Skip to main content
Log in

Circ_0008529 Contributes to Renal Tubular Cell Dysfunction in High Glucose Stress via miR-185-5p/SMAD2 Pathway in Diabetic Nephropathy

  • Original Article
  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Circular RNA (circRNA) is key regulator of diabetic nephropathy (DN) progression. However, the role of circ_0008529 in DN progression remains to be better deciphered. Cell viability, cell cycle, apoptosis and inflammation were measured by MTS assay, flow cytometry and corresponding assay kits. RT-qPCR was used to assess the expression of circ_0008529, miR-185-5p and SMAD family member 2 (SMAD2). Also, western blotting was performed to measure protein expression. Target relationship was validated by RNA pull-down assay, dual-luciferase reporter assay and RNA immunoprecipitation assay. Urinary exosome was isolated using ultracentrifugation method and identified by transmission electron microscopy. Receiver operating characteristic curve was used to analyze the diagnostic value of circ_0008529 in DN patients. Circ_0008529 and SMAD2 were upregulated, while miR-185-5p was downregulated in high glucose (HG)-induced renal tubular HK-2 cells. Under HG treatment, cell viability and cell cycle process were suppressed, while apoptosis, inflammation and extracellular matrix accumulation were enhanced. However, interfering circ_0008529 could attenuate HG-induced effects, and this protection was abated by miR-185 inhibition or SMAD2 re-expression. Mechanically, circ_0008529 and SMAD2 were competing endogenous RNAs for miR-185-5p via target binding, and circ_0008529 regulated SMAD2 expression via miR-185-5p. Notably, circ_0008529 expression was upregulated in urinary exosomes of DN patients, and showed diagnostic value (Sensitivity: 70.21%; Specificity: 86.67%). Circ_0008529 might be a potential target for DN, which regulated DN progression via miR-185-5p/SMAD2 pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

circRNA:

Circular RNA

miRNA:

MicroRNA

SMAD2:

SMAD family member 2

DN:

Diabetic nephropathy

RT-qPCR:

Reverse transcription-quantitative PCR

C-casp3:

Cleaved-caspase-3

α-SMA:

α- Smooth muscle actin

GAPDH:

Glyceraldehyde-phosphate dehydrogenase

ROC:

Receiver operating characteristic

AUC:

Area under the curve

CI:

Confidence intervals

TEM:

Transmission electron microscopy

ELISA:

Enzyme-linked immunosorbent assay

TNF-α:

Tumor necrosis factor-α

IL-6:

Interleukin IL-6

WT:

Wild type

MUT:

Mutant type

RIP:

RNA immunoprecipitation

ANOVA:

Analysis of variance

References

Download references

Acknowledgements

None.

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liqin Mu.

Ethics declarations

Competing Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, Z., Ren, G., Huang, L. et al. Circ_0008529 Contributes to Renal Tubular Cell Dysfunction in High Glucose Stress via miR-185-5p/SMAD2 Pathway in Diabetic Nephropathy. Biochem Genet 61, 963–978 (2023). https://doi.org/10.1007/s10528-022-10296-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-022-10296-3

Keywords

Navigation