Skip to main content

Advertisement

Log in

Brain-Derived Neurotrophic Factor: A Novel Dynamically Regulated Therapeutic Modulator in Neurological Disorders

  • Review
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The growth factor brain-derived neurotrophic factor (BDNF), and its receptor tropomyosin-related kinase receptor type B (TrkB) play an active role in numerous areas of the adult brain, where they regulate the neuronal activity, function, and survival. Upregulation and downregulation of BDNF expression are critical for the physiology of neuronal circuits and functioning in the brain. Loss of BDNF function has been reported in the brains of patients with neurodegenerative or psychiatric disorders. This article reviews the BDNF gene structure, transport, secretion, expression and functions in the brain. This article also implicates BDNF in several brain-related disorders, including Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, major depressive disorder, schizophrenia, epilepsy and bipolar disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not applicable.

Abbreviations

BDNF:

Brain-derived neurotrophic factor.

7,8-DHF:

7,8-dihydroxyflavone.

AD:

Alzheimer’s disease.

ALS:

Amyotrophic lateral sclerosis.

Aβ:

β-amyloid.

BD:

Bipolar disorder.

cAMP:

Cyclic adenosine monophosphate.

CaRF:

Ca2+ responsive transcription factor.

DAG:

Diacylglycerol.

HD:

Huntington disease.

IP3:

inositol 1,4,5 triphosphate.

MAPK:

Mitogen-activated protein kinase.

MDD:

Major Depressive Disorder.

NFT:

Neuro-fibrillary tangles.

NT:

Neurotrophin.

PD:

Parkinson disease.

PI3-K:

Phosphatidylinositol 3-kinase.

PKC:

Protein kinase-C.

PL-C:

phospholipase C.

RJ:

Royal jelly.

SCZ:

Schizophrenia.

SFN:

Sulforaphane.

SNP:

Single nucleotide polymorphism.

TrkB:

Tropomyosinrelated kinase receptor-B.

Vps10p:

Vacuolar protein sorting ten protein.

References

  1. stimulating factor isolated from sarcom as 37 and 180. Proceedings of the National Academy of Sciences of the United States of America, 40(10), p.1014

  2. Park H, Poo MM (2013) Neurotrophin regulation of neural circuit development and function. Nat Rev Neurosci 14(1):7–23

    Article  CAS  Google Scholar 

  3. Chao MV (2003) Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat Rev Neurosci 4(4):299–309

    Article  CAS  Google Scholar 

  4. Lu B, Pang PT, Woo NH (2005) The yin and yang of neurotrophin action. Nat Rev Neurosci 6(8):603–614

    Article  CAS  Google Scholar 

  5. Huang EJ, Reichardt LF (2003) Trk receptors: roles in neuronal signal transduction. Annu Rev Biochem 72(1):609–642

    Article  CAS  Google Scholar 

  6. Russo SJ, Mazei-Robison MS, Ables JL, Nestler EJ (2009) Neurotrophic factors and structural plasticity in addiction, vol 56. Neuropharmacology, pp 73–82

  7. Numakawa T, Adachi N, Richards M, Chiba S, Kunugi H (2013) Brain-derived neurotrophic factor and glucocorticoids: reciprocal influence on the central nervous system, vol 239. Neuroscience, pp 157–172

  8. Nagahara AH, Tuszynski MH (2011) Potential therapeutic uses of BDNF in neurological and psychiatric disorders. Nat Rev Drug Discovery 10(3):209–219

    Article  CAS  Google Scholar 

  9. Lu B, Nagappan G, Guan X, Nathan PJ, Wren P (2013) BDNF-based synaptic repair as a disease-modifying strategy for neurodegenerative diseases. Nat Rev Neurosci 14(6):401–416

    Article  CAS  Google Scholar 

  10. Murer MG, Yan Q, Raisman-Vozari R (2001) Brain-derived neurotrophic factor in the control human brain, and in Alzheimer’s disease and Parkinson’s disease. Prog Neurobiol 63(1):71–124. https://doi.org/10.1016/S0301-0082(00)00014-9

    Article  CAS  Google Scholar 

  11. Katoh-Semba R, Takeuchi IK, Semba R, Kato K (1997) Distribution of brain‐derived neurotrophic factor in rats and its changes with development in the brain. J Neurochem 69(1):34–42. https://doi.org/10.1046/j.1471-4159.1997.69010034.x

    Article  CAS  Google Scholar 

  12. Gorba T, Wahle P (1999) Expression of TrkB and TrkC but not BDNF mRNA in neurochemically identified interneurons in rat visual cortex in vivo and in organotypic cultures. Eur J Neurosci 11(4):1179–1190

    Article  CAS  Google Scholar 

  13. Patz S, Wahle P (2006) Developmental changes of neurotrophin mRNA expression in the layers of rat visual cortex. Eur J Neurosci 24(9):2453–2460

    Article  Google Scholar 

  14. Aid T, Kazantseva A, Piirsoo M, Palm K, Timmusk T (2007) Mouse and rat BDNF gene structure and expression revisited. J Neurosci Res 85(3):525–535. https://doi.org/10.1002/jnr.21139

    Article  CAS  Google Scholar 

  15. Pruunsild P, Kazantseva A, Aid T, Palm K, Timmusk T (2007) Dissecting the human BDNF locus: bidirectional transcription, complex splicing, and multiple promoters. Genomics 90(3):397–406

    Article  CAS  Google Scholar 

  16. An JJ, Gharami K, Liao GY, Woo NH, Lau AG, Vanevski F, Torre ER, Jones KR, Feng Y, Lu B, Xu B (2008) Distinct role of long 3′ UTR BDNF mRNA in spine morphology and synaptic plasticity in hippocampal neurons. Cell 134(1):175–187

    Article  CAS  Google Scholar 

  17. Lommatzsch M, Braun A, Mannsfeldt A, Botchkarev VA, Botchkareva NV, Paus R, Fischer A, Lewin GR, Renz H (1999) Abundant production of brain-derived neurotrophic factor by adult visceral epithelia: implications for paracrine and target-derived neurotrophic functions. Am J Pathol 155(4):1183–1193. https://doi.org/10.1016/S0002-9440(10)65221-2

    Article  CAS  Google Scholar 

  18. Farhadi HF, Mowla SJ, Petrecca K, Morris SJ, Seidah NG, Murphy RA (2000) Neurotrophin-3 sorts to the constitutive secretory pathway of hippocampal neurons and is diverted to the regulated secretory pathway by coexpression with brain-derived neurotrophic factor. J Neurosci 20(11):4059–4068

    Article  CAS  Google Scholar 

  19. Adachi N, Kohara K, Tsumoto T (2005) Difference in trafficking of brain-derived neurotrophic factor between axons and dendrites of cortical neurons, revealed by live-cell imaging. BMC Neurosci 6(1):1–10

    Article  Google Scholar 

  20. Lou H, Kim SK, Zaitsev E, Snell CR, Lu B, Loh YP (2005) Sorting and activity-dependent secretion of BDNF require interaction of a specific motif with the sorting receptor carboxypeptidase e. Neuron 45(2):245–255

    Article  CAS  Google Scholar 

  21. Chen ZY, Ieraci A, Teng H, Dall H, Meng CX, Herrera DG, Nykjaer A, Hempstead BL, Lee FS (2005) Sortilin controls intracellular sorting of brain-derived neurotrophic factor to the regulated secretory pathway. J Neurosci 25(26):6156–6166

    Article  CAS  Google Scholar 

  22. Matsuda N, Lu H, Fukata Y, Noritake J, Gao H, Mukherjee S, Nemoto T, Fukata M, Poo MM (2009) Differential activity-dependent secretion of brain-derived neurotrophic factor from axon and dendrite. J Neurosci 29(45):14185–14198

    Article  CAS  Google Scholar 

  23. Jakawich SK, Nasser HB, Strong MJ, McCartney AJ, Perez AS, Rakesh N, Carruthers CJ, Sutton MA (2010) Local presynaptic activity gates homeostatic changes in presynaptic function driven by dendritic BDNF synthesis. Neuron 68(6):1143–1158. https://doi.org/10.1016/j.neuron.2010.11.034

    Article  CAS  Google Scholar 

  24. Dieni S, Matsumoto T, Dekkers M, Rauskolb S, Ionescu MS, Deogracias R, Gundelfinger ED, Kojima M, Nestel S, Frotscher M, Barde YA (2012) BDNF and its pro-peptide are stored in presynaptic dense core vesicles in brain neurons. J Cell Biol 196(6):775–788. https://doi.org/10.1083/jcb.201201038

    Article  CAS  Google Scholar 

  25. Park JJ, Cawley NX, Loh YP (2008) A bi-directional carboxypeptidase E-driven transport mechanism controls BDNF vesicle homeostasis in hippocampal neurons. Mol Cell Neurosci 39(1):63–73

    Article  CAS  Google Scholar 

  26. Kwinter DM, Lo K, Mafi P, Silverman MA (2009) Dynactin regulates bidirectional transport of dense-core vesicles in the axon and dendrites of cultured hippocampal neurons. Neuroscience 162(4):1001–1010

    Article  CAS  Google Scholar 

  27. Edelmann E, Leßmann V, Brigadski T (2014) Pre-and postsynaptic twists in BDNF secretion and action in synaptic plasticity. Neuropharmacology 76:610–627

    Article  CAS  Google Scholar 

  28. Kolarow R, Brigadski T, Lessmann V (2007) Postsynaptic secretion of BDNF and NT-3 from hippocampal neurons depends on calcium–calmodulin kinase II signaling and proceeds via delayed fusion pore opening. J Neurosci 27(39):10350–10364. https://doi.org/10.1523/JNEUROSCI.0692-07.2007

    Article  CAS  Google Scholar 

  29. Sadakata T, Furuichi T (2009) Developmentally regulated Ca 2+-dependent activator protein for secretion 2 (CAPS2) is involved in BDNF secretion and is associated with autism susceptibility. The Cerebellum 8(3):312–322. https://doi.org/10.1007/s12311-009-0097-5

    Article  CAS  Google Scholar 

  30. Seidah NG, Benjannet S, Pareek S, Chrétien M, Murphy RA (1996) Cellular processing of the neurotrophin precursors of NT3 and BDNF by the mammalian proprotein convertases. FEBS Lett 379(3):247–250

    Article  CAS  Google Scholar 

  31. Pang PT, Lu B (2004) Regulation of late-phase LTP and long-term memory in normal and aging hippocampus: role of secreted proteins tPA and BDNF. Ageing Res Rev 3(4):407–430

    Article  CAS  Google Scholar 

  32. Woo NH, Teng HK, Siao CJ, Chiaruttini C, Pang PT, Milner TA, Hempstead BL, Lu B (2005) Activation of p75 NTR by proBDNF facilitates hippocampal long-term depression. Nat Neurosci 8(8):1069–1077. https://doi.org/10.1038/nn1510

    Article  CAS  Google Scholar 

  33. Barker PA (2009) Whither proBDNF? Nature neuroscience 12(2):105–106

    Article  CAS  Google Scholar 

  34. Minichiello L (2009) TrkB signalling pathways in LTP and learning. Nat Rev Neurosci 10(12):850–860. https://doi.org/10.1038/nrn2738

    Article  CAS  Google Scholar 

  35. Matsumoto T, Rauskolb S, Polack M, Klose J, Kolbeck R, Korte M, Barde YA (2008) Biosynthesis and processing of endogenous BDNF: CNS neurons store and secrete BDNF, not pro-BDNF. Nat Neurosci 11(2):131–133

    Article  CAS  Google Scholar 

  36. Park H, Poo MM (2013) Neurotrophin regulation of neural circuit development and function. Nat Rev Neurosci 14(1):7–23. https://doi.org/10.1038/nrn3379

    Article  CAS  Google Scholar 

  37. Lommatzsch M, Quarcoo D, Schulte-Herbrüggen O, Weber H, Virchow JC, Renz H, Braun A (2005) Neurotrophins in murine viscera: a dynamic pattern from birth to adulthood. Int J Dev Neurosci 23(6):495–500. https://doi.org/10.1016/j.ijdevneu.2005.05.009

    Article  CAS  Google Scholar 

  38. Fujimura H, Altar CA, Chen R, Nakamura T, Nakahashi T, Kambayashi JI, Sun B, Tandon NN (2002) Brain-derived neurotrophic factor is stored in human platelets and released by agonist stimulation. Thromb Haemost 87(04):728–734. https://doi.org/10.1016/j.bbi.2008.05.010

    Article  CAS  Google Scholar 

  39. Galvez-Contreras AY, Campos-Ordonez T, Lopez-Virgen V, Gomez-Plascencia J, Ramos-Zuniga R, Gonzalez-Perez O (2016) Growth factors as clinical biomarkers of prognosis and diagnosis in psychiatric disorders. Cytokine Growth Factor Rev 32:85–96. https://doi.org/10.1016/j.cytogfr.2016.08.004

    Article  CAS  Google Scholar 

  40. Jiang H, Chen S, Li C, Lu N, Yue Y, Yin Y, Zhang Y, Zhi X, Zhang D, Yuan Y (2017) The serum protein levels of the tPA–BDNF pathway are implicated in depression and antidepressant treatment. Translational psychiatry 7(4):e1079–e1079. https://doi.org/10.1038/tp.2017.43

    Article  CAS  Google Scholar 

  41. Karege F, Perret G, Bondolfi G, Schwald M, Bertschy G, Aubry JM (2002) Decreased serum brain-derived neurotrophic factor levels in major depressed patients. Psychiatry Res 109(2):143–148. https://doi.org/10.1016/S0165-1781(02)00005-7

    Article  CAS  Google Scholar 

  42. Klein AB, Williamson R, Santini MA, Clemmensen C, Ettrup A, Rios M, Knudsen GM, Aznar S (2011) Blood BDNF concentrations reflect brain-tissue BDNF levels across species. Int J Neuropsychopharmacol 14(3):347–353. https://doi.org/10.1017/S1461145710000738

    Article  CAS  Google Scholar 

  43. Panja D, Bramham CR (2014) BDNF mechanisms in late LTP formation: a synthesis and breakdown. Neuropharmacology 76:664–676. https://doi.org/10.1016/j.neuropharm.201306.024

    Article  CAS  Google Scholar 

  44. Molendijk ML, Bus BA, Spinhoven P, Penninx BW, Kenis G, Prickaerts J, Voshaar RO, Elzinga BM (2011) Serum levels of brain-derived neurotrophic factor in major depressive disorder: state–trait issues, clinical features and pharmacological treatment. Mol Psychiatry 16(11):1088–1095. https://doi.org/10.1038/mp.2010.98

    Article  CAS  Google Scholar 

  45. Klöcker N, Kermer P, Weishaupt JH, Labes M, Ankerhold R, Bähr M (2000) Brain-derived neurotrophic factor-mediated neuroprotection of adult rat retinal ganglion cells in vivo does not exclusively depend on phosphatidyl-inositol-3′-kinase/protein kinase B signaling. J Neurosci 20(18):6962–6967

    Article  Google Scholar 

  46. Jain KK (2019) Neuroprotection in Miscellaneous Neurological Disorders. The Handbook of Neuroprotection. Humana, New York, NY, pp 643–766

    Chapter  Google Scholar 

  47. Noble EE, Billington CJ, Kotz CM, Wang C (2011) The lighter side of BDNF. Am J Physiology-Regulatory Integr Comp Physiol 300(5):R1053–R1069. https://doi.org/10.1152/ajpregu.00776.2010

    Article  CAS  Google Scholar 

  48. Benraiss A, Chmielnicki E, Lerner K, Roh D, Goldman SA (2001) Adenoviral brain-derived neurotrophic factor induces both neostriatal and olfactory neuronal recruitment from endogenous progenitor cells in the adult forebrain. J Neurosci 21(17):6718–6731

    Article  CAS  Google Scholar 

  49. Pencea V, Bingaman KD, Wiegand SJ, Luskin MB (2001) Infusion of brain-derived neurotrophic factor into the lateral ventricle of the adult rat leads to new neurons in the parenchyma of the striatum, septum, thalamus, and hypothalamus. J Neurosci 21(17):6706–6717

    Article  CAS  Google Scholar 

  50. Bramham CR, Messaoudi E (2005) BDNF function in adult synaptic plasticity: the synaptic consolidation hypothesis. Prog Neurobiol 76(2):99–125. https://doi.org/10.1016/j.pneurobio.2005.06.003

    Article  CAS  Google Scholar 

  51. Walz C, Jüngling K, Lessmann V, Gottmann K (2006) Presynaptic plasticity in an immature neocortical network requires NMDA receptor activation and BDNF release. J Neurophysiol 96(6):3512–3516. https://doi.org/10.1152/jn.00018.2006

    Article  CAS  Google Scholar 

  52. Kramár EA, Chen LY, Lauterborn JC, Simmons DA, Gall CM, Lynch G (2012) BDNF upregulation rescues synaptic plasticity in middle-aged ovariectomized rats. Neurobiol Aging 33(4):708–719. https://doi.org/10.1016/j.neurobiolaging.2010.06.008

    Article  CAS  Google Scholar 

  53. Waterhouse EG, Xu B (2009) New insights into the role of brain-derived neurotrophic factor in synaptic plasticity. Mol Cell Neurosci 42(2):81–89. https://doi.org/10.1016/j.mcn.2009.06.009

    Article  CAS  Google Scholar 

  54. Kemppainen S (2018) The role of neurotrophic factors in Alzheimers disease (Doctoral dissertation, Itä-Suomen yliopisto)

  55. Liu XY, Yang LP, Zhao L (2020) Stem cell therapy for Alzheimer’s disease. World Journal of Stem Cells, 12(8), p.787

  56. Blurton-Jones M, Kitazawa M, Martinez-Coria H, Castello NA, Müller FJ, Loring JF, Yamasaki TR, Poon WW, Green KN, LaFerla FM (2009) Neural stem cells improve cognition via BDNF in a transgenic model of Alzheimer disease. Proceedings of the National Academy of Sciences, 106(32), pp.13594–13599

  57. Kiprianova I, Freiman TM, Desiderato S, Schwab S, Galmbacher R, Gillardon F, Spranger M (1999) Brain-derived neurotrophic factor prevents neuronal death and glial activation after global ischemia in the rat. J Neurosci Res 56(1):21–27. https://doi.org/10.1002/(SICI)1097-4547(19990401)56:121::AID-JNR33.0.CO;2-Q

    Article  CAS  Google Scholar 

  58. Griesbach GS, Hovda DA, Molteni R, Wu A, Gomez-Pinilla F (2004) Voluntary exercise following traumatic brain injury: brain-derived neurotrophic factor upregulation and recovery of function. Neuroscience 125(1):129–139

    Article  CAS  Google Scholar 

  59. Griesbach GS, Hovda DA, Gomez-Pinilla F (2009) Exercise-induced improvement in cognitive performance after traumatic brain injury in rats is dependent on BDNF activation. Brain Res 1288:105–115. https://doi.org/10.1016/j.brainres.2009.06.045

    Article  CAS  Google Scholar 

  60. Agrawal M, Biswas A (2015) Molecular diagnostics of neurodegenerative disorders.Frontiers in molecular biosciences, 2, p.54

  61. Barthel H, Schroeter ML, Hoffmann KT, Sabri O (2015) May. PET/MR in dementia and other neurodegenerative diseases. In Seminars in nuclear medicine (Vol. 45, No. 3, pp. 224–233). WB Saunders. https://doi.org/10.1053/j.semnuclmed.2014.12.003

  62. Sampaio TB, Savall AS, Gutierrez MEZ, Pinton S (2017) Neurotrophic factors in Alzheimer’s and Parkinson’s diseases: implications for pathogenesis and therapy. Neural regeneration research 12(4) p. 549. https://doi.org/10.4103/1673-5374.205084

  63. Pramanik S, Sulistio YA, Heese K (2017) Neurotrophin signaling and stem cells—implications for neurodegenerative diseases and stem cell therapy. Mol Neurobiol 54(9):7401–7459. https://doi.org/10.1007/s12035-016-0214-7

    Article  CAS  Google Scholar 

  64. Sharma V, Kaur A, Singh TG (2020) Counteracting role of nuclear factor erythroid 2-related factor 2 pathway in Alzheimer’s disease. Biomedicine & Pharmacotherapy, 129, p.110373

  65. Gan KJ, Silverman MA (2015) Dendritic and axonal mechanisms of Ca2 + elevation impair BDNF transport in Aβ oligomer–treated hippocampal neurons. Mol Biol Cell 26(6):1058–1071. https://doi.org/10.1091/mbc.E14-12-1612

    Article  CAS  Google Scholar 

  66. Tejeda GS, Díaz-Guerra M (2017) Integral characterization of defective BDNF/TrkB signalling in neurological and psychiatric disorders leads the way to new therapies. Int J Mol Sci 18(2):268. https://doi.org/10.3390/ijms18020268

    Article  CAS  Google Scholar 

  67. Rosas-Vidal LE, Do-Monte FH, Sotres-Bayon F, Quirk GJ (2014) Hippocampal–prefrontal BDNF and memory for fear extinction. Neuropsychopharmacology 39(9):2161–2169. https://doi.org/10.1038/npp.2014.64

    Article  CAS  Google Scholar 

  68. Prakash A, Kumar A (2014) Role of nuclear receptor on regulation of BDNF and neuroinflammation in hippocampus of β-amyloid animal model of Alzheimer’s disease. Neurotox Res 25(4):335–347. https://doi.org/10.1007/s12640-013-9437-9

    Article  CAS  Google Scholar 

  69. Chen JH, Ke KF, Lu JH, Qiu YH, Peng YP (2015) Protection of TGF-β1 against neuroinflammation and neurodegeneration in Aβ1–42-induced Alzheimer’s disease model rats. PLoS ONE 10(2):e0116549. https://doi.org/10.1371/journal.pone.0116549

    Article  CAS  Google Scholar 

  70. Dursun E, Gezen-Ak D, Hanağası H, Bilgiç B, Lohmann E, Ertan S, Atasoy İL, Alaylıoğlu M, Araz ÖS, Önal B, Gündüz A (2015) The interleukin 1 alpha, interleukin 1 beta, interleukin 6 and alpha-2-macroglobulin serum levels in patients with early or late onset Alzheimer’s disease, mild cognitive impairment or Parkinson’s disease. J Neuroimmunol 283:50–57. https://doi.org/10.1016/j.jneuroim.2015.04.014

    Article  CAS  Google Scholar 

  71. Lynch MA (2015) Neuroinflammatory changes negatively impact on LTP: A focus on IL-1β. Brain Res 1621:197–204

    Article  CAS  Google Scholar 

  72. Tong L, Prieto GA, Kramár EA, Smith ED, Cribbs DH, Lynch G, Cotman CW (2012) Brain-derived neurotrophic factor-dependent synaptic plasticity is suppressed by interleukin-1β via p38 mitogen-activated protein kinase. J Neurosci 32(49):17714–17724. https://doi.org/10.1523/JNEUROSCI.1253-12.2012

    Article  CAS  Google Scholar 

  73. Levada OA, Cherednichenko NV, Trailin AV, Troyan AS (2016) Plasma brain-derived neurotrophic factor as a biomarker for the main types of mild neurocognitive disorders and treatment efficacy: a preliminary study. Disease markers, 2016. https://doi.org/10.1155/2016/4095723

  74. Gezen-Ak D, Dursun E, Hanağası H, Bilgiç B, Lohman E, Araz ÖS, Atasoy IL, Alaylıoğlu M, Önal B, Gürvit H, Yılmazer S, TNFα (2013) HSP90, CFH, and IL-10 serum levels in patients with early or late onset Alzheimer’s disease or mild cognitive impairment. Journal of Alzheimer’s Disease, 37(1), pp.185–195. DOI: https://doi.org/10.3233/JAD-130497

  75. Buchman AS, Yu L, Boyle PA, Schneider JA, De Jager PL, Bennett DA (2016) Higher brain BDNF gene expression is associated with slower cognitive decline in older adults. Neurology 86(8):735–741. https://doi.org/10.1212/WNL.0000000000002387

    Article  CAS  Google Scholar 

  76. Laske C, Stellos K, Hoffmann N, Stransky E, Straten G, Eschweiler GW, Leyhe T (2011) Higher BDNF serum levels predict slower cognitive decline in Alzheimer’s disease patients. Int J Neuropsychopharmacol 14(3):399–404. https://doi.org/10.1017/S1461145710001008

    Article  CAS  Google Scholar 

  77. Tapia-Arancibia L, Aliaga E, Silhol M, Arancibia S (2008) New insights into brain BDNF function in normal aging and Alzheimer disease. Brain Res Rev 59(1):201–220. https://doi.org/10.1016/j.brainresrev.2008.07.007

    Article  CAS  Google Scholar 

  78. Marvanová M, Lakso M, Pirhonen J, Nawa H, Wong G, Castrén E (2001) The neuroprotective agent memantine induces brain-derived neurotrophic factor and trkB receptor expression in rat brain. Mol Cell Neurosci 18(3):247–258

    Article  Google Scholar 

  79. Devi L, Ohno M (2012) 8-dihydroxyflavone, a small-molecule TrkB agonist, reverses memory deficits and BACE1 elevation in a mouse model of Alzheimer’s disease. Neuropsychopharmacology 7(2):434–444. https://doi.org/10.1038/npp.2011.191

    Article  CAS  Google Scholar 

  80. O’Neill MJ, Witkin JM (2007) AMPA receptor potentiators: application for depression and Parkinson’s disease. Curr Drug Targets 8(5):603–620

    Article  Google Scholar 

  81. Legutko B, Li X, Skolnick P (2001) Regulation of BDNF expression in primary neuron culture by LY392098, a novel AMPA receptor potentiator. Neuropharmacology 40(8):1019–1027. https://doi.org/10.1016/S0028-3908(01)00006-5

    Article  CAS  Google Scholar 

  82. Mackowiak M, O’Neill MJ, Hicks CA, Bleakman D, Skolnick P (2002) An AMPA receptor potentiator modulates hippocampal expression of BDNF: an in vivo study. Neuropharmacology 43(1):1–10. https://doi.org/10.1016/S0028-3908(02)00066-7

    Article  CAS  Google Scholar 

  83. Lauterborn JC, Lynch G, Vanderklish P, Arai A, Gall CM (2000) Positive modulation of AMPA receptors increases neurotrophin expression by hippocampal and cortical neurons. J Neurosci 20(1):8–21. https://doi.org/10.1523/JNEUROSCI.20-01-00008.2000

    Article  CAS  Google Scholar 

  84. Balestrino R, Martinez-Martin P (2017) Reprint of “Neuropsychiatric symptoms, behavioural disorders, and quality of life in Parkinson’s disease”. J Neurol Sci 374:3–8

    Article  Google Scholar 

  85. Leroi I, Ahearn DJ, Andrews M, McDonald KR, Byrne EJ, Burns A (2011) Behavioural disorders, disability and quality of life in Parkinson’s disease. Age Ageing 40(5):614–621. https://doi.org/10.1093/ageing/afr078

    Article  Google Scholar 

  86. Surmeier DJ, Obeso JA, Halliday GM (2017) Selective neuronal vulnerability in Parkinson disease. Nat Rev Neurosci 18(2):101–113

    Article  CAS  Google Scholar 

  87. Cheng HC, Ulane CM, Burke RE (2010) Clinical progression in Parkinson disease and the neurobiology of axons. Ann Neurol 67(6):715–725

    Article  Google Scholar 

  88. Howells DW, Porritt M, Wong JYF, Batchelor PE, Kalnins R, Hughes AJ, Donnan GA (2000) Reduced BDNF mRNA expression in the Parkinson’s disease substantia nigra. Exp Neurol 166(1):127–135

    Article  CAS  Google Scholar 

  89. Porritt MJ, Batchelor PE, Howells DW (2005) Inhibiting BDNF expression by antisense oligonucleotide infusion causes loss of nigral dopaminergic neurons. Exp Neurol 192(1):226–234

    Article  CAS  Google Scholar 

  90. Femminella GD, Ninan S, Atkinson R, Fan Z, Brooks DJ, Edison P (2016) Does microglial activation influence hippocampal volume and neuronal function in Alzheimer’s disease and Parkinson’s disease dementia? J Alzheimers Dis 51(4):1275–1289. DOI: https://doi.org/10.3233/JAD-150827

    Article  CAS  Google Scholar 

  91. Gerhard A, Pavese N, Hotton G, Turkheimer F, Es M, Hammers A, Eggert K, Oertel W, Banati RB, Brooks DJ (2006) In vivo imaging of microglial activation with [11 C](R)-PK11195 PET in idiopathic Parkinson’s disease. Neurobiol Dis 21(2):404–412. https://doi.org/10.1016/j.nbd.2005.08.002

    Article  CAS  Google Scholar 

  92. Depino AM, Earl C, Kaczmarczyk E, Ferrari C, Besedovsky H, Del Rey A, Pitossi FJ, Oertel WH (2003) Microglial activation with atypical proinflammatory cytokine expression in a rat model of Parkinson’s disease. Eur J Neurosci 18(10):2731–2742

    Article  Google Scholar 

  93. Marinova-Mutafchieva L, Sadeghian M, Broom L, Davis JB, Medhurst AD, Dexter DT (2009) Relationship between microglial activation and dopaminergic neuronal loss in the substantia nigra: a time course study in a 6‐hydroxydopamine model of Parkinson’s disease. J Neurochem 110(3):966–975. https://doi.org/10.1111/j.1471-4159.2009.06189.x

    Article  CAS  Google Scholar 

  94. Sawada M, Imamura K, Nagatsu T (2006) Role of cytokines in inflammatory process in Parkinson’s disease. Parkinson’s Disease and Related Disorders, pp 373–381

  95. Kaur B, Prakash A (2017) Ceftriaxone attenuates glutamate-mediated neuro-inflammation and restores BDNF in MPTP model of Parkinson’s disease in rats. Pathophysiology 24(2):71–79

    Article  CAS  Google Scholar 

  96. Howells DW, Porritt M, Wong JYF, Batchelor PE, Kalnins R, Hughes AJ, Donnan GA (2000) Reduced BDNF mRNA expression in the Parkinson’s disease substantia nigra. Experimental neurology, 166(1), pp.127–135. https://doi.org/10.1006/exnr. 2000.7483 166

  97. Janakiraman U, Manivasagam T, Thenmozhi AJ, Dhanalakshmi C, Essa MM, Song BJ, Guillemin GJ (2017) Chronic mild stress augments MPTP induced neurotoxicity in a murine model of Parkinson’s disease. Physiol Behav 173:132–143. https://doi.org/10.1016/j.physbeh.2017.01.046

    Article  CAS  Google Scholar 

  98. Fumagalli F, Racagni G, Riva MA (2006) Shedding light into the role of BDNF in the pharmacotherapy of Parkinson’s disease. Pharmacogenomics J 6(2):95–104. https://doi.org/10.1038/sj.tpj.6500360

    Article  CAS  Google Scholar 

  99. Spencer JP (2008) Flavonoids: modulators of brain function?. British journal of nutrition, 99(E-S1), pp.ES60-ES77. https://doi.org/10.1017/S0007114508965776

  100. Jang SW, Liu X, Yepes M, Shepherd KR, Miller GW, Liu Y, Wilson WD, Xiao G, Blanchi B, Sun YE, Ye K (2010) A selective TrkB agonist with potent neurotrophic activities by 7, 8-dihydroxyflavone. Proceedings of the National Academy of Sciences, 107(6), pp.2687–2692. https://doi.org/10.1073/pnas.0913572107

  101. Adachi N, Yoshimura A, Chiba S, Ogawa S, Kunugi H (2018) Rotigotine, a dopamine receptor agonist, increased BDNF protein levels in the rat cortex and hippocampus. Neurosci Lett 662:44–50. https://doi.org/10.1016/j.neulet.2017.10.006

    Article  CAS  Google Scholar 

  102. Palasz E, Wysocka A, Gasiorowska A, Chalimoniuk M, Niewiadomski W, Niewiadomska G (2020) BDNF as a promising therapeutic agent in Parkinson’s disease. International journal of molecular sciences, 21(3), p.1170

  103. Graveland GA, Williams RS, DiFiglia M (1985) Evidence for degenerative and regenerative changes in neostriatal spiny neurons in Huntington’s disease. Science 227(4688):770–773. DOI: https://doi.org/10.1126/science.3155875

    Article  CAS  Google Scholar 

  104. Cattaneo E, Zuccato C, Tartari M (2005) Normal huntingtin function: an alternative approach to Huntington’s disease. Nat Rev Neurosci 6(12):919–930

    Article  CAS  Google Scholar 

  105. Canals JM, Pineda JR, Torres-Peraza JF, Bosch M, Martín-Ibañez R, Munoz MT, Mengod G, Ernfors P, Alberch J (2004) Brain-derived neurotrophic factor regulates the onset and severity of motor dysfunction associated with enkephalinergic neuronal degeneration in Huntington’s disease. J Neurosci 24(35):7727–7739. DOI: https://doi.org/10.1523/JNEUROSCI.1197-04.2004

    Article  CAS  Google Scholar 

  106. Zuccato C, Cattaneo E (2009) Brain-derived neurotrophic factor in neurodegenerative diseases. Nat Reviews Neurol 5(6):311–322. https://doi.org/10.1038/nrneurol.2009.54

    Article  CAS  Google Scholar 

  107. Ross CA, Tabrizi SJ (2011) Huntington’s disease: from molecular pathogenesis to clinical treatment. Lancet Neurol 10(1):83–98

    Article  CAS  Google Scholar 

  108. Gharami K, Xie Y, An JJ, Tonegawa S, Xu B (2008) Brain-derived neurotrophic factor over‐expression in the forebrain ameliorates Huntington’s disease phenotypes in mice. J Neurochem 105(2):369–379. https://doi.org/10.1111/j.1471-4159.2007.05137.x

    Article  CAS  Google Scholar 

  109. Pérez-Navarro E, Canudas AM, Åkerud P, Alberch J, Arenas E (2000) Brain‐derived neurotrophic factor, neurotrophin‐3, and neurotrophin‐4/5 prevent the death of striatal projection neurons in a rodent model of Huntington’s disease. J Neurochem 75(5):2190–2199

    Article  Google Scholar 

  110. Canals JM, Checa N, Marco S, Michels A, Pérez-Navarro E, Alberch J (1999) The neurotrophin receptors trkA, trkB and trkC are differentially regulated after excitotoxic lesion in rat striatum. Mol Brain Res 69(2):242–248. https://doi.org/10.1016/S0169-328X(99)00130-8

    Article  CAS  Google Scholar 

  111. Ginés S, Bosch M, Marco S, Gavalda N, Díaz-Hernández M, Lucas JJ, Canals JM, Alberch J (2006) Reduced expression of the TrkB receptor in Huntington’s disease mouse models and in human brain. Eur J Neurosci 23(3):649–658

    Article  Google Scholar 

  112. Ginés S, Bosch M, Marco S, Gavalda N, Díaz-Hernández M, Lucas JJ, Canals JM, Alberch J (2006) Reduced expression of the TrkB receptor in Huntington’s disease mouse models and in human brain. Eur J Neurosci 23(3):649–658

    Article  Google Scholar 

  113. Puerta E, Hervias I, Barros-Miñones L, Jordan J, Ricobaraza A, Cuadrado-Tejedor M, García-Osta A, Aguirre N (2010) Sildenafil protects against 3-nitropropionic acid neurotoxicity through the modulation of calpain, CREB, and BDNF. Neurobiol Dis 38(2):237–245

    Article  CAS  Google Scholar 

  114. Reiner A, Lafferty DC, Wang HB, Del Mar N, Deng YP (2012) The group 2 metabotropic glutamate receptor agonist LY379268 rescues neuronal, neurochemical and motor abnormalities in R6/2 Huntington’s disease mice. Neurobiol Dis 47(1):75–91. https://doi.org/10.1016/j.nbd.2012.03.025

    Article  CAS  Google Scholar 

  115. Jang SW, Liu X, Yepes M, Shepherd KR, Miller GW, Liu Y, Wilson WD, Xiao G, Blanchi B, Sun YE, Ye K (2010) A selective TrkB agonist with potent neurotrophic activities by 7, 8-dihydroxyflavone. Proceedings of the National Academy of Sciences, 107(6), pp.2687–2692

  116. Simmons DA, Belichenko NP, Yang T, Condon C, Monbureau M, Shamloo M, Jing D, Massa SM, Longo FM (2013) A small molecule TrkB ligand reduces motor impairment and neuropathology in R6/2 and BACHD mouse models of Huntington’s disease. J Neurosci 33(48):18712–18727. DOI: https://doi.org/10.1523/JNEUROSCI.1310-13.2013

    Article  CAS  Google Scholar 

  117. Zuccato C, Valenza M, Cattaneo E (2010) Molecular mechanisms and potential therapeutical targets in Huntington’s disease. Physiol Rev 90(3):905–981. https://doi.org/10.1152/physrev.00041.2009

    Article  CAS  Google Scholar 

  118. Kiernan MC, Vucic S, Cheah BC, Turner MR, Eisen A, Hardiman O, Burrell JR, Zoing MC (2011) Amyotrophic lateral sclerosis. The lancet 377(9769):942–955

    Article  CAS  Google Scholar 

  119. Shaw P, Eggett CJ (2000) Molecular factors underlying selective vulnerability of motor neurons to neurodegeneration in amyotrophic lateral sclerosis. J Neurol 247(1):I17–I27

    Article  Google Scholar 

  120. Siddique T, Ajroud-Driss S (2011) Familial amyotrophic lateral sclerosis, a historical perspective. Acta Myologica, 30(2), p.117

  121. Mitsumoto H, Ikeda K, Klinkosz B, Cedarbaum JM, Wong V, Lindsay RM (1994) Arrest of motor neuron disease in wobbler mice cotreated with CNTF and BDNF. Science 265(5175):1107–1110. DOI: https://doi.org/10.1126/science.8066451

    Article  CAS  Google Scholar 

  122. Zhai J, Zhou W, Li J, Hayworth CR, Zhang L, Misawa H, Klein R, Scherer SS, Balice-Gordon RJ, Kalb RG (2011) The in vivo contribution of motor neuron TrkB receptors to mutant SOD1 motor neuron disease. Hum Mol Genet 20(21):4116–4131. https://doi.org/10.1093/hmg/ddr335

    Article  CAS  Google Scholar 

  123. Nicaise C, Mitrecic D, Pochet R (2011) Brain and spinal cord affected by amyotrophic lateral sclerosis induce differential growth factors expression in rat mesenchymal and neural stem cells. Neuropathol Appl Neurobiol 37(2):179–188. https://doi.org/10.1111/j.1365-2990.2010.01124.x

    Article  CAS  Google Scholar 

  124. Yanpallewar SU, Barrick CA, Buckley H, Becker J, Tessarollo L (2012) Deletion of the BDNF truncated receptor TrkB. T1 delays disease onset in a mouse model of amyotrophic lateral sclerosis. PLoS ONE 7(6):e39946. https://doi.org/10.1371/journal.pone.0039946

    Article  CAS  Google Scholar 

  125. Peviani M, Salvaneschi E, Bontempi L, Petese A, Manzo A, Rossi D, Salmona M, Collina S, Bigini P, Curti D (2014) Neuroprotective effects of the Sigma-1 receptor (S1R) agonist PRE-084, in a mouse model of motor neuron disease not linked to SOD1 mutation. Neurobiol Dis 62:218–232. https://doi.org/10.1016/j.nbd.2013.10.010

    Article  CAS  Google Scholar 

  126. Liu C, Chan CB, Ye K (2016) 7, 8-dihydroxyflavone, a small molecular TrkB agonist, is useful for treating various BDNF-implicated human disorders. Translational neurodegeneration 5(1):1–9

    Article  Google Scholar 

  127. Pasquarelli N, Engelskirchen M, Hanselmann J, Endres S, Porazik C, Bayer H, Buck E, Karsak M, Weydt P, Ferger B, Witting A (2017) Evaluation of monoacylglycerol lipase as a therapeutic target in a transgenic mouse model of ALS, vol 124. Neuropharmacology, pp 157–169

  128. Sarraf P, Parohan M, Javanbakht MH, Ranji-Burachaloo S, Djalali M (2019) Short-term curcumin supplementation enhances serum brain-derived neurotrophic factor in adult men and women: a systematic review and dose-response meta-analysis of randomized controlled trials. Nutr Res 69:1–8. https://doi.org/10.1016/j.nutres.2019.05.001

    Article  CAS  Google Scholar 

  129. Chen S, Jiang H, Liu Y, Hou Z, Yue Y, Zhang Y, Zhao F, Xu Z, Li Y, Mou X, Li L (2017) Combined serum levels of multiple proteins in tPA-BDNF pathway may aid the diagnosis of five mental disorders. Sci Rep 7(1):1–9

    Google Scholar 

  130. Lindholm JS, Castrén E (2014) Mice with altered BDNF signaling as models for mood disorders and antidepressant effects. Front Behav Neurosci 8:143

    Article  Google Scholar 

  131. Nuernberg GL, Aguiar B, Bristot G, Fleck MP, Rocha NSD (2016) Brain-derived neurotrophic factor increase during treatment in severe mental illness inpatients. Translational psychiatry 6(12):e985–e985. https://doi.org/10.1038/tp.2016.227

    Article  CAS  Google Scholar 

  132. Milligan-Saville J, Choi I, Deady M, Scott P, Tan L, Calvo RA, Bryant RA, Glozier N, Harvey SB (2018) The impact of trauma exposure on the development of PTSD and psychological distress in a volunteer fire service, vol 270. Psychiatry research, pp 1110–1115

  133. He Y, Yuan L, Li Z, Zhou Y, Ma X, Ouyang L, Chen X (2019) Plasma protein levels of brain-derived neurotrophic factor pathways and their association with cognitive performance in patients with clinical high risk for psychosis and first episode psychosis, vol 206. Schizophrenia research, pp 460–461

  134. Skilleter AJ, Weickert CS, Moustafa AA, Gendy R, Chan M, Arifin N, Mitchell PB, Weickert TW (2014) BDNF val66met genotype and schizotypal personality traits interact to influence probabilistic association learning. Behav Brain Res 274:137–142

    Article  CAS  Google Scholar 

  135. Monteggia LM (2011)Toward neurotrophin-based therapeutics

  136. Webster NJ, Pirrung MC (2008) Small molecule activators of the Trk receptors for neuroprotection. BMC Neurosci 9(2):1–8

    Article  Google Scholar 

  137. Liu X, Chan CB, Jang SW, Pradoldej S, Huang J, He K, Phun LH, France S, Xiao G, Jia Y, Luo HR (2010) A synthetic 7, 8-dihydroxyflavone derivative promotes neurogenesis and exhibits potent antidepressant effect. J Med Chem 53(23):8274–8286

    Article  CAS  Google Scholar 

  138. Karpova NN, Lindholm J, Pruunsild P, Timmusk T, Castrén E (2009) Long-lasting behavioural and molecular alterations induced by early postnatal fluoxetine exposure are restored by chronic fluoxetine treatment in adult mice. Eur Neuropsychopharmacol 19(2):97–108. https://doi.org/10.1016/j.euroneuro.2008.09.002

    Article  CAS  Google Scholar 

  139. Sangiovanni E, Brivio P, Dell’Agli M, Calabrese F (2017) Botanicals as modulators of neuroplasticity: focus on BDNF. Neural plasticity, 2017. https://doi.org/10.1155/2017/5965371

  140. Karege F, Schwald M, Cisse M (2002) Postnatal developmental profile of brain-derived neurotrophic factor in rat brain and platelets. Neurosci Lett 328(3):261–264. https://doi.org/10.1016/S0304-3940(02)00529-3

    Article  CAS  Google Scholar 

  141. Shimizu E, Hashimoto K, Okamura N, Koike K, Komatsu N, Kumakiri C, Nakazato M, Watanabe H, Shinoda N, Okada SI, Iyo M (2003) Alterations of serum levels of brain-derived neurotrophic factor (BDNF) in depressed patients with or without antidepressants. Biol Psychiatry 54(1):70–75

    Article  CAS  Google Scholar 

  142. Chen S, Jiang H, Liu Y, Hou Z, Yue Y, Zhang Y, Zhao F, Xu Z, Li Y, Mou X, Li L (2017) Combined serum levels of multiple proteins in tPA-BDNF pathway may aid the diagnosis of five mental disorders. Sci Rep 7(1):1–9

    Google Scholar 

  143. Larsen MH, Mikkelsen JD, Hay-Schmidt A, Sandi C (2010) Regulation of brain-derived neurotrophic factor (BDNF) in the chronic unpredictable stress rat model and the effects of chronic antidepressant treatment. J Psychiatr Res 44(13):808–816

    Article  Google Scholar 

  144. Hosang GM, Shiles C, Tansey KE, McGuffin P, Uher R (2014) Interaction between stress and the BDNF Val66Met polymorphism in depression: a systematic review and meta-analysis. BMC Med 12(1):1–11. https://doi.org/10.1186/1741-7015-12-7

    Article  CAS  Google Scholar 

  145. Björkholm C, Monteggia LM (2016) BDNF–a key transducer of antidepressant effects. Neuropharmacology 102:72–79. https://doi.org/10.1016/j.neuropharm.2015.10.034

    Article  CAS  Google Scholar 

  146. Castrén E, Rantamäki T (2010) The role of BDNF and its receptors in depression and antidepressant drug action: reactivation of developmental plasticity. Dev Neurobiol 70(5):289–297. https://doi.org/10.1002/dneu.20758

    Article  CAS  Google Scholar 

  147. Allen AP, Naughton M, Dowling J, Walsh A, Ismail F, Shorten G, Scott L, McLoughlin DM, Cryan JF, Dinan TG, Clarke G (2015) Serum BDNF as a peripheral biomarker of treatment-resistant depression and the rapid antidepressant response: a comparison of ketamine and ECT. J Affect Disord 186:306–311. https://doi.org/10.1016/j.jad.2015.06.033

    Article  CAS  Google Scholar 

  148. Dahl J, Ormstad H, Aass HCD, Malt UF, Bendz LT, Sandvik L, Brundin L, Andreassen OA (2014) The plasma levels of various cytokines are increased during ongoing depression and are reduced to normal levels after recovery. Psychoneuroendocrinology 45:77–86. https://doi.org/10.1016/j. psyneuen.2014.03.019

    Article  CAS  Google Scholar 

  149. Hannestad J, DellaGioia N, Bloch M (2011) The effect of antidepressant medication treatment on serum levels of inflammatory cytokines: a meta-analysis. Neuropsychopharmacology 36(12):2452–2459. https://doi.org/10.1038/npp.2011.132

    Article  CAS  Google Scholar 

  150. Neto L, Borges F, Torres-Sanchez G, Mico SA, Berrocoso E (2011) Neurotrophins role in depression neurobiology: a review of basic and clinical evidence. Curr Neuropharmacol 9(4):530–552

    Article  CAS  Google Scholar 

  151. Jang SW, Liu X, Chan CB, France SA, Sayeed I, Tang W, Lin X, Xiao G, Andero R, Chang Q, Ressler KJ (2010) Deoxygedunin, a natural product with potent neurotrophic activity in mice. PLoS ONE 5(7):e11528

    Article  Google Scholar 

  152. Saarelainen T, Hendolin P, Lucas G, Koponen E, Sairanen M, MacDonald E, Agerman K, Haapasalo A, Nawa H, Aloyz R, Ernfors P (2003) Activation of the TrkB neurotrophin receptor is induced by antidepressant drugs and is required for antidepressant-induced behavioral effects. J Neurosci 23(1):349–357. https://doi.org/10.1523/JNEUROSCI.23-01-00349.2003

    Article  CAS  Google Scholar 

  153. Rantamäki T, Vesa L, Antila H, Di Lieto A, Tammela P, Schmitt A, Lesch KP, Rios M, Castrén E (2011) Antidepressant drugs transactivate TrkB neurotrophin receptors in the adult rodent brain independently of BDNF and monoamine transporter blockade. PLoS ONE 6(6):e20567

    Article  Google Scholar 

  154. Grace AA (2016) Dysregulation of the dopamine system in the pathophysiology of schizophrenia and depression. Nat Rev Neurosci 17(8):524–532

    Article  CAS  Google Scholar 

  155. McCutcheon RA, Marques TR, Howes OD (2020) Schizophrenia—an Overv JAMA psychiatry 77(2):201–210

    Article  Google Scholar 

  156. Radhu N, Garcia Dominguez L, Farzan F, Richter MA, Semeralul MO, Chen R, Fitzgerald PB, Daskalakis ZJ (2015) Evidence for inhibitory deficits in the prefrontal cortex in schizophrenia. Brain 138(2):483–497. https://doi.org/10.1093/brain/awu360

    Article  Google Scholar 

  157. Iritani S, Niizato K, Nawa H, Ikeda K, Emson PC (2003) Immunohistochemical study of brain-derived neurotrophic factor and its receptor, TrkB, in the hippocampal formation of schizophrenic brains. Prog Neuropsychopharmacol Biol Psychiatry 27(5):801–807. https://doi.org/10.1016/S0278-5846(03)00112-X

    Article  CAS  Google Scholar 

  158. Adachi N, Numakawa T, Kumamaru E, Itami C, Chiba S, Iijima Y, Richards M, Katoh-Semba R, Kunugi H (2013) Phencyclidine-induced decrease of synaptic connectivity via inhibition of BDNF secretion in cultured cortical neurons. Cereb Cortex 23(4):847–858. https://doi.org/10.1093/cercor/bhs074

    Article  Google Scholar 

  159. Katanuma Y, Numakawa T, Adachi N, Yamamoto N, Ooshima Y, Odaka H, Inoue T, Kunugi H (2014) Phencyclidine rapidly decreases neuronal mRNA of brain-derived neurotrophic factor. Synapse 68(6):257–265. https://doi.org/10.1002/syn.21735

    Article  CAS  Google Scholar 

  160. Qu M, Wang J, Chen S, Xiu MH, Zhang XY (2020) Sex-specific association between peripheral superoxide dismutase, BDNF and cognitive impairment in drug-naive first episode patients with schizophrenia. Free Radic Biol Med 160:887–893

    Article  CAS  Google Scholar 

  161. Khandaker GM, Cousins L, Deakin J, Lennox BR, Yolken R, Jones PB (2015) Inflammation and immunity in schizophrenia: implications for pathophysiology and treatment. The Lancet Psychiatry 2(3):258–270

    Article  Google Scholar 

  162. Mondelli V, Cattaneo A, Murri MB, Di Forti M, Handley R, Hepgul N, Miorelli A, Navari S, Papadopoulos AS, Aitchison KJ (2011) Stress and inflammation reduce brain-derived neurotrophic factor expression in first-episode psychosis: a pathway to smaller hippocampal volume. J Clin Psychiatry 72(12):0–0. https://doi.org/10.4088/JCP.10m06745

    Article  Google Scholar 

  163. Fillman SG, Cloonan N, Catts VS, Miller LC, Wong J, McCrossin T, Cairns M, Weickert CS (2013) Increased inflammatory markers identified in the dorsolateral prefrontal cortex of individuals with schizophrenia. Mol Psychiatry 18(2):206–214

    Article  CAS  Google Scholar 

  164. Doorduin J, De Vries EF, Willemsen AT, De Groot JC, Dierckx RA, Klein HC (2009) Neuroinflammation in schizophrenia-related psychosis: a PET study. J Nucl Med 50(11):1801–1807. https://doi.org/10.2967/jnumed.109.066647

    Article  Google Scholar 

  165. Sabunciyan S, Maher B, Bahn S, Dickerson F, Yolken RH (2015) Association of DNA methylation with acute mania and inflammatory markers. PLoS ONE 10(7):e0132001. https://doi.org/10.1371/journal.pone.0132001

    Article  CAS  Google Scholar 

  166. Kordi-Tamandani DM, Sahranavard R, Torkamanzehi A (2012) DNA methylation and expression profiles of the brain-derived neurotrophic factor (BDNF) and dopamine transporter (DAT1) genes in patients with schizophrenia. Mol Biol Rep 39(12):10889–10893. https://doi.org/10.1007/s11033-012-1986-0

    Article  CAS  Google Scholar 

  167. Fillman SG, Sinclair D, Fung SJ, Webster MJ, Shannon Weickert C (2014) Markers of inflammation and stress distinguish subsets of individuals with schizophrenia and bipolar disorder. Translational psychiatry 4(2):e365–e365

    Article  CAS  Google Scholar 

  168. Kuipers SD, Bramham CR (2006) Brain-derived neurotrophic factor mechanisms and function in adult synaptic plasticity: new insights and implications for therapy. Current opinion in drug discovery and development, 9(5), p.580

  169. Weickert CS, Ligons DL, Romanczyk T, Ungaro G, Hyde TM, Herman MM, Weinberger DR, Kleinman JE (2005) Reductions in neurotrophin receptor mRNAs in the prefrontal cortex of patients with schizophrenia. Mol Psychiatry 10(7):637–650. https://doi.org/10.1038/sj.mp.4001678

    Article  CAS  Google Scholar 

  170. Schäbitz WR, Sommer C, Zoder W, Kiessling M, Schwaninger M, Schwab S (2000) Intravenous brain-derived neurotrophic factor reduces infarct size and counterregulates Bax and Bcl-2 expression after temporary focal cerebral ischemia. Stroke 31(9):2212–2217

    Article  Google Scholar 

  171. Schlessinger J (2000) Cell signaling by receptor tyrosine kinases. Cell 103(2):211–225. DOI:https://doi.org/10.1016/S0092-8674(00)00114-8

    Article  CAS  Google Scholar 

  172. Angelucci F, Mathé AA, Aloe L (2000) Brain-derived neurotrophic factor and tyrosine kinase receptor TrkB in rat brain are significantly altered after haloperidol and risperidone administration. J Neurosci Res 60(6):783–794. https://doi.org/10.1002/1097-4547(20000615)60:6783::AID-JNR113.0.CO;2-M

    Article  CAS  Google Scholar 

  173. Lipska BK, Khaing ZZ, Weickert CS, Weinberger DR (2001) BDNF mRNA expression in rat hippocampus and prefrontal cortex: effects of neonatal ventral hippocampal damage and antipsychotic drugs. Eur J Neurosci 14(1):135–144. https://doi.org/10.1046/j.1460-9568.2001.01633.x

    Article  CAS  Google Scholar 

  174. Bai O, Chlan-Fourney J, Bowen R, Keegan D, Li XM (2003) Expression of brain‐derived neurotrophic factor mRNA in rat hippocampus after treatment with antipsychotic drugs. J Neurosci Res 71(1):127–131. https://doi.org/10.1002/jnr.10440

    Article  CAS  Google Scholar 

  175. Xu H, Qing H, Lu W, Keegan D, Richardson JS, Chlan-Fourney J, Li XM (2002) Quetiapine attenuates the immobilization stress-induced decrease of brain-derived neurotrophic factor expression in rat hippocampus. Neurosci Lett 321(1–2):65–68

    Article  CAS  Google Scholar 

  176. Kutiyanawalla A, Terry Jr AV, Pillai A (2011) Cysteamine attenuates the decreases in TrkB protein levels and the anxiety/depression-like behaviors in mice induced by corticosterone treatment. PLoS ONE 6(10):e26153

    Article  CAS  Google Scholar 

  177. Lardner AL (2014) Neurobiological effects of the green tea constituent theanine and its potential role in the treatment of psychiatric and neurodegenerative disorders. Nutr Neurosci 17(4):145–155

    Article  CAS  Google Scholar 

  178. Jensen FE (2011) Epilepsy as a spectrum disorder: implications from novel clinical and basic neuroscience. Epilepsia 52:1–6. https://doi.org/10.1111/j.1528-1167.2010.02904.x

    Article  Google Scholar 

  179. Lee WT, Yu TW, Chang WC, Shau WY (2007) Risk factors for postencephalitic epilepsy in children: a hospital-based study in Taiwan. Eur J Pediatr Neurol 11(5):302–309

    Article  Google Scholar 

  180. Li L, Deng J, Liu C, Luo H, Guan Y, Zhou J, Qi X, Li T, Xu ZD, Luan GM (2016) Altered expression of neuropeptide Y receptors caused by focal cortical dysplasia in human intractable epilepsy. Oncotarget 7(13):15329. https://doi.org/10.18632/oncotarget.7855

    Article  Google Scholar 

  181. Wang Y, Qi JS, Kong S, Sun Y, Fan J, Jiang M, Chen G (2009) BDNF-TrkB signaling pathway mediates the induction of epileptiform activity induced by a convulsant drug cyclothiazide. Neuropharmacology 57(1):49–59. https://doi.org/10.1016/j.neuropharm.2009.04.007

    Article  CAS  Google Scholar 

  182. Otsuka S, Ohkido T, Itakura M, Watanabe S, Yamamori S, Iida Y, Saito M, Miyaoka H, Takahashi M (2016) Dual mechanisms of rapid expression of anxiety-related behavior in pilocarpine-treated epileptic mice, vol 123. Epilepsy research, pp 55–67

  183. Unsain N, Montroull LE, Mascó DH (2009) Brain-derived neurotrophic factor facilitates TrkB down‐regulation and neuronal injury after status epilepticus in the rat hippocampus. J Neurochem 111(2):428–440. https://doi.org/10.1111/j.1471-4159.2009.06342.x

    Article  CAS  Google Scholar 

  184. Carvalho AL, Caldeira MV, Santos SD, Duarte C (2008) Role of the brain-derived neurotrophic factor at glutamatergic synapses. Br J Pharmacol 153(S1):S310–S324

    Article  CAS  Google Scholar 

  185. Binder DK, Croll SD, Gall CM, Scharfman HE (2001) BDNF and epilepsy: too much of a good thing? Trends Neurosci 24(1):47–53. https://doi.org/10.1016/S0166-2236(00)01682-9

    Article  CAS  Google Scholar 

  186. Lin TW, Harward SC, Huang YZ, McNamara JO (2020) Targeting BDNF/TrkB pathways for preventing or suppressing epilepsy. Neuropharmacology, 167, p.107734

  187. Kairisalo M, Korhonen L, Sepp M, Pruunsild P, Kukkonen JP, Kivinen J, Timmusk T, Blomgren K, Lindholm D (2009) NF-κB‐dependent regulation of brain‐derived neurotrophic factor in hippocampal neurons by X‐linked inhibitor of apoptosis protein. Eur J Neurosci 30(6):958–966. https://doi.org/10.1111/j.1460-9568.200906898.x

    Article  Google Scholar 

  188. Mattson MP, Camandola S (2001) NF-κB in neuronal plasticity and neurodegenerative disorders. J Clin Investig 107(3):247–254

    Article  CAS  Google Scholar 

  189. Lubin FD, Ren Y, Xu X, Anderson AE (2007) Nuclear factor-κB regulates seizure threshold and gene transcription following convulsant stimulation. J Neurochem 103(4):1381–1395. https://doi.org/10.1111/j.1471-4159.2007.04863.x

    Article  CAS  Google Scholar 

  190. Caviedes A, Lafourcade C, Soto C, Wyneken U (2017) BDNF/NF-κB signaling in the neurobiology of depression. Curr Pharm Design 23(21):3154–3163

    Article  CAS  Google Scholar 

  191. Sommerfeld MT, Schweigreiter R, Barde YA, Hoppe E (2000) Down-regulation of the neurotrophin receptor TrkB following ligand binding: evidence for an involvement of the proteasome and differential regulation of TrkA and TrkB. J Biol Chem 275(12):8982–8990

    Article  CAS  Google Scholar 

  192. Lin TW, Harward SC, Huang YZ, McNamara JO (2020) Targeting BDNF/TrkB pathways for preventing or suppressing epilepsy. Neuropharmacology, 167, p.107734

  193. Kajiya M, Takeshita K, Kittaka M, Matsuda S, Ouhara K, Takeda K, Takata T, Kitagawa M, Fujita T, Shiba H, Kurihara H (2014) BDNF mimetic compound LM22A-4 regulates cementoblast differentiation via the TrkB–ERK/Akt signaling cascade. Int Immunopharmacol 19(2):245–252

    Article  CAS  Google Scholar 

  194. Lin TW, Harward SC, Huang YZ, McNamara JO (2020) Targeting BDNF/TrkB pathways for preventing or suppressing epilepsy. Neuropharmacology, 167, p.107734

  195. Hao F, Jia LH, Li XW, Zhang YR, Liu XW (2016) Garcinol upregulates GABAA and GAD65 expression, modulates BDNF-TrkB pathway to reduce seizures in pentylenetetrazole (PTZ)-induced epilepsy. Medical science monitor: international medical journal of experimental and clinical research, 22, p.4415. https://doi.org/10.12659/MSM.897579

  196. Sharma P, Kumar A, Singh D (2019) Dietary flavonoids interaction with CREB-BDNF pathway: an unconventional approach for comprehensive management of epilepsy. Curr Neuropharmacol 17(12):1158–1175. https://doi.org/10.2174/1570159X17666190809165549

    Article  CAS  Google Scholar 

  197. Choudhary N, Bijjem KRV, Kalia AN (2011) Antiepileptic potential of flavonoids fraction from the leaves of Anisomeles malabarica. J Ethnopharmacol 135(2):238–242

    Article  CAS  Google Scholar 

  198. Berk M, Kapczinski F, Andreazza AC, Dean OM, Giorlando F, Maes M, Yücel M, Gama CS, Dodd S, Dean B, Magalhães PVS (2011) Pathways underlying neuroprogression in bipolar disorder: focus on inflammation, oxidative stress and neurotrophic factors. Neurosci biobehavioral reviews 35(3):804–817. https://doi.org/10.1016/j.neubiorev.2010.10.001

    Article  CAS  Google Scholar 

  199. Goldstein BI, Kemp DE, Soczynska JK, McIntyre RS (2009) Inflammation and the phenomenology, pathophysiology, comorbidity, and treatment of bipolar disorder: a systematic review of the literature. J Clin Psychiatry 70(8):0–0

    Article  Google Scholar 

  200. Fernandes BS, Molendijk ML, Köhler CA, Soares JC, Leite CMG, Machado-Vieira R, Ribeiro TL, Silva JC, Sales PM, Quevedo J, Oertel-Knoechel V (2015) Peripheral brain-derived neurotrophic factor (BDNF) as a biomarker in bipolar disorder: a meta-analysis of 52 studies. BMC Med 13(1):1–22. https://doi.org/10.1186/s12916-015-0529-7

    Article  CAS  Google Scholar 

  201. Munkholm K, Vinberg M, Kessing LV (2016) Peripheral blood brain-derived neurotrophic factor in bipolar disorder: a comprehensive systematic review and meta-analysis. Mol Psychiatry 21(2):216–228. https://doi.org/10.1038/mp.2015.54

    Article  CAS  Google Scholar 

  202. Jornada LK, Moretti M, Valvassori SS, Ferreira CL, Padilha PT, Arent CO, Fries GR, Kapczinski F, Quevedo J (2010) Effects of mood stabilizers on hippocampus and amygdala BDNF levels in an animal model of mania induced by ouabain. J Psychiatr Res 44(8):506–510. https://doi.org/10.1016/j.jpsychires.2009.11.002

    Article  Google Scholar 

  203. Tunca Z, Ozerdem A, Ceylan D, Yalçın Y, Can G, Resmi H, Akan P, Ergör G, Aydemir Ö, Cengisiz C, Kerim D (2014) Alterations in BDNF (brain derived neurotrophic factor) and GDNF (glial cell line-derived neurotrophic factor) serum levels in bipolar disorder: the role of lithium. J Affect Disord 166:193–200. https://doi.org/10.1016/j.jad.2014.05.012

    Article  CAS  Google Scholar 

  204. Munkholm K, Braüner JV, Kessing LV, Vinberg M (2013) Cytokines in bipolar disorder vs. healthy control subjects: a systematic review and meta-analysis. J Psychiatr Res 47(9):1119–1133. https://doi.org/10.1016/j.jpsychires.2013.05.018

    Article  Google Scholar 

  205. Patas K, Penninx BW, Bus BA, Vogelzangs N, Molendijk ML, Elzinga BM, Bosker FJ, Voshaar RCO (2014) Association between serum brain-derived neurotrophic factor and plasma interleukin-6 in major depressive disorder with melancholic features. Brain, behavior, and immunity, 36. 71–79. https://doi.org/10.1016/j.bbi.2013.10.007

  206. Wang Y, Zhong S, Jia Y, Sun Y, Wang B, Liu T, Pan J, Huang L (2016) Disrupted resting-state functional connectivity in nonmedicated bipolar disorder. Radiology 280(2):529–536. https://doi.org/10.1148/radiol.2016151641

    Article  Google Scholar 

  207. Ohira K, Funatsu N, Nakamura S, Hayashi M (2004) Expression of BDNF and TrkB receptor subtypes in the postnatal developing Purkinje cells of monkey cerebellum. Gene Expr Patterns 4(3):257–261. https://doi.org/10.1016/j.modgep.2003.11.005

    Article  CAS  Google Scholar 

  208. Hashimoto R, Takei N, Shimazu K, Christ L, Lu B, Chuang DM (2002) Lithium induces brain-derived neurotrophic factor and activates TrkB in rodent cortical neurons: an essential step for neuroprotection against glutamate excitotoxicity. Neuropharmacology 43(7):1173–1179. https://doi.org/10.1016/S0028-3908(02)00217-4

    Article  CAS  Google Scholar 

  209. Mattson MP (2004) Pathways towards and away from Alzheimer’s disease. Nature 430(7000):631–639

    Article  CAS  Google Scholar 

  210. Smith MA, Makino S, Kvetnansky R, Post RM (1995) Stress and glucocorticoids affect the expression of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the hippocampus. J Neurosci 15(3):1768–1777. https://doi.org/10.1523/JNEUROSCI.15-03-01768.1995

    Article  CAS  Google Scholar 

  211. Pedersen BK, Pedersen M, Krabbe KS, Bruunsgaard H, Matthews VB, Febbraio MA (2009) Role of exercise-induced brain‐derived neurotrophic factor production in the regulation of energy homeostasis in mammals. Exp Physiol 94(12):1153–1160. https://doi.org/10.1113/expphysiol.2009.048561

    Article  CAS  Google Scholar 

  212. Alqudah M, Mahavadi S, Zachary BL, Kay JC, Murthy KS, Grider JR (2011) Pituitary Adenylate Cyclase-Activating Peptide (PACAP) and Substance P (SP) induce the release of Brain‐Derived Neurotropic Factor (BDNF) from the longitudinal muscle layer of the intestine

  213. Fukuchi M, Tabuchi A, Tsuda M (2005) Transcriptional regulation of neuronal genes and its effect on neural functions: cumulative mRNA expression of PACAP and BDNF genes controlled by calcium and cAMP signals in neurons. J Pharmacol Sci 0507080014–0507080014. https://doi.org/10.1254/jphs.FMJ05001X4

  214. Sariola H (2001) The neurotrophic factors in non-neuronal tissues. Cell Mol Life Sci CMLS 58(8):1061–1066. https://doi.org/10.1007/PL00000921

    Article  CAS  Google Scholar 

  215. Mayer G, Heckel A (2006) Biologically active molecules with a “light switch”. Angew Chem Int Ed 45(30):4900–4921

    Article  CAS  Google Scholar 

  216. Sheikh AM, Malik M, Wen G, Chauhan A, Chauhan V, Gong CX, Liu F, Brown WT, Li X (2010) BDNF-Akt‐Bcl2 antiapoptotic signaling pathway is compromised in the brain of autistic subjects. J Neurosci Res 88(12):2641–2647. https://doi.org/10.1002/jnr.22416

    Article  CAS  Google Scholar 

  217. Das UN (2013) Autism as a disorder of deficiency of brain-derived neurotrophic factor and altered metabolism of polyunsaturated fatty acids. Nutrition 29(10):1175–1185. https://doi.org/10.1016/j.nut.2013.01.012

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Chitkara College of Pharmacy, Chitkara University, Rajpura, Patiala, Punjab, India for providing the necessary facilities to carry out the research work.

Funding

Nil.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Thakur Gurjeet Singh. Analyzed the data: Veerta Sharma, Thakur Gurjeet Singh, Amarjot Kaur Wrote the manuscript: Veerta Sharma. Visualization: Amarjot kaur, Ashi Mannan Editing of the Manuscript: Thakur Gurjeet Singh Critically reviewed the article: Sonia Dhiman, Thakur Gurjeet Singh. Supervision: Thakur Gurjeet Singh. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Thakur Gurjeet Singh.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Compliance with Ethical Standards

Not applicable.

Consent to Participate

Not applicable.

Competing Interests

There are no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, V., Singh, T.G., Kaur, A. et al. Brain-Derived Neurotrophic Factor: A Novel Dynamically Regulated Therapeutic Modulator in Neurological Disorders. Neurochem Res 48, 317–339 (2023). https://doi.org/10.1007/s11064-022-03755-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-022-03755-1

Keywords

Navigation