Skip to main content

Advertisement

Log in

Possible Interaction of Opioidergic and Nitrergic Pathways in the Anticonvulsant Effect of Ivermectin on Pentylenetetrazole-Induced Clonic Seizures in Mice

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Ivermectin (IVM) is an antiparasitic drug that primarily works by the activation of GABAA receptors. The potential pharmacological pathways behind the anti-convulsant effect of IVM haven’t yet been identified. In this study, intravenous injection of pentylenetetrazole (PTZ)-induced clonic seizure in mice was investigated in order to assess the possible influence of IVM on clonic seizure threshold (CST). We also look at the function of the Opioidergic and nitrergic pathways in IVM anticonvulsant action on clonic seizure threshold. IVM (0.5, 1, 5, and 10 mg/kg, i.p.) raised the PTZ-induced CST, according to our findings. Furthermore, the ineffective dose of nitric oxide synthase inhibitors (L-NAME 10 mg/kg, i.p.), and (7-NI 30 mg/kg, i.p.) or opioidergic system agonist (morphine 0.25 mg/kg, i.p.) were able to amplify the anticonvulsive action of IVM (0.2 mg/kg, i.p.). Moreover, the anticonvulsant effect of IVM was reversed by an opioid receptor antagonist (naltrexone 1 mg/kg, i.p.). Furthermore, the combination of the ineffective dose of morphine as an opioid receptor agonist with either L-NAME (2 mg/kg, i.p.) or 7-NI (10 mg/kg, i.p.) and with an ineffective dose of IVM (0.2 mg/kg, i.p.) had a significant anticonvulsant effect. Taken together, IVM has anticonvulsant activity against PTZ-induced clonic seizures in mice, which may be mediated at least in part through the interaction of the opioidergic system and the nitric oxide pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

Abbreviations

PTZ:

Pentylenetetrazole

CST:

Clonic seizure threshold

IVM:

Ivermectin

NO:

Nitric oxide

References

  1. Shellhaas RA (2019) Seizure classification, etiology, and management. Handb Clin Neurol 162:347–361

    Article  PubMed  Google Scholar 

  2. Fisher RS et al (2017) Operational classification of seizure types by the International League Against Epilepsy: Position Paper of the ILAE Commission for Classification and Terminology. Epilepsia 58(4):522–530

    Article  PubMed  Google Scholar 

  3. Park KM, Kim SE, Lee BI (2019) Antiepileptic drug therapy in patients with drug-resistant epilepsy. J Epilepsy Res 9(1):14–26

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hanaya R, Arita K (2016) The new antiepileptic drugs: their neuropharmacology and clinical indications. Neurol Med Chir (Tokyo) 56(5):205–220

    Article  PubMed  Google Scholar 

  5. Dalic L, Cook MJ (2016) Managing drug-resistant epilepsy: challenges and solutions. Neuropsychiatr Dis Treat 12:2605–2616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Laxer KD et al (2014) The consequences of refractory epilepsy and its treatment. Epilepsy Behav 37:59–70

    Article  PubMed  Google Scholar 

  7. Chen IS, Kubo Y (2018) Ivermectin and its target molecules: shared and unique modulation mechanisms of ion channels and receptors by ivermectin. J Physiol 596(10):1833–1845

    Article  CAS  PubMed  Google Scholar 

  8. Estrada-Mondragon A, Lynch JW (2015) Functional characterization of ivermectin binding sites in α1β2γ2L GABA(A) receptors. Front Mol Neurosci 8:55

    Article  PubMed  PubMed Central  Google Scholar 

  9. Dusabimana A et al (2020) Effect of ivermectin treatment on the frequency of seizures in persons with epilepsy infected with onchocerca volvulus. Pathogens 10(1):21

    Article  PubMed  PubMed Central  Google Scholar 

  10. Trailović SM, Varagić VM (2007) The effect of ivermectin on convulsions in rats produced by lidocaine and strychnine. Vet Res Commun 31(7):863–872

    Article  PubMed  Google Scholar 

  11. de Souza Spinosa H, Gerenutti M, Bernardi MM (2000) Anxiolytic and anticonvulsant properties of doramectin in rats: behavioral and neurochemistric evaluations. Comput Biochem Physiol C 127(3):359–366

    Google Scholar 

  12. Dawson GR et al (2000) Anticonvulsant and adverse effects of avermectin analogs in mice are mediated through the gamma-aminobutyric acid (A) receptor. J Pharmacol Exp Ther 295(3):1051–1060

    CAS  PubMed  Google Scholar 

  13. Mayer TW, Horton ML (1991) Modulation of monomethylhydrazine-induced seizures by ivermectin. Toxicol Lett 57(2):167–173

    Article  CAS  PubMed  Google Scholar 

  14. Diggs HE et al (1990) Effect of chronic ivermectin treatment on GABA receptor function in ethanol withdrawal-seizure prone and resistant mice. Lab Anim Sci 40(1):68–71

    CAS  PubMed  Google Scholar 

  15. Serafini S et al (2020) Nitric oxide levels in brain, liver, and gills of silver catfish (Rhamdia quelen) exposed to the antiparasitic eprinomectin. Fish Physiol Biochem 46(5):1867–1872

    Article  CAS  PubMed  Google Scholar 

  16. Zhang X et al (2009) Inhibitory effects of ivermectin on nitric oxide and prostaglandin E2 production in LPS-stimulated RAW 264.7 macrophages. Int Immunopharmacol 9(3):354–359

    Article  CAS  PubMed  Google Scholar 

  17. Atakisi E et al (2009) Effects of therapeutic dose of ivermectin on plasma nitric oxide and total antioxidant capacity in rabbits. Eur Rev Med Pharmacol Sci 13(6):425–429

    CAS  PubMed  Google Scholar 

  18. Hsu DZ et al (2001) Abamectin effects on aspartate aminotransferase and nitric oxide in rats. Toxicology 165(2–3):189–193

    Article  CAS  PubMed  Google Scholar 

  19. Ito M, Matsuoka I (2008) Regulation of purinergic signaling by prostaglandin E2 in murine macrophages. J Pharmacol Sci 107(4):443–450

    Article  CAS  PubMed  Google Scholar 

  20. Viktorov AV, Yurkiv VA (2003) Effect of ivermectin on function of liver macrophages. Bull Exp Biol Med 136(6):569–571

    Article  CAS  PubMed  Google Scholar 

  21. Cui M et al (2022) A novel small-molecule selective activator of homomeric GIRK4 channels. J Biol Chem 298(6):102009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bah GS et al (2021) Emodepside targets SLO-1 channels of Onchocerca ochengi and induces broad anthelmintic effects in a bovine model of onchocerciasis. PLoS Pathog 17(6):e1009601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kozek KA et al (2019) Discovery and characterization of VU0529331, a synthetic small-molecule activator of homomeric G protein-gated, inwardly rectifying, potassium (GIRK) channels. ACS Chem Neurosci 10(1):358–370

    Article  CAS  PubMed  Google Scholar 

  24. Listos J et al (2019) The mechanisms involved in morphine addiction: an overview. Int J Mol Sci 20(17):4302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sheikhi M et al (2016) Involvement of ATP-sensitive potassium channels and the opioid system in the anticonvulsive effect of zolpidem in mice. Epilepsy Behav 62:291–296

    Article  PubMed  Google Scholar 

  26. Kobayashi T, Washiyama K, Ikeda K (2004) Modulators of G protein-activated inwardly rectifying K+ channels: potentially therapeutic agents for addictive drug users. Ann N Y Acad Sci 1025:590–594

    Article  CAS  PubMed  Google Scholar 

  27. Luu W et al (2019) Modulation of SUR1 K(ATP) channel subunit activity in the peripheral nervous system reduces mechanical hyperalgesia after nerve injury in mice. Int J Mol Sci 20(9):2251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Constantin S, Wray S (2018) Nociceptin/orphanin-FQ inhibits gonadotropin-releasing hormone neurons via g-protein-gated inwardly rectifying potassium channels. eNeuro. https://doi.org/10.1523/ENEURO.0161-18.2018

    Article  PubMed  PubMed Central  Google Scholar 

  29. Fisher C et al (2019) Morphine efficacy, tolerance, and hypersensitivity are altered after modulation of SUR1 subtype K(ATP) channel activity in mice. Front Neurosci 13:1122

    Article  PubMed  PubMed Central  Google Scholar 

  30. Shafaroodi H et al (2011) Morphine sensitization in the pentylenetetrazole-induced clonic seizure threshold in mice: role of nitric oxide and μ receptors. Epilepsy Behav 20(4):602–606

    Article  PubMed  Google Scholar 

  31. Ghasemi M et al (2010) Inhibition of NMDA receptor/NO signaling blocked tolerance to the anticonvulsant effect of morphine on pentylenetetrazole-induced seizures in mice. Epilepsy Res 91(1):39–48

    Article  CAS  PubMed  Google Scholar 

  32. Faghir-Ghanesefat H et al (2019) The possible role of nitric oxide pathway in pentylenetetrazole preconditioning against seizure in mice. J Mol Neurosci 67(3):477–483

    Article  CAS  PubMed  Google Scholar 

  33. Kovács R et al (2009) Endogenous nitric oxide is a key promoting factor for initiation of seizure-like events in hippocampal and entorhinal cortex slices. J Neurosci 29(26):8565–8577

    Article  PubMed  PubMed Central  Google Scholar 

  34. Montaser-Kouhsari L et al (2011) A role for opioid system in the proconvulsant effects of sildenafil on the pentylenetetrazole-induced clonic seizure in mice. Seizure 20(5):409–413

    Article  PubMed  Google Scholar 

  35. Homayoun H et al (2002) The role of nitric oxide in anticonvulsant and proconvulsant effects of morphine in mice. Epilepsy Res 48(1–2):33–41

    Article  CAS  PubMed  Google Scholar 

  36. Shafaroodi H et al (2004) The interaction of cannabinoids and opioids on pentylenetetrazole-induced seizure threshold in mice. Neuropharmacology 47(3):390–400

    Article  CAS  PubMed  Google Scholar 

  37. Shafaroodi H et al (2016) The interaction between morphine and propranolol in chemical and electrical seizure models of mice. Neurol Res 38(2):166–176

    Article  PubMed  Google Scholar 

  38. Sadaghiani MS et al (2011) Antidepressant-like effect of pioglitazone in the forced swimming test in mice: the role of PPAR-gamma receptor and nitric oxide pathway. Behav Brain Res 224(2):336–343

    Article  CAS  PubMed  Google Scholar 

  39. Esplugues JV (2002) NO as a signalling molecule in the nervous system. Br J Pharmacol 135(5):1079–1095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Džoljić E, Grbatinić I, Kostić V (2015) Why is nitric oxide important for our brain? Funct Neurol 30(3):159–163

    PubMed  PubMed Central  Google Scholar 

  41. Banach M et al (2011) Nitric oxide, epileptic seizures, and action of antiepileptic drugs. CNS Neurol Disord Drug Targets 10(7):808–819

    Article  CAS  PubMed  Google Scholar 

  42. Bahramnjead E et al (2018) Effects of modafinil on clonic seizure threshold induced by pentylenetetrazole in mice: involvement of glutamate, nitric oxide, GABA, and serotonin pathways. Neurochem Res 43(11):2025–2037

    Article  CAS  PubMed  Google Scholar 

  43. Payandemehr B et al (2015) A COX/5-LOX inhibitor licofelone revealed anticonvulsant properties through iNOS diminution in mice. Neurochem Res 40(9):1819–1828

    Article  CAS  PubMed  Google Scholar 

  44. Boroujeni SS et al (2022) Opioidergic and nitrergic systems mediate the anticonvulsant effect of mefloquine and chloroquine on seizures induced by pentylenetetrazol and maximal electroshock in mice. Acta Neurobiol Exp (Wars) 82(2):157–169

    PubMed  Google Scholar 

  45. Nikbakhsh R et al (2020) The possible role of nitric oxide in anti-convulsant effects of Naltrindole in seizure-induced by social isolation stress in male mice. Biomed Pharmacother 129:110453

    Article  CAS  PubMed  Google Scholar 

  46. Moezi L et al (2012) Chronic administration of atorvastatin induced anti-convulsant effects in mice: the role of nitric oxide. Epilepsy Behav 23(4):399–404

    Article  PubMed  Google Scholar 

  47. Shafaroodi H et al (2012) Sub-chronic treatment with pioglitazone exerts anti-convulsant effects in pentylenetetrazole-induced seizures of mice: the role of nitric oxide. Brain Res Bull 87(6):544–550

    Article  CAS  PubMed  Google Scholar 

  48. Gorabi AM et al (2019) Statin-induced nitric oxide signaling: mechanisms and therapeutic implications. J Clin Med 8(12):2051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shimada T, Yamagata K (2018) Pentylenetetrazole-induced kindling mouse model. J Vis Exp. https://doi.org/10.3791/56573

    Article  PubMed  PubMed Central  Google Scholar 

  50. Pedroso J et al (2022) Evaluation of resveratrol and piceatannol anticonvulsant potential in adult zebrafish (Danio rerio). Neurochem Res 47:3250–3260

    Article  CAS  PubMed  Google Scholar 

  51. Löscher W (2017) The search for new screening models of pharmacoresistant epilepsy: is induction of acute seizures in epileptic rodents a suitable approach? Neurochem Res 42(7):1926–1938

    Article  PubMed  Google Scholar 

  52. Erdogan MA, Erdogan A, Erbas O (2022) The anti-seizure effect of liraglutide on Ptz-induced convulsions through its anti-oxidant and anti-inflammatory properties. Neurochem Res. https://doi.org/10.1007/s11064-022-03736-4

    Article  PubMed  Google Scholar 

  53. Alyami NM et al (2022) Proanthocyanidins alleviate pentylenetetrazole-induced epileptic seizures in mice via the antioxidant activity. Neurochem Res 47:3012–3023

    Article  CAS  PubMed  Google Scholar 

  54. Cetindag Ciltas A et al (2022) the anticonvulsant effects of alpha-2 adrenoceptor agonist dexmedetomidine on pentylenetetrazole-induced seizures in rats. Neurochem Res 47(2):305–314

    Article  CAS  PubMed  Google Scholar 

  55. Zahner H, Schmidtchen D, Mutasa JA (1997) Ivermectin-induced killing of microfilariae in vitro by neutrophils mediated by NO. Exp Parasitol 86(2):110–117

    Article  CAS  PubMed  Google Scholar 

  56. Aryannejad A et al (2021) Anti-inflammatory effects of ivermectin in the treatment of acetic acid-induced colitis in rats: involvement of GABA(B) RECEPTORS. Dig Dis Sci 67:3672–3682

    Article  PubMed  Google Scholar 

  57. Tabary M et al (2021) Ivermectin increases random-pattern skin flap survival in rats: the novel role of GABAergic system. J Surg Res 259:431–441

    Article  CAS  PubMed  Google Scholar 

  58. Pourshadi N et al (2020) Anticonvulsant effects of thalidomide on pentylenetetrazole-induced seizure in mice: a role for opioidergic and nitrergic transmissions. Epilepsy Res 164:106362

    Article  CAS  PubMed  Google Scholar 

  59. Haj-Mirzaian A et al (2019) Involvement of opioid system in behavioral despair induced by social isolation stress in mice. Biomed Pharmacother 109:938–944

    Article  CAS  PubMed  Google Scholar 

  60. Payandemehr B et al (2013) Role of nitric oxide in additive anticonvulsant effects of agmatine and morphine. Physiol Behav 118:52–57

    Article  CAS  PubMed  Google Scholar 

  61. Imran Khan M et al (2015) Proconvulsant effect of post-weaning social isolation stress may be associated with dysregulation of opioid system in the male mice. Med Hypotheses 84(5):445–447

    Article  CAS  PubMed  Google Scholar 

  62. Jahanbani R et al (2021) Anti-seizure effects of walnut peptides in mouse models of induced seizure: the involvement of GABA and nitric oxide pathways. Epilepsy Res 176:106727

    Article  CAS  PubMed  Google Scholar 

  63. Mumtaz F et al (2020) Involvement of nNOS, and α1, α2, β1, and β2 subunits of soluble guanylyl cyclase genes expression in anticonvulsant effect of sumatriptan on pentylenetetrazole-induced seizure in mice. Iran J Pharm Res 19(4):181–192

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Goudarzi R et al (2020) Novel effect of Arthrocen (avocado/soy unsaponifiables) on pentylenetetrazole-induced seizure threshold in mice: Role of GABAergic pathway. Epilepsy Behav 104(Pt A):106500

    Article  PubMed  Google Scholar 

  65. Manavi MA (2022) Neuroprotective effects of glucagon-like peptide-1 (GLP-1) analogues in epilepsy and associated comorbidities. Neuropeptides 94:102250

    Article  CAS  PubMed  Google Scholar 

  66. Saboory E et al (2007) Mechanisms of morphine enhancement of spontaneous seizure activity. Anesth Analg 105(6):1729–1735

    Article  CAS  PubMed  Google Scholar 

  67. Yahyavi-Firouz-Abadi N et al (2006) Involvement of nitric oxide pathway in the acute anticonvulsant effect of melatonin in mice. Epilepsy Res 68(2):103–113

    Article  CAS  PubMed  Google Scholar 

  68. Del-Bel EA et al (1997) Anticonvulsant and proconvulsant roles of nitric oxide in experimental epilepsy models. Braz J Med Biol Res 30(8):971–979

    Article  CAS  PubMed  Google Scholar 

  69. Brown GC (2001) Regulation of mitochondrial respiration by nitric oxide inhibition of cytochrome c oxidase. Biochim Biophys Acta 1504(1):46–57

    Article  CAS  PubMed  Google Scholar 

  70. Yuan H et al (2007) Mitochondrial fission is an upstream and required event for bax foci formation in response to nitric oxide in cortical neurons. Cell Death Differ 14(3):462–471

    Article  CAS  PubMed  Google Scholar 

  71. Rintoul GL et al (2006) Nitric oxide inhibits mitochondrial movement in forebrain neurons associated with disruption of mitochondrial membrane potential. J Neurochem 97(3):800–806

    Article  CAS  PubMed  Google Scholar 

  72. Eslami F et al (2022) Pentylenetetrazole preconditioning attenuates severity of status epilepticus induced by lithium-pilocarpine in male rats: evaluation of opioid/NMDA receptors and nitric oxide pathway. Pharmacol Rep 74(4):602–613

    Article  CAS  PubMed  Google Scholar 

  73. Zamanian G et al (2020) Interaction of morphine tolerance with pentylenetetrazole-induced seizure threshold in mice: the role of NMDA-receptor/NO pathway. Epilepsy Behav 112:107343

    Article  PubMed  Google Scholar 

  74. Meskinimood S et al (2019) Modulatory effect of opioid ligands on status epilepticus and the role of nitric oxide pathway. Epilepsy Behav 101(Pt A):106563

    Article  PubMed  Google Scholar 

  75. Kazemi Roodsari S et al (2019) Methadone’s effects on pentylenetetrazole-induced seizure threshold in mice: NMDA/opioid receptors and nitric oxide signaling. Ann N Y Acad Sci 1449(1):25–35

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was financially supported by Department of Pharmacology, Tehran University of Medical Sciences, Tehran, Iran [Grant No. 1400-3-367-54764]. Special thanks to Iran National Science Foundation (INSF) for their support.

Funding

Funding was provided Iran National Science Foundation (Grant No. 1400-3-367-54764).

Author information

Authors and Affiliations

Authors

Contributions

In this study every member respectively performed these responsibilities: SJ (Following animal study), MR (Following animal study), MAM (Supervision of Experiments on Animals, writing some parts of article, analyzing the data, and critically editing the assay), M-TP-F (Writing some parts of article, critically editing the assay), RMJ (Consulted methods, critically editing the assay), AA (Editing the assay), ARD (Supervised and principal investigator, editing assay).

Corresponding authors

Correspondence to Razieh Mohammad Jafari or Ahmad Reza Dehpour.

Ethics declarations

Conflict of interest

Authors indicate that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jourian, S., Rahimi, M., Manavi, M.A. et al. Possible Interaction of Opioidergic and Nitrergic Pathways in the Anticonvulsant Effect of Ivermectin on Pentylenetetrazole-Induced Clonic Seizures in Mice. Neurochem Res 48, 885–894 (2023). https://doi.org/10.1007/s11064-022-03804-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-022-03804-9

Keywords

Navigation