Heliyon 6:e04245. https://doi.org/10.1016/j.heliyon.2020.e04245

    Article  CAS  Google Scholar 

  48. Singh G, Satija P, Singh A et al (2020) Azo dye featuring triazole appended organosilicon multifunctionalized sensor: Paradigm for detection of Cu+2and Fe+2 ions. Mater Chem Phys 249:123005. https://doi.org/10.1016/j.matchemphys.2020.123005

    Article  CAS  Google Scholar 

  49. Mohammed GI, El-Ghamry HA, Saber AL (2021) Rapid, sensitive, and selective copper (II) determination using sensitive chromogenic azo dye based on sulfonamide. Spectrochim Acta - Part A Mol Biomol Spectrosc 247:119103. https://doi.org/10.1016/j.saa.2020.119103

    Article  CAS  Google Scholar 

  50. Kudelko A, Olesiejuk M, Luczynski M, Swiatkowski M, Sieranski T, Kruszynski R (2020) 1,3,4-thiadiazole-containing azo dyes: synthesis, spectroscopic properties and molecular structure. Molecules 25:2822. https://doi.org/10.3390/molecules25122822

    Article  CAS  Google Scholar 

  51. Abdallah SM (2012) Metal complexes of azo compounds derived from 4-acetamidophenol and substituted aniline. Arab J Chem 5:251–256. https://doi.org/10.1016/j.arabjc.2010.08.019

    Article  CAS  Google Scholar 

  52. Hamidian K, Rahimi R, Hosseini-Kharat M (2021) Bisazo dye compounds based on aliphatic and aromatic diamine linking groups: Thermal behavior, chemical stability, electrochemical study, interaction with AgNPs and in vitro anti-pathogen activity. Inorg Chem Commun 128:108559

    Article  CAS  Google Scholar 

  53. Sancenón F, Martínez-Máñez R, Miranda MA, Seguí MJ, Soto J (2003) Towards the development of colorimetric probes to discriminate between isomeric dicarboxylates. Angew Chemie - Int Ed 42:647–650. https://doi.org/10.1002/anie.200390178

    Article  Google Scholar 

  54. Dhaka G, Jindal G, Kaur R, Rana S, Gupta A, Kaur N (2020) Multianalyte azo dye as an on-site assay kit for colorimetric detection of Hg2+ ions and electrochemical sensing of Zn2+ ions. Spectrochim Acta - Part A Mol Biomol Spectrosc 229:117869. https://doi.org/10.1016/j.saa.2019.117869

    Article  CAS  Google Scholar 

  55. Abdel-Wahab BF, Mohamed HA, Farhat AA (2014) Ethyl coumarin-3-carboxylate: Synthesis and chemical properties. Org Commun 7:1–27

    Google Scholar 

  56. Solanki YS, Yadav P, Agarwal M, Gupta R, Gupta S, Shukla P (2021) Naked eye detection and measurement of fluoride concentration in groundwater using novel synthesized receptor. Sens Actuators A Phys 328:112776. https://doi.org/10.1016/j.sna.2021.112776

    Article  CAS  Google Scholar 

  57. Turkoglu G (2020) Novel nitro-substituted formazan derivatives: selective ratiometric and colorimetric chemosensors for fluoride anion sensing detectable by the naked eye. New J Chem 44:9485–9492. https://doi.org/10.1039/D0NJ01860K

    Article  CAS  Google Scholar 

  58. Tehrani T, Meghdadi S, Salarvand Z, Tavakoli B, Eskandari K, Amirnasr M (2021) An anthracene–quinoline based dual-mode fluorometric–colorimetric sensor for the detection of Fe3+ and its application in live cell imaging. New J Chem 45:8109–8117. https://doi.org/10.1039/D1NJ00178G

    Article  CAS  Google Scholar 

  59. Ryu J, Manivannan R, Son Y-A (2021) Azo dye-based optical probe for the detection toward mimic molecule of date rape drug. Michrochem J 166:1–7. https://doi.org/10.1016/j.microc.2021.106237

    Article  CAS  Google Scholar 

  60. Kshtriya V, Koshti B, Gour (2021) A new azo dye based sensor for selective and sensitive detection of Cu(II), Sn(II), and Al(III) Ions. https://doi.org/10.26434/chemrxiv.13708249.v1

  61. Nitesh NA, Supriya HR, Nagaiyan S (2019) Photostable coumarin containing azo dyes with multifunctional property. Dyes Pigm 163:692–699. https://doi.org/10.1016/j.dyepig.2018.12.050

    Article  CAS  Google Scholar 

  62. Huo E, Shahab S, Al Saud S, Cheng W, Lu P, Sheikhi M, Alnajjar R, Kaviani S (2021) Quantum chemical modeling, synthesis, spectroscopic (FT-IR, excited States, UV–Vis) studies, FMO, QTAIM, NBO and NLO analyses of two new azo derivatives. J Mol Struct 1243:130810. https://doi.org/10.1016/j.molstruc.2021.130810

    Article  CAS  Google Scholar 

  63. Çatikkaş B (2017) Raman and FT-IR spectra, DFT and SQMFF calculations for N, N-dimethylaniline. Period Eng Nat Sci 5:237–244. https://doi.org/10.21533/pen.v5i2.139

    Article  Google Scholar 

  64. Muhiebes RM, Al-Tamimi EO (2021) Synthesis of new heterocyclic containing azo group from 2-N-chloro acetamido creatinine and studying their biological activity. Eurasian Chem Commun 3:401–405. https://doi.org/10.22034/ecc.2021.281946.1170

    Article  CAS  Google Scholar 

  65. Seyednoruziyan B, Zamanloo MR, Esrafili MD, Shamkhali AN, Alizadeh T, Noruzi S (2021) Y-shape structured azo dyes with self-transforming feature to zwitterionic form as sensitizer for DSSC and DFT investigation of their photophysical and charge transfer properties. Spectrochim Acta - Part A Mol Biomol Spectrosc 261:1120062. https://doi.org/10.1016/j.saa.2021.120062

    Article  CAS  Google Scholar 

  66. Hosseinjani-Pirdehi H, Mahmoodi NO, Nadamani PM, Taheri A (2020) Novel synthesized azo-benzylidene-thiourea as dual naked-eye chemosensor for selective detection of Hg2+ and CN¯ ions. J Photochem Photobiol A Chem 391:112365. https://doi.org/10.1016/j.jphotochem.2020.112365

    Article  CAS  Google Scholar 

  67. Yang L, Li M, Ruan S, Xu X, Wang Z, Wang S (2021) Highly efficient coumarin-derived colorimetric chemosensors for sensitive sensing of fluoride ions and their applications in logic circuits. Spectrochim Acta - Part A Mol Biomol Spectrosc. https://doi.org/10.1016/j.saa.2021.119718

    Article  Google Scholar 

  68. Seyednoruziyan B, Zamanloo MR, Shamkhali N, Alizadeh T, Noruzi S, Aslani S (2021) Improving the optoelectronic efficiency of novel meta-azo dye-sensitized TiO2 semiconductor for DSSCs. Spectrochim Acta - Part A Mol Biomol Spectrosc 247:119143. https://doi.org/10.1016/j.saa.2020.119143

    Article  CAS  Google Scholar 

  69. Wan J, Zhang X, Zhang K, Su Z (2020) Biological nanoscale fluorescent probes: From structure and performance to bioimaging. Rev Anal Chem 39:209–221. https://doi.org/10.1515/revac-2020-0119

    Article  CAS  Google Scholar 

  70. Chen B, Ni S, SunL LX, Zhang Q, Song Y, Zhong Q, Fang Y, Huang C, Chen S, Wu W (2018) Intramolecular charge transfer tuning of azo dyes: Spectroscopic characteristic and third-order nonlinear optical properties. Dye Pigment 158:474–481. https://doi.org/10.1016/j.dyepig.2018.05.063

    Article  CAS  Google Scholar 

  71. Caricato M, Coluccini C, Vander Griend DA, Forni A, Pasini D (2013) From red to blue shift: switching the binding affinity from the acceptor to the donor end by increasing the π-bridge in push–pull chromophores with coordinative ends. New J Chem 37:2792–2799. https://doi.org/10.1039/C3NJ00466J

    Article  CAS  Google Scholar 

  72. Minhas MA, Rauf A, Rauf S, Minhas FT, Memon N, Jabbar A, Bhanger MI, Malik MI (2021) Selective and efficient extraction of cationic dyes from industrial effluents through polymer inclusion membrane. Sep Purif Technol 272:118883. https://doi.org/10.1016/j.seppur.2021.118883

    Article  CAS  Google Scholar 

  73. Sbârcea L, Ledeţi A, Udrescu L, Văruţ RM, Barvinschi P, Vlase G, Ledeţi I (2019) Betulonic acid—cyclodextrins inclusion complexes. J Therm Anal Calorim 138:2787–2797. https://doi.org/10.1007/s10973-019-08359-6

    Article  CAS  Google Scholar 

  74. Ortone V, Matino L, Santoro F, Cinti F (2021) Merging office/filter paper-based tools for pre-concentring and detecting heavy metals in drinking water. Chem Commun 57:7100–7103. https://doi.org/10.1039/D1CC02481G

    Article  CAS  Google Scholar 

  75. Kan C, Wang X, Wu L, Shao X, Xing H, You M, Zhu J (2021) A fluorescent probe for rapid detection of low concentration mercury ions and its application in biological cells. Anal Methods. https://doi.org/10.1039/d1ay01109j

    Article  Google Scholar 

  76. Gan F, Wu K, Du Ma, C (2020) In situ determination of nitrate in water using fourier transform mid-infrared attenuated total reflectance spectroscopy coupled with deconvolution algorithm. Molecules 2:1–9. https://doi.org/10.3390/molecules25245838

    Article  CAS  Google Scholar 

  77. Abass BF, Musa T, Aljibouri MN (2021) Preparation and spectroscopic studies of cadmium(II), zinc(II), mercury(II) and vanadium(IV) chelates azo ligand derived from 4-methyl-7-hydroxycoumarin. Indones J Chem 21:912. https://doi.org/10.22146/ijc.63032

    Article  CAS  Google Scholar 

  78. El-Wakiel NA, Rizk HF, Ibrahim SA (2017) Synthesis and characterization of metal complexes of azo dye based on 5-nitro-8-hydroxyquinoline and their applications in dyeing polyester fabrics. Appl Organomet Chem 31:1–10. https://doi.org/10.1002/aoc.3723

    Article  CAS  Google Scholar 

  79. Kumar R, Ravi S, David SI, Nandhakumar R (2021) A photo-induced electron transfer based reversible fluorescent chemosensor for specific detection of mercury (II) ions and its applications in logic gate, keypad lock and real samples. Arab J Chem 14:102911. https://doi.org/10.1016/j.arabjc.2020.11.017

    Article  CAS  Google Scholar 

  80. Ramesh S, Kumaresan S (2021) A highly selective coumarin-based chemosensor for naked-eye detection of cyanide anions via nucleophilic addition in pure aqueous environment. Microchem J 169:106584. https://doi.org/10.1016/j.microc.2021.106584

    Article  CAS  Google Scholar 

  81. Ding R, Cheong YH, Ahamed A, Lisak G (2021) Heavy metals detection with paper-based electrochemical sensors. Anal Chem 93:1880–1888. https://doi.org/10.1021/acs.analchem.0c04247

    Article  CAS  Google Scholar 

  82. Binning K, Baird D (2001) Survey of heavy metals in the sediments of the Swartkops River estuary. Port Elizabeth South Africa Water SA 27:461–466. https://doi.org/10.4314/wsa.v27i4.4958

    Article  CAS  Google Scholar 

  83. Gyedu-Ababio TK (2011) Pollution status of two river estuaries in the Eastern Cape, South Africa, based on benthic meiofauna analyses. J Water Resour Prot 03:473–486. https://doi.org/10.4236/jwarp.2011.37057

    Article  CAS  Google Scholar 

  84. Adams JB, Pretorius L, Snow GL (2019) Deterioration in the water quality of an urbanised estuary with recommendations for improvement. Water SA 45:86–96. https://doi.org/10.4314/wsa.v45i1.10

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Nelson Mandela University.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Aidan Battison and Stiaan Schoeman. Neliswa Mama contributed reagents and analysis tools. The first draft of the manuscript was written by Aidan Battison. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Neliswa Mama.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent to Publication

Not applicable.

Conflicts of Interest/Competing Interest

The authors declare they have no competing interests. AB has received research support from The Council for Scientific and Industrial Research (CSIR).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 3385 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Battison, A., Schoeman, S. & Mama, N. A Coumarin-azo Derived Colorimetric Chemosensor for Hg2+ Detection in Organic and Aqueous Media and its Extended Real-world Applications. J Fluoresc 33, 267–285 (2023). https://doi.org/10.1007/s10895-022-03065-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-022-03065-3

Keywords

Navigation