Skip to main content

Advertisement

Log in

Traumatic Brain Injury-Mediated Neuroinflammation and Neurological Deficits are Improved by 8-Methoxypsoralen Through Modulating PPARγ/NF-κB Pathway

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

8-Methoxypsoralen (8-MOP) has anti-inflammatory, antioxidant and tissue-repairing abilities. Here, we probed the function and mechanism of 8-MOP in traumatic brain injury (TBI). The in-vivo TBI model was constructed in Sprague-Dawley (SD) rats using controlled cortical impact (CCI) surgery. In parallel, BV2 microglia and HT22 neurons were activated by lipopolysaccharide (LPS) to establish an in-vitro model. The modified neurological score (mNSS) and the Morris water maze experiment were employed to evaluate the rats’ neurological functions. The rats’ brain edema was assessed by the dry and wet method, and neuronal apoptosis in damaged brain tissues was monitored by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) and Nissl’s staining. Immunohistochemistry (IHC) was applied to verify Iba1-microglial activation in brain lesions of rats. The expression of inflammatory cytokines in BV2 microglia and HT22 neurons in the injured lesion of TBI rats was examined by the enzyme-linked immunosorbent assay (ELISA). The levels of iNOS, COX2, TLR4, PPARγ, STAT3, and NF-κB in brain lesions, BV2 microglia and HT22 neurons were compared by Western blot. As a result, 8-MOP administration reduced inflammation and LPS-induced neuronal damage in BV2 microglia. In vivo, 8-MOP treatment relieved neurological deficits in TBI rats, improved cognitive, learning and motor functions and mitigated brain edema and neuroinflammation induced by TBI. Furthermore, LPS or TBI activated the NF-κB and STAT3 pathways and repressed the PPARγ expression. However, 8-MOP treatment attenuated NF-κB and STAT3 phosphorylation and elevated PPARγ levels. Hence, 8-MOP exerts neuroprotective and anti-inflammatory effects in TBI rats by modulating the PPARγ/NF-κB pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data sets used and analyzed during the current study are available from the corresponding author on reasonable request.

Code Availability

Not applicable.

References

  1. Hu Z, Yu D, Almeida-Suhett C, Tu K, Marini AM, Eiden L, Braga MF, Zhu J, Li Z (2012) Expression of miRNAs and their cooperative regulation of the pathophysiology in traumatic brain injury. PLoS ONE 7(6):e39357

    Article  CAS  Google Scholar 

  2. Corrigan F, Mander KA, Leonard AV, Vink R (2016) Neurogenic inflammation after traumatic brain injury and its potentiation of classical inflammation. J Neuroinflammation 13(1):264

    Article  Google Scholar 

  3. Kumar A, Henry RJ, Stoica BA, Loane DJ, Abulwerdi G, Bhat SA, Faden AI (2019) Neutral sphingomyelinase inhibition alleviates LPS-induced microglia activation and neuroinflammation after experimental traumatic brain injury. J Pharmacol Exp Ther 368(3):338–352

    Article  CAS  Google Scholar 

  4. Kumar A, Stoica BA, Loane DJ, Yang M, Abulwerdi G, Khan N, Kumar A, Thom SR, Faden AI (2017) Microglial-derived microparticles mediate neuroinflammation after traumatic brain injury. J Neuroinflammation 14(1):47

    Article  Google Scholar 

  5. McNeely W, Goa KL (1998) 5-Methoxypsoralen. A review of its effects in psoriasis and vitiligo. Drugs 56(4):667–690

    Article  CAS  Google Scholar 

  6. Kirsch G, Abdelwahab AB, Chaimbault P (2016) Natural and synthetic coumarins with effects on inflammation. Molecules 21(10):1322

    Article  Google Scholar 

  7. Kurach Ł, Kulczycka-Mamona S, Kowalczyk J, Skalicka-Woźniak K, Boguszewska-Czubara A, El Sayed N, Osmani M, Iwaniak K, Budzyńska B (2021) Mechanisms of the procognitive effects of xanthotoxin and umbelliferone on LPS-induced amnesia in mice. Int J Mol Sci 22(4):1779. https://doi.org/10.3390/ijms22041779

    Article  CAS  Google Scholar 

  8. Li X, Yu C, Hu Y, Xia X, Liao Y, Zhang J, Chen H, Lu W, Zhou W, Song Z (2018) New Application of psoralen and angelicin on periodontitis with anti-bacterial, anti-inflammatory, and osteogenesis effects. Front Cell Infect Microbiol 8:178

    Article  Google Scholar 

  9. Mukohda M (2019) Role of PPARγ, a transcription factor in cardiovascular disease. Nihon Yakurigaku Zasshi 154(2):56–60

    Article  CAS  Google Scholar 

  10. Mitchell S, Vargas J, Hoffmann A (2016) Signaling via the NFκB system. Wiley Interdiscip Rev Syst Biol Med 8(3):227–241

    Article  CAS  Google Scholar 

  11. Kaur S, Nag A, Singh AK, Sharma K (2018) PPARγ-targeting potential for radioprotection. Curr Drug Targets 19(15):1818–1830

    Article  CAS  Google Scholar 

  12. Chen J, Xuan Y, Chen Y, Wu T, Chen L, Guan H, Yang S, He J, Shi D, Wang Y (2019) Netrin-1 alleviates subarachnoid haemorrhage-induced brain injury via the PPARγ/NF-KB signalling pathway. J Cell Mol Med 23(3):2256–2262

    Article  CAS  Google Scholar 

  13. Song MT, Ruan J, Zhang RY, Deng J, Ma ZQ, Ma SP (2018) Astragaloside IV ameliorates neuroinflammation-induced depressive-like behaviors in mice via the PPARγ/NF-κB/NLRP3 inflammasome axis. Acta Pharmacol Sin 39(10):1559–1570

    Article  CAS  Google Scholar 

  14. Henn A, Lund S, Hedtjärn M, Schrattenholz A, Pörzgen P, Leist M (2009) The suitability of BV2 cells as alternative model system for primary microglia cultures or for animal experiments examining brain inflammation. Altex 26(2):83–94. doi: https://doi.org/10.14573/altex.2009.2.83

    Article  Google Scholar 

  15. Rusinek K, Sołek P, Tabęcka-Łonczyńska A, Koziorowski M, Mytych J (2020) Focus on the role of klotho protein in neuro-immune interactions in HT-22 cells upon LPS stimulation. Cells 9(5):1231. https://doi.org/10.3390/cells9051231

    Article  CAS  Google Scholar 

  16. Ryu KY, Lee HJ, Woo H, Kang RJ, Han KM, Park H, Lee SM, Lee JY, Jeong YJ, Nam HW, Nam Y, Hoe HS (2019) Dasatinib regulates LPS-induced microglial and astrocytic neuroinflammatory responses by inhibiting AKT/STAT3 signaling. J Neuroinflammation 26(1):190. https://doi.org/10.1186/s12974-019-1561-x

    Article  CAS  Google Scholar 

  17. Liu ZH, Chen NY, Tu PH, Wu CT, Chiu SC, Huang YC, Lim SN, Yip PK (2020) DHA attenuates cerebral edema following traumatic brain injury via the reduction in blood-brain barrier permeability. Int J Mol Sci 21(17):6291

    Article  CAS  Google Scholar 

  18. Kokiko-Cochran ON, Michaels MP, Hamm RJ (2008) Delayed glucose treatment improves cognitive function following fluid-percussion injury. Neurosci Lett 436(1):27–30

    Article  CAS  Google Scholar 

  19. Yan EB, Hellewell SC, Bellander BM, Agyapomaa DA, Morganti-Kossmann MC (2011) Post-traumatic hypoxia exacerbates neurological deficit, neuroinflammation and cerebral metabolism in rats with diffuse traumatic brain injury. J Neuroinflammation 8:147

    Article  CAS  Google Scholar 

  20. Yu N, Hu S, Hao Z (2018) Benificial effect of stachydrine on the traumatic brain injury induced neurodegeneration by attenuating the expressions of Akt/mTOR/PI3K and TLR4/NFκ-B pathway. Transl Neurosci 9:175–182

    Article  CAS  Google Scholar 

  21. Yuan Y, Yang J, Zhu W, Liu T, He J, Zhou Q, Zhou X, Zhang X (2018) Qianlongtong inhibits proliferation and induces apoptosis of hyperplastic prostate cells. Am J Mens Health 12(5):1548–1553

    Article  Google Scholar 

  22. Wang L, Song LF, Chen XY, Ma YL, Suo JF, Shi JH, Chen GH (2019) MiR-181b inhibits P38/JNK signaling pathway to attenuate autophagy and apoptosis in juvenile rats with kainic acid-induced epilepsy via targeting TLR4. CNS Neurosci Ther 25(1):112–122

    Article  CAS  Google Scholar 

  23. Jha RM, Kochanek PM, Simard JM (2019) Pathophysiology and treatment of cerebral edema in traumatic brain injury. Neuropharmacology 145(Pt B):230–246

    Article  CAS  Google Scholar 

  24. Yang Y, Ye Y, Kong C, Su X, Zhang X, Bai W, He X (2019) MiR-124 enriched exosomes promoted the M2 polarization of microglia and enhanced hippocampus neurogenesis after traumatic brain injury by inhibiting TLR4 pathway. Neurochem Res 44(4):811–828

    Article  CAS  Google Scholar 

  25. Hung TH, Shyue SK, Wu CH, Chen CC, Lin CC, Chang CF, Chen SF (2017) Deletion or inhibition of soluble epoxide hydrolase protects against brain damage and reduces microglia-mediated neuroinflammation in traumatic brain injury. Oncotarget 8(61):103236–103260

    Article  Google Scholar 

  26. Borst K, Dumas AA, Prinz M (2021) Microglia immune and non-immune functions. Immunity 54(10):2194–2208. https://doi.org/10.1016/j.immuni.2021.09.014

    Article  CAS  Google Scholar 

  27. Fu R, Shen Q, Xu P, Luo JJ, Tang Y (2014) Phagocytosis of microglia in the central nervous system diseases. Mol Neurobiol 49(3):1422–1434. https://doi.org/10.1007/s12035-013-8620-6

    Article  CAS  Google Scholar 

  28. An J, Chen B, Kang X, Zhang R, Guo Y, Zhao J, Yang H (2020) Neuroprotective effects of natural compounds on LPS-induced inflammatory responses in microglia. Am J Transl Res 12(6):2353–2378

    CAS  Google Scholar 

  29. Levi G, Minghetti L, Aloisi F (1998) Regulation of prostanoid synthesis in microglial cells and effects of prostaglandin E2 on microglial functions. Biochimie 80(11):899–904. https://doi.org/10.1016/s0300-9084(00)88886-0

    Article  CAS  Google Scholar 

  30. Xu H, Wang Z, Li J, Wu H, Peng Y, Fan L, Chen J, Gu C, Yan F, Wang L, Chen G (2017) The polarization states of microglia in TBI: a new paradigm for pharmacological intervention. Neural Plast 2017:5405104. https://doi.org/10.1155/2017/5405104.

    Article  Google Scholar 

  31. He Y, Qu S, Wang J, He X, Lin W, Zhen H, Zhang X (2012) Neuroprotective effects of osthole pretreatment against traumatic brain injury in rats. Brain Res 1433:127–136

    Article  CAS  Google Scholar 

  32. Kong L, Yao Y, Xia Y, Liang X, Ni Y, Yang J (2019) Osthole alleviates inflammation by down-regulating NF-κB signaling pathway in traumatic brain injury. Immunopharmacol Immunotoxicol 41(2):349–360

    Article  CAS  Google Scholar 

  33. Nicolis E, Lampronti I, Dechecchi MC, Borgatti M, Tamanini A, Bezzerri V, Bianchi N, Mazzon M, Mancini I, Giri MG, Rizzotti P, Gambari R, Cabrini G (2009) Modulation of expression of IL-8 gene in bronchial epithelial cells by 5-methoxypsoralen. Int Immunopharmacol 9(12):1411–1422

    Article  CAS  Google Scholar 

  34. Yang IJ, Lee DU, Shin HM (2015) Anti-inflammatory and antioxidant effects of coumarins isolated from Foeniculum vulgare in lipopolysaccharide-stimulated macrophages and 12-O-tetradecanoylphorbol-13-acetate-stimulated mice. Immunopharmacol Immunotoxicol 37(3):308–317

    Article  Google Scholar 

  35. Li J, Yin P, Gong P, Lv A, Zhang Z, Liu F (2019) 8-Methoxypsoralen protects bovine mammary epithelial cells against lipopolysaccharide-induced inflammatory injury via suppressing JAK/STAT and NF-κB pathway. Microbiol Immunol 63(10):427–437

    Article  CAS  Google Scholar 

  36. Zhao L, Zhang L, Zhu W, Chen H, Ding Y, Cui G (2021) Inhibition of microRNA-203 protects against traumatic brain injury induced neural damages via suppressing neuronal apoptosis and dementia-related molecues. Physiol Behav 228:113190. https://doi.org/10.1016/j.physbeh.2020.113190

    Article  CAS  Google Scholar 

  37. Zhang L, Zhao L, Zhu W, Ding Y, Chen H, Chi N (2020) miR-146a mimics ameliorates traumatic brain injury involving JNK and NF-κB signaling pathway. Neuromolecul Med 22(4):484–492. https://doi.org/10.1007/s12017-020-08599-y

    Article  CAS  Google Scholar 

  38. Li D, Huang S, Yin Z, Zhu J, Ge X, Han Z, Tan J, Zhang S, Zhao J, Chen F, Wang H, Lei P (2019) Increases in miR-124-3p in microglial exosomes confer neuroprotective effects by targeting fip200-mediated neuronal autophagy following traumatic brain injury. Neurochem Res 44(8):1903–1923. https://doi.org/10.1007/s11064-019-02825-1

    Article  CAS  Google Scholar 

  39. Pardridge WM (2012) Drug transport across the blood-brain barrier. J Cereb Blood Flow Metab 32(11):1959–1972. https://doi.org/10.1038/jcbfm.2012.126

    Article  CAS  Google Scholar 

  40. Wohlfart S, Gelperina S, Kreuter J (2012) Transport of drugs across the blood-brain barrier by nanoparticles. J Control Release 161(2):264–273. https://doi.org/10.1016/j.jconrel.2011.08.017

    Article  CAS  Google Scholar 

  41. Zhang TT, Li W, Meng G, Wang P, W Liao (2016) Strategies for transporting nanoparticles across the blood-brain barrier. Biomater Sci 4(2):219–229. https://doi.org/10.1039/c5bm00383k

    Article  CAS  Google Scholar 

  42. Liu C, Zhong L, Tian XL, Han YC (2018) Protective effects of 8-MOP on blood-brain barrier via the Nrf-2/HO-1 pathway in mice model of cerebral infarction. Eur Rev Med Pharmacol Sci 22(13):4278–4287. https://doi.org/10.26355/eurrev_201807_15424.

    Article  CAS  Google Scholar 

  43. Villapol S (2018) Roles of Peroxisome Proliferator-Activated Receptor Gamma on Brain and Peripheral Inflammation. Cell Mol Neurobiol 38(1):121–132

    Article  CAS  Google Scholar 

  44. Shen CH, Stavnezer J (1998) Interaction of stat6 and NF-kappaB: direct association and synergistic activation of interleukin-4-induced transcription. Mol Cell Biol 18(6):3395–3404

    Article  CAS  Google Scholar 

  45. Wang LH, Yang XY, Zhang X, Farrar WL (2005) Nuclear receptors as negative modulators of STAT3 in multiple myeloma. Cell Cycle 4(2):242–245

    Article  CAS  Google Scholar 

  46. Qi L, Jacob A, Wang P, Wu R (2010) Peroxisome proliferator activated receptor-γ and traumatic brain injury. Int J Clin Exp Med 3(4):283–292

    CAS  Google Scholar 

  47. Lee H, Herrmann A, Deng JH, Kujawski M, Niu G, Li Z, Forman S, Jove R, Pardoll DM, Yu H (2009) Persistently activated Stat3 maintains constitutive NF-kappaBactivity in tumors. Cancer Cell 15(4):283–93. https://doi.org/10.1016/j.ccr.2009.02.015

    Article  CAS  Google Scholar 

  48. Jiang Q, Chen J, Long X, Yao X, Zou X, Yang Y, Huang G, Zhang H (2020) Phillyrin protects mice from traumatic brain injury by inhibiting the inflammation of microglia via PPARγ signaling pathway. Int Immunopharmacol 79:106083

    Article  CAS  Google Scholar 

  49. Deng Y, Jiang X, Deng X, Chen H, Xu J, Zhang Z, Liu G, Yong Z, Yuan C, Sun X, Wang C (2019) Pioglitazone ameliorates neuronal damage after traumatic brain injury via the PPARγ/NF-κB/IL-6 signaling pathway. Genes Dis 7(2):253–265

    Article  Google Scholar 

  50. Mello BSF, Chaves Filho AJM, Custódio CS, Cordeiro RC, Miyajima F, de Sousa FCF, Vasconcelos SMM, de Lucena DF, Macedo D (2018) Sex influences in behavior and brain inflammatory and oxidative alterations in mice submitted to lipopolysaccharide-induced inflammatory model of depression. J Neuroimmunol 320:133–142. https://doi.org/10.1016/j.jneuroim.2018.04.009

    Article  CAS  Google Scholar 

  51. Chinese Head Trauma Study Collaborators (2021) Chinese head trauma data bank : effect of gender on the outcome of patients with acute traumatic brain injury. J Neurotrauma 38(8):1164–1167. https://doi.org/10.1089/neu.2011.2134

    Article  Google Scholar 

  52. Renner C, Hummelsheim H, Kopczak A, Steube D, Schneider HJ, Schneider M, Kreitschmann-Andermahr I, Jordan M, Uhl E, Stalla GK (2012) The influence of gender on the injury severity, course and outcome of traumatic brain injury. Brain Inj 26(11):1360–1371. https://doi.org/10.3109/02699052.2012.667592.

    Article  Google Scholar 

  53. DeMaster D, Johnson C, Juranek J, Ewing-Cobbs L (2017) Memory and the hippocampal formation following pediatric traumatic brain injury. Brain Behav 7(12):e00832. https://doi.org/10.1002/brb3.832

    Article  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not- for- profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: HZ. Performed the experiments: YH, HZ. Statistical analysis: LS. Wrote the paper: YH, HZ. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Haitao Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical Approval

Our study was approved by the ethic committee of Liaocheng People’s Hospital (Approve No: LC-H2019039).

Consent for Publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 22.0 kb)

The analysis result of F, df and P-values for the ANOVA factors and interactions in Figs. 4, 5 and 6

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hui, Y., Zhao, H., Shi, L. et al. Traumatic Brain Injury-Mediated Neuroinflammation and Neurological Deficits are Improved by 8-Methoxypsoralen Through Modulating PPARγ/NF-κB Pathway. Neurochem Res 48, 625–640 (2023). https://doi.org/10.1007/s11064-022-03788-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-022-03788-6

Keywords

Navigation