Skip to main content

Advertisement

Log in

Anti-neuroinflammatory Effects and Brain Pharmacokinetic Properties of Selonsertib, an Apoptosis signal-regulating Kinase 1 Inhibitor, in mice

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Selonsertib is a first-in-class apoptosis signal-regulating kinase 1 (ASK1) inhibitor in clinical trials for treating NASH and diabetic kidney disease due to its anti-inflammatory and anti-fibrotic activities. In the present study, we investigated the anti-neuroinflammatory effects and brain pharmacokinetic properties of selonsertib. It inhibited inflammatory cytokines and NO production by suppressing phosphorylated ASK1 in the LPS-stimulated microglial cell line, BV2 cells. Consistent with the in vitro results, selonsertib attenuated plasma and brain TNF-α levels in the LPS-induced murine neuroinflammation model. In vitro and in vivo pharmacokinetic studies of selonsertib were conducted in support of central nervous system (CNS) drug discovery. In both Caco-2 and MDR-MDCK cells, selonsertib exhibited a high efflux ratio, showing that it is a P-gp substrate. Selonsertib was rapidly and effectively absorbed into the systemic circulation after oral treatment, with a Tmax of 0.5 h and oral bioavailability of 74%. In comparison with high systemic exposure with Cmax of 16.2 µg/ml and AUC of 64 µg·h/mL following oral dosing of 10 mg/kg, the brain disposition of selonsertib was limited, with Cmax of 0.08 µg/g and Kp value of 0.004. This study demonstrates that selonsertib can be a therapeutic agent for neuroinflammatory diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Abdel-Magid AF (2018) ASK1: a therapeutic target for the treatment of multiple diseases. ACS Publications 12–13. https://doi.org/10.1021/acsmedchemlett.8b00621

  2. Guo X, Namekata K, Kimura A, Harada C, Harada T (2017) ASK1 in neurodegeneration. Adv Biol Regul 66:63–71. https://doi.org/10.1016/j.jbior.2017.08.003

    Article  PubMed  CAS  Google Scholar 

  3. Lanier M, Pickens J, Bigi SV, Bradshaw-Pierce EL, Chambers A, Cheruvallath ZS, Cole D, Dougan DR, Ermolieff J, Gibson T (2017) Structure-based design of ASK1 inhibitors as potential agents for heart failure. ACS Med Chem Lett 8:316–320. https://doi.org/10.1021/acsmedchemlett.6b00481

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Liles JT, Corkey BK, Notte GT, Budas GR, Lansdon EB, Hinojosa-Kirschenbaum F, Badal SS, Lee M, Schultz BE, Wise S (2018) ASK1 contributes to fibrosis and dysfunction in models of kidney disease. J Clin Investig 128:4485–4500. https://doi.org/10.1172/JCI99768

    Article  PubMed  PubMed Central  Google Scholar 

  5. Okazaki T (2017) ASK family in infection and inflammatory disease. Adv Biol Regul 66:37–45. https://doi.org/10.1016/j.jbior.2017.10.001

    Article  PubMed  CAS  Google Scholar 

  6. Song J, Park KA, Lee WT, Lee JE (2014) Apoptosis signal regulating kinase 1 (ASK1): potential as a therapeutic target for Alzheimer’s disease. Int J Mol Sci 15:2119–2129. https://doi.org/10.3390/ijms15022119

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Guo X, Harada C, Namekata K, Matsuzawa A, Camps M, Ji H, Swinnen D, Jorand-Lebrun C, Muzerelle M, Vitte PA, Ruckle T, Kimura A, Kohyama K, Matsumoto Y, Ichijo H, Harada T (2010) Regulation of the severity of neuroinflammation and demyelination by TLR-ASK1-p38 pathway. EMBO Mol Med 2:504–515. https://doi.org/10.1002/emmm.201000103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Takada E, Furuhata M, Nakae S, Ichijo H, Sudo K, Mizuguchi J (2013) Requirement of apoptosis-inducing kinase 1 for the induction of bronchial asthma following stimulation with ovalbumin. Int Arch Allergy Immunol 162:104–114. https://doi.org/10.1159/000353240

    Article  PubMed  CAS  Google Scholar 

  9. Mnich SJ, Blanner PM, Hu LG, Shaffer AF, Happa FA, O’Neil S, Ukairo O, Weiss D, Welsh E, Storer C, Mbalaviele G, Ichijo H, Monahan JB, Hardy MM, Eda H (2010) Critical role for apoptosis signal-regulating kinase 1 in the development of inflammatory K/BxN serum-induced arthritis. Int Immunopharmacol 10:1170–1176. https://doi.org/10.1016/j.intimp.2010.06.023

    Article  PubMed  CAS  Google Scholar 

  10. Fujisawa T, Takahashi M, Tsukamoto Y, Yamaguchi N, Nakoji M, Endo M, Kodaira H, Hayashi Y, Nishitoh H, Naguro I (2016) The ASK1-specific inhibitors K811 and K812 prolong survival in a mouse model of amyotrophic lateral sclerosis. Hum Mol Genet 25:245–253. https://doi.org/10.1093/hmg/ddv467

    Article  PubMed  CAS  Google Scholar 

  11. Kadowaki H, Nishitoh H, Urano F, Sadamitsu C, Matsuzawa A, Takeda K, Masutani H, Yodoi J, Urano Y, Nagano T (2005) Amyloid β induces neuronal cell death through ROS-mediated ASK1 activation. Cell Death & Differentiation 12:19–24. https://doi.org/10.1038/sj.cdd.4401528

    Article  CAS  Google Scholar 

  12. Mukherjee S, Zhelnin L, Sanfiz A, Pan J, Li Z, Yarde M, McCarty J, Jarai G (2019) Development and validation of an in vitro 3D model of NASH with severe fibrotic phenotype. Am J translational Res 11:1531

    CAS  Google Scholar 

  13. Ji N, Yang Y, Cai C-Y, Lei Z-N, Wang J-Q, Gupta P, Shukla S, Ambudkar SV, Kong D, Chen Z-S (2019) Selonsertib (GS-4997), an ASK1 inhibitor, antagonizes multidrug resistance in ABCB1-and ABCG2-overexpressing cancer cells. Cancer Lett 440:82–93. https://doi.org/10.1016/j.canlet.2018.10.007

    Article  PubMed  CAS  Google Scholar 

  14. Yan J, Zhang Y, Sheng G, Ni B, Xiao Y, Wang S, Wang T, Ma Y, Wang H, Wu H (2021) Selonsertib Alleviates the Progression of Rat Osteoarthritis: An in vitro and in vivo Study. Front Pharmacol 12:1787. https://doi.org/10.3389/fphar.2021.687033

    Article  CAS  Google Scholar 

  15. Younossi ZM, Stepanova M, Lawitz E, Charlton M, Loomba R, Myers RP, Subramanian M, McHutchison JG, Goodman Z (2018) Improvement of hepatic fibrosis and patient-reported outcomes in non‐alcoholic steatohepatitis treated with selonsertib. Liver Int 38:1849–1859. https://doi.org/10.1111/liv.13706

    Article  PubMed  CAS  Google Scholar 

  16. Loomba R, Lawitz E, Mantry PS, Jayakumar S, Caldwell SH, Arnold H, Diehl AM, Djedjos CS, Han L, Myers RP (2018) The ASK1 inhibitor selonsertib in patients with nonalcoholic steatohepatitis: a randomized, phase 2 trial. Hepatology 67:549–559. https://doi.org/10.1002/hep.29514

    Article  PubMed  CAS  Google Scholar 

  17. Batista CRA, Gomes GF, Candelario-Jalil E, Fiebich BL, De Oliveira ACP (2019) Lipopolysaccharide-induced neuroinflammation as a bridge to understand neurodegeneration. Int J Mol Sci 20:2293. https://doi.org/10.3390/ijms20092293

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Hailman E, Lichenstein HS, Wurfel MM, Miller DS, Johnson DA, Kelley M, Busse LA, Zukowski MM, Wright SD (1994) Lipopolysaccharide (LPS)-binding protein accelerates the binding of LPS to CD14. J Exp Med 179:269–277. https://doi.org/10.1084/jem.179.1.269

    Article  PubMed  CAS  Google Scholar 

  19. Whitton P (2007) Inflammation as a causative factor in the aetiology of Parkinson’s disease. Br J Pharmacol 150:963–976. https://doi.org/10.1038/sj.bjp.0707167

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Gao HM, Jiang J, Wilson B, Zhang W, Hong JS, Liu B (2002) Microglial activation-mediated delayed and progressive degeneration of rat nigral dopaminergic neurons: relevance to Parkinson’s disease. J Neurochem 81:1285–1297. https://doi.org/10.1046/j.1471-4159.2002.00928.x

    Article  PubMed  CAS  Google Scholar 

  21. Zhao W, Xie W, Le W, Beers DR, He Y, Henkel JS, Simpson EP, Yen AA, Xiao Q, Appel SH (2004) Activated microglia initiate motor neuron injury by a nitric oxide and glutamate-mediated mechanism. J Neuropathology Experimental Neurol 63:964–977. https://doi.org/10.1093/jnen/63.9.964

    Article  CAS  Google Scholar 

  22. Hauss-Wegrzyniak B, Dobrzanski P, Stoehr JD, Wenk GL (1998) Chronic neuroinflammation in rats reproduces components of the neurobiology of Alzheimer’s disease. Brain Res 780:294–303. https://doi.org/10.1016/S0006-8993(97)01215-8

    Article  PubMed  CAS  Google Scholar 

  23. Gee MS, Kim S-W, Kim N, Lee SJ, Oh MS, Jin HK, Bae J-s, Inn K-S, Kim N-J, Lee JK (2018) A novel and selective p38 mitogen-activated protein kinase inhibitor attenuates LPS-induced neuroinflammation in BV2 microglia and a mouse model. Neurochem Res 43:2362–2371. https://doi.org/10.1007/s11064-018-2661-1

    Article  PubMed  CAS  Google Scholar 

  24. Himmelbauer MK, Xin Z, Jones JH, Enyedy I, King K, Marcotte DJ, Murugan P, Santoro JC, Hesson T, Spilker K, Johnson JL, Luzzio MJ, Gilfillan R, de Turiso FG (2019) Rational Design and Optimization of a Novel Class of Macrocyclic Apoptosis Signal-Regulating Kinase 1 Inhibitors. J Med Chem 62:10740–10756. https://doi.org/10.1021/acs.jmedchem.9b01206

    Article  PubMed  CAS  Google Scholar 

  25. Bachiller S, Jiménez-Ferrer I, Paulus A, Yang Y, Swanberg M, Deierborg T, Boza-Serrano A (2018) Microglia in neurological diseases: a road map to brain-disease dependent-inflammatory response. Front Cell Neurosci 488. https://doi.org/10.3389/fncel.2018.00488

  26. Gomez-Nicola D, Perry VH (2015) Microglial dynamics and role in the healthy and diseased brain: a paradigm of functional plasticity. The Neuroscientist 21:169–184. https://doi.org/10.1177/1073858414530512

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Jimenez-Ferrer I, Jewett M, Tontanahal A, Romero-Ramos M, Swanberg M (2017) Allelic difference in Mhc2ta confers altered microglial activation and susceptibility to α-synuclein-induced dopaminergic neurodegeneration. Neurobiol Dis 106:279–290. https://doi.org/10.1016/j.nbd.2017.07.016

    Article  PubMed  CAS  Google Scholar 

  28. Garaschuk O, Verkhratsky A (2019) Physiology of microglia. Microglia:27–40. https://doi.org/10.1007/978-1-4939-9658-2_3

  29. Henneman W, Sluimer J, Barnes J, Van Der Flier W, Sluimer I, Fox N, Scheltens P, Vrenken H, Barkhof F (2009) Hippocampal atrophy rates in Alzheimer disease: added value over whole brain volume measures. Neurology 72:999–1007. https://doi.org/10.1212/01.wnl.0000344568.09360.31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Venegas C, Heneka MT (2017) Danger-associated molecular patterns in Alzheimer’s disease. J Leukoc Biol 101:87–98. https://doi.org/10.1189/jlb.3MR0416-204R

    Article  PubMed  CAS  Google Scholar 

  31. Griciuc A, Serrano-Pozo A, Parrado AR, Lesinski AN, Asselin CN, Mullin K, Hooli B, Choi SH, Hyman BT, Tanzi RE (2013) Alzheimer’s disease risk gene CD33 inhibits microglial uptake of amyloid beta. Neuron 78:631–643. https://doi.org/10.1016/j.neuron.2013.04.014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Perry VH (2012) Innate inflammation in Parkinson’s disease. Cold Spring Harbor perspectives in medicine 2:a009373. https://doi.org/10.1101/cshperspect.a009373

  33. Boje KM, Arora PK (1992) Microglial-produced nitric oxide and reactive nitrogen oxides mediate neuronal cell death. Brain Res 587:250–256. https://doi.org/10.1016/0006-8993(92)91004-X

    Article  PubMed  CAS  Google Scholar 

  34. Chen S-H, Oyarzabal EA, Hong J-S (2016) Critical role of the Mac1/NOX2 pathway in mediating reactive microgliosis-generated chronic neuroinflammation and progressive neurodegeneration. Curr Opin Pharmacol 26:54–60. https://doi.org/10.1016/j.coph.2015.10.001

    Article  PubMed  CAS  Google Scholar 

  35. Mishra A, Bandopadhyay R, Singh PK, Mishra PS, Sharma N, Khurana N (2021) Neuroinflammation in neurological disorders: pharmacotherapeutic targets from bench to bedside. Metab Brain Dis 36:1591–1626. https://doi.org/10.1007/s11011-021-00806-4

    Article  PubMed  Google Scholar 

  36. Jones JH, Xin Z, Himmelbauer M, Dechantsreiter M, Enyedy I, Hedde J, Fang T, Coomaraswamy J, King KW, Murugan P (2021) Discovery of Potent, Selective, and Brain-Penetrant Apoptosis Signal-Regulating Kinase 1 (ASK1) Inhibitors that Modulate Brain Inflammation In Vivo. J Med Chem 64:15402–15419. https://doi.org/10.1021/acs.jmedchem.1c01458

    Article  PubMed  CAS  Google Scholar 

  37. Xin Z, Himmelbauer MK, Jones JH, Enyedy I, Gilfillan R, Hesson T, King K, Marcotte DJ, Murugan P, Santoro JC (2020) Discovery of CNS-penetrant apoptosis signal-regulating kinase 1 (ASK1) inhibitors. ACS Med Chem Lett 11:485–490. https://doi.org/10.1021/acsmedchemlett.9b00611

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Methaneethorn J, Naosang K, Kaewworasut P, Poomsaidorn C, Lohitnavy M (2020) Development of a Physiologically-Based Pharmacokinetic Model of Delta(9)-Tetrahydrocannabinol in Mice, Rats, and Pigs. Eur J Drug Metab Pharmacokinet 45:487–494. https://doi.org/10.1007/s13318-020-00616-6

    Article  PubMed  CAS  Google Scholar 

  39. Methaneethorn J, Poomsaidorn C, Naosang K, Kaewworasut P, Lohitnavy M (2020) A Delta(9)-Tetrahydrocannabinol Physiologically-Based Pharmacokinetic Model Development in Humans. Eur J Drug Metab Pharmacokinet 45:495–511. https://doi.org/10.1007/s13318-020-00617-5

    Article  PubMed  CAS  Google Scholar 

  40. Ya KM, Methaneethorn JP, Tran QBP, Trakulsrichai SM, Wananukul WM, Lohitnavy MP (2021) Development of a Physiologically Based Pharmacokinetic Model of Mitragynine, Psychoactive Alkaloid in Kratom (Mitragyna Speciosa Korth.), In Rats and Humans. J Psychoact Drugs 53:127–139. https://doi.org/10.1080/02791072.2020.1849877

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by Korea Drug Development Fund funded by Ministry of Science and ICT, Ministry of Trade, Industry, and Energy, and Ministry of Health and Welfare (HN21C1139, Republic of Korea).

Author information

Authors and Affiliations

Authors

Contributions

JHL, SHJ: Investigation, Methodology, Writing-original draft, JSL: Investigation, Methodology, SA, HY: Methodology, Formal analysis, Resources, SHK: Conceptualization, Wiriting-review, Supervision, JSS: Conceptualization, Wiriting-review, Funding acquisition, Supervision.

Corresponding authors

Correspondence to Seong Hwan Kim or Jin Sook Song.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Ethical Approval

All applicable national and institutional guidelines for the care and use of animals were followed. The protocols for animal experiments were approved by the Animal Ethics Committee of Korea Research Institute of Chemical Technology with the code number of 2022-7 F-02-01(approval date: 2022-02-09).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J.H., Ji, S.H., Lim, J.S. et al. Anti-neuroinflammatory Effects and Brain Pharmacokinetic Properties of Selonsertib, an Apoptosis signal-regulating Kinase 1 Inhibitor, in mice. Neurochem Res 47, 3829–3837 (2022). https://doi.org/10.1007/s11064-022-03777-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-022-03777-9

Keywords

Navigation