Skip to main content

Advertisement

Log in

Study on narrow gap welding of martensitic grade P92 and austenitic grade AISI 304L SS steel for ultra-supercritical power plant application

  • Original Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

The present work investigated the microstructural feature, mechanical properties, and residual stress variation for the dissimilar welded joints (DWJs) of P92 and AISI 304L steel. The multi-pass DWJs were attempted for narrow gap geometry using the tungsten inert gas (TIG) welding process employing the ERNiCrMo-3 filler metal. The martensitic microstructure produced in the P92 HAZ region after welding is brittle due to quenched martensite and the dissolution of precipitates. Thus, the post-weld heat treatment (PWHT) known as tempering was carried out at 760 °C for a period of 2 h to get tempered martensitic microstructure and re-precipitation of dissolved precipitates. The radiographic examination and macrostructure analysis showed defect-free P92/304L SS DWJs. The weld metal showed the complete austenitic microstructure with a Ni weight percentage of 36%. However, segregation of the alloying elements along with the inter-dendritic areas and variation in grain growth during solidification was observed. There is columnar grain morphology at interface, cellular, and equiaxed in the center. The major segregation along the inter-dendritic areas was observed for Nb, Mo, Ti, and Cr that led to the formation of the carbides of type Mo6C, TiC, and NbC, which was confirmed from the energy dispersive spectroscopy (EDS) analysis. From the tensile test result, 304L SS base metal (BM) was inferred as the weakest region in P92/304L SS DWJs. The ultimate tensile strength (UTS) of the as-weld joint was about 626 MPa, along with fracture location in 304L SS base metal. The Charpy impact test results showed that the region with relatively poor impact toughness was austenitic ERNiCrMo-3 filler weld (57 J) which might be due to the segregation of the Nb and Mo along the inter-dendritic areas. However, the impact toughness of the ERNiCrMo-3 filler weld met the minimum requirement of 47J (EN ISO 3580:2017). The micro-hardness result showed that in the as-welded condition, the coarse grain heat affected zone (CGHAZ) has the highest micro-hardness value (340 HV) due to the high weight percentage of Cr and N resulting from the dissolution of M23C6 precipitates followed by the fine grain heat affected zone (FGHAZ, 270 HV), and the inter-critical heat affected zone (ICHAZ, 205 HV). After PWHT, the hardness value was decreased below the maximum allowable value of 265 HV due to the tempering of the martensite. The residual stresses developed in the case of the narrow groove design were less due to the less quantity of weld metal available for volumetric contraction in the case of the narrow groove geometry. The tensile stress was dominant in the weld fusion zone due to the volumetric contraction of the weld metal, while compressive stress was dominant in P92 HAZ because of the martensitic phase transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

References

  1. Ritchie H, Roser M, Rosado P. Energy. In: Our World Data. 2020. https://ourworldindata.org/energy. Accessed 13 Oct 2022.

  2. Campbell RJ (2015) Increasing the efficiency of existing coal-fired power plants, Coal-Fired Power Plants. Eff Improv Opt, pp 77–111

  3. Di Gianfrancesco A. The fossil fuel power plants technology. Elsevier. 2017. https://doi.org/10.1016/B978-0-08-100552-1.00001-4.

    Article  Google Scholar 

  4. Viswanathan R, Henry JF, Tanzosh J, Stanko G, Shingledecker J, Vitalis B, Purgert R. U.S. Program on materials technology for ultra-supercritical coal power plants. J Mater Eng Perform. 2005;14:281–92. https://doi.org/10.1361/10599490524039.

    Article  CAS  Google Scholar 

  5. Lee J, Hwang J, Bae D. Welding residual stress analysis and fatigue strength assessment at elevated temperature for multi-pass dissimilar material weld between alloy 617 and p92 steel. Met Mater Int. 2018;24:877–85. https://doi.org/10.1007/s12540-018-0086-7.

    Article  CAS  Google Scholar 

  6. Viswanathan R, Bakker W. Materials for ultrasupercritical coal power plants—boiler materials: part 1. J Mater Eng Perform. 2001;10:81–95.

    Article  CAS  Google Scholar 

  7. Pandey C. Mechanical and metallurgical characterization of dissimilar P92/SS304 L welded joints under varying heat treatment regimes. Metall Mater Trans A. 2020;51:2126–42. https://doi.org/10.1007/s11661-020-05660-0.

    Article  CAS  Google Scholar 

  8. Kulkarni A, Dwivedi DK, Vasudevan M. Dissimilar metal welding of P91 steel-AISI 316L SS with Incoloy 800 and Inconel 600 interlayers by using activated TIG welding process and its effect on the microstructure and mechanical properties. J Mater Process Technol. 2019;274: 116280. https://doi.org/10.1016/j.jmatprotec.2019.116280.

    Article  CAS  Google Scholar 

  9. Sun Z. Feasibility of producing ferritic/austenitic dissimilar metal joints by high energy density laser beam process. Int J Press Vessel Pip. 1996;68:153–60. https://doi.org/10.1016/0308-0161(94)00048-4.

    Article  CAS  Google Scholar 

  10. Cao J, Gong Y, Zhu K, Yang Z, Luo X, Gu F. Microstructure and mechanical properties of dissimilar materials joints between T92 martensitic and S304H austenitic steels. Mater Des. 2011;32:2763–70. https://doi.org/10.1016/j.matdes.2011.01.008.

    Article  CAS  Google Scholar 

  11. Banovic SW, DuPont JN, Marder AR. Dilution and microsegregation in dissimilar metal welds between super austenitic stainless steel and nickel base alloys. Sci Technol Weld Join. 2002;7:374–83. https://doi.org/10.1179/136217102225006804.

    Article  CAS  Google Scholar 

  12. Sauraw A, Sharma AK, Fydrych D, Sirohi S, Gupta A, Świerczyńska A, Pandey C, Rogalski G. Study on Microstructural characterization, mechanical properties and residual stress of GTAW dissimilar joints of P91 and P22 steels. Materials (Basel). 2021;14:6591. https://doi.org/10.3390/ma14216591.

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Kumar A, Pandey C. Development and evaluation of dissimilar gas tungsten arc-welded joint of P92 Steel/inconel 617 Alloy for advanced ultra-supercritical boiler applications. Metall Mater Trans A. 2022;53:3245–73. https://doi.org/10.1007/s11661-022-06723-0.

    Article  CAS  Google Scholar 

  14. Xu WH, Lin SB, Fan CL, Yang CL. Prediction and optimization of weld bead geometry in oscillating arc narrow gap all-position GMA welding. Int J Adv Manuf Technol. 2015;79:183–96. https://doi.org/10.1007/s00170-015-6818-7.

    Article  Google Scholar 

  15. Feng J, Guo W, Irvine N, Li L. Understanding and elimination of process defects in narrow gap multi-pass fiber laser welding of ferritic steel sheets of 30 mm thickness. Int J Adv Manuf Technol. 2017;88:1821–30. https://doi.org/10.1007/s00170-016-8929-1.

    Article  Google Scholar 

  16. Jula M, Dehmolaei R, Alavi Zaree SR. The comparative evaluation of AISI 316/A387-Gr91 steels dissimilar weld metal produced by CCGTAW and PCGTAW processes. J Manuf Process. 2018;36:272–80. https://doi.org/10.1016/j.jmapro.2018.10.032.

    Article  Google Scholar 

  17. Bhanu V, Gupta A, Pandey C. Role of A-TIG process in joining of martensitic and austenitic steels for ultra-supercritical power plants—a state of the art review. Nucl Eng Technol. 2022;54:2755–70. https://doi.org/10.1016/j.net.2022.03.003.

    Article  CAS  Google Scholar 

  18. Shuo W, Limin W, Yi C, Shuping T. Post-weld heat treatment and groove angles affect the mechanical properties of T92/super 304H dissimilar steel weld joints. High Temp Mater Process. 2018;37:649–54. https://doi.org/10.1515/htmp-2016-0261.

    Article  ADS  CAS  Google Scholar 

  19. Li S, Ren S, Zhang Y, Deng D, Murakawa H. Numerical investigation of formation mechanism of welding residual stress in P92 steel multi-pass joints. J Mater Process Technol. 2017;244:240–52. https://doi.org/10.1016/j.jmatprotec.2017.01.033.

    Article  CAS  Google Scholar 

  20. Shah Hosseini H, Shamanian M, Kermanpur A. Characterization of microstructures and mechanical properties of Inconel 617/310 stainless steel dissimilar welds. Mater Charact. 2011;62:425–31. https://doi.org/10.1016/j.matchar.2011.02.003.

    Article  CAS  Google Scholar 

  21. Nivas R, Singh PK, Das G, Das SK, Kumar S, Mahato B, Sivaprasad K, Ghosh M. A comparative study on microstructure and mechanical properties near interface for dissimilar materials during conventional V-groove and narrow gap welding. J Manuf Process. 2017;25:274–83. https://doi.org/10.1016/j.jmapro.2016.12.004.

    Article  Google Scholar 

  22. Shu F, Lv Y, Liu Y, Xu F, Sun Z, He P, Xu B. Residual stress modeling of narrow gap welded joint of aluminum alloy by cold metal transferring procedure. Constr Build Mater. 2014;54:224–35. https://doi.org/10.1016/j.conbuildmat.2013.12.056.

    Article  Google Scholar 

  23. Taraphdar PK, Mahapatra MM, Pradhan AK, Singh PK, Sharma K, Kumar S. Effects of groove configuration and buttering layer on the through-thickness residual stress distribution in dissimilar welds. Int J Press Vessel Pip. 2021;192: 104392. https://doi.org/10.1016/j.ijpvp.2021.104392.

    Article  CAS  Google Scholar 

  24. Saini N, Mulik RS, Mahapatra MM, Sharma NK, Li L. Dissolution of laves phase by re-austenitization and tempering of creep strength enhanced ferritic steel. Mater Sci Technol (United Kingdom). 2020;36:631–44. https://doi.org/10.1080/02670836.2020.1724404.

    Article  ADS  CAS  Google Scholar 

  25. Mohyla P, Republic C. Influence of delta ferrite on mechanical and creep, (n.d.) 75–83.

  26. Fu JW, Yang YS, Guo JJ. Formation of a blocky ferrite in Fe-Cr-Ni alloy during directional solidification. J Cryst Growth. 2009;311:3661–6. https://doi.org/10.1016/j.jcrysgro.2009.05.007.

    Article  ADS  CAS  Google Scholar 

  27. Xu H, Xu MJ, Yu C, Lu H, Wei X, Chen JM, Xu JJ. Effect of the microstructure in unmixed zone on corrosion behavior of 439 tube/308L tube-sheet welding joint. J Mater Process Technol. 2017;240:162–7. https://doi.org/10.1016/j.jmatprotec.2016.09.017.

    Article  CAS  Google Scholar 

  28. Gabrel J, Bendick W, Vandenberghe B, Lefebvre B. Status of development of VM 12 steel for tubular applications in advanced power plants. Energy Mater. 2006;1:218–22. https://doi.org/10.1179/174892406X173657.

    Article  CAS  Google Scholar 

  29. Siefert JA, David SA. Weldability and weld performance of candidate austenitic alloys for advanced ultrasupercritical fossil power plants. Sci Technol Weld Join. 2014;19:271–94. https://doi.org/10.1179/1362171814Y.0000000197

    Article  CAS  Google Scholar 

  30. Brózda J. New generation creep-resistant steels, their weldability and properties of welded joints: T/P92 steel.Weld Int. 2005;19:5–13. https://doi.org/10.1533/wint.2005.3370.

    Article  Google Scholar 

  31. Taraphdar PK, Mahapatra MM, Pradhan AK, Singh PK, Sharma K, Kumar S. Measurement of through-thickness residual stresses under restrained condition in pressure vessel steel weld. In: Saran VH, Misra RK, editors. Advances in systems engineering, Lecture notes in mechanical engineering. Singapore: Springer; 2021. p. 119–25. https://doi.org/10.1007/978-981-15-8025-3_13.

    Chapter  Google Scholar 

  32. Taraphdar PK, Kumar R, Pandey C, Mahapatra MM. Significance of finite element models and solid-state phase transformation on the evaluation of weld induced residual stresses. Met Mater Int. 2021. https://doi.org/10.1007/s12540-020-00921-4.

    Article  Google Scholar 

  33. Guo X, Gong J, Jiang Y, Rong D. The influence of long-term aging on microstructures and static mechanical properties of P92 steel at room temperature. Mater Sci Eng A. 2013;564:199–205. https://doi.org/10.1016/j.msea.2012.10.024.

    Article  CAS  Google Scholar 

  34. Chen G, Zhang Q, Liu J, Wang J, Yu X, Hua J, Bai X, Zhang T, Zhang J, Tang W. Microstructures and mechanical properties of T92/Super304H dissimilar steel weld joints after high-temperature ageing. Mater Des. 2013;44:469–75. https://doi.org/10.1016/j.matdes.2012.08.022.

    Article  CAS  Google Scholar 

  35. Seo W-G, Suh J-Y, Singh A, Shim J-H, Lee H, Yoo K, Choi S-H. Microstructural evolution of P92 steel in IN740H/P92 dissimilar weld joints during creep deformation. Mater Sci Eng A. 2021;821:141614. https://doi.org/10.1016/j.msea.2021.141614.

    Article  CAS  Google Scholar 

  36. Barbadikar DR, Sakthivel T, Ballal AR, Peshwe DR, Rao PS, Mathew MD, Barbadikar DR, Sakthivel T, Ballal AR, Peshwe DR, Syamala P. Materials at High Temperatures An assessment of mechanical properties of P92 steel weld joint and simulated heat affected zones by ball indentation technique. Mater High Temp. 2017;3409:1–11. https://doi.org/10.1080/09603409.2017.1371913.

    Article  CAS  Google Scholar 

  37. Obiko J, Chown LH, Whitefield DJ. Microstructure characterisation and microhardness of P92 steel heat treated at the transformation temperatures. IOP Conf Ser Mater Sci Eng. 2019. https://doi.org/10.1088/1757-899X/655/1/012014.

    Article  Google Scholar 

  38. Maddi L, Ballal AR, Peshwe DR, Mathew MD. Influence of normalizing and tempering temperatures on the creep properties of P92 steel. High Temp Mater Process. 2020;39:178–88. https://doi.org/10.1515/htmp-2020-0033.

    Article  ADS  CAS  Google Scholar 

  39. Wang Y, Li L, Kannan R. Transition from Type IV to Type I cracking in heat-treated grade 91 steel weldments. Mater Sci Eng A. 2018;714:1–13. https://doi.org/10.1016/j.msea.2017.12.088.

    Article  CAS  Google Scholar 

  40. Kou S, Yang YK. Fusion-boundary macrosegregation in dissimilar-filler welds. Weld J (Miami Fla). 2007;86:303–12.

    Google Scholar 

  41. Cieslak MJ, Headley TJ, Kollie T, Romig AD. Melting and solidification study of Alloy 625. Metall Trans A Phys Metall Mater Sci. 1988;19A:2319–31. https://doi.org/10.1007/BF02645056.

    Article  ADS  CAS  Google Scholar 

  42. Silva CC, De Miranda HC, Motta MF, Farias JP, Afonso CRM, Ramirez AJ. New insight on the solidification path of an alloy 625 weld overlay. J Mater Res Technol. 2013;2:228–37. https://doi.org/10.1016/j.jmrt.2013.02.008.

    Article  CAS  Google Scholar 

  43. Dak G, Pandey C. A critical review on dissimilar welds joint between martensitic and austenitic steel for power plant application. J Manuf Process. 2020;58:377–406. https://doi.org/10.1016/j.jmapro.2020.08.019.

    Article  Google Scholar 

  44. Ramkumar KD, Abraham WS, Viyash V, Arivazhagan N, Rabel AM. Investigations on the microstructure, tensile strength and high temperature corrosion behaviour of Inconel 625 and Inconel 718 dissimilar joints. J Manuf Process. 2017;25:306–22. https://doi.org/10.1016/j.jmapro.2016.12.018.

    Article  Google Scholar 

  45. Deng D, Murakawa H. Numerical simulation of temperature field and residual stress in multi-pass welds in stainless steel pipe and comparison with experimental measurements. Comput Mater Sci. 2006;37:269–77. https://doi.org/10.1016/j.commatsci.2005.07.007.

    Article  CAS  Google Scholar 

  46. Li S, Hu L, Dai P, Bi T, Deng D. Influence of the groove shape on welding residual stresses in P92/SUS304 dissimilar metal butt-welded joints. J Manuf Process. 2021;66:376–86. https://doi.org/10.1016/j.jmapro.2021.04.030.

    Article  Google Scholar 

  47. Venkata KA, Kumar S, Dey HC, Smith DJ, Bouchard PJ, Truman CE. Study on the effect of post weld heat treatment parameters on the relaxation of welding residual stresses in electron beam welded P91 steel plates. Proc Eng. 2014;86:223–33.

    Article  CAS  Google Scholar 

  48. Deng D, Zhang Y, Li S, Tong Y. influence of solid-state phase transformation on residual stress in P92 steelwelded joint. Jinshu Xuebao/Acta Metall Sin. 2016;52:394–402. https://doi.org/10.11900/0412.1961.2015.00371.

    Article  CAS  Google Scholar 

  49. Maduraimuthu V, Vasudevan M, Muthupandi V, Bhaduri AK. Effect of activated flux on the microstructure, mechanical properties, and residual stresses of modified 9Cr-1Mo steel weld joints. Metall Mater Trans B. 2012;43:123–32. https://doi.org/10.1007/s11663-011-9568-4.

    Article  CAS  Google Scholar 

  50. David SA, Siefert JA, Feng Z. Welding and weldability of candidate ferritic alloys for future advanced ultrasupercritical fossil power plants. Sci Technol Weld Join. 2013;18:631–51. https://doi.org/10.1179/1362171813Y.0000000152.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express sincere gratitude to “Science and Education Research Board” (SERB-India) for financial support of the project entitled “Mitigation of weldability issues and residual stresses in dissimilar welded joints of ultra-supercritical power plants” under grant No: SRG/2019/001879.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandan Pandey.

Ethics declarations

Conflict of interest

Author(s) have no conflict of interest.

Ethical statements

The manuscript is original and not submitted elsewhere for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dak, G., khanna, N. & Pandey, C. Study on narrow gap welding of martensitic grade P92 and austenitic grade AISI 304L SS steel for ultra-supercritical power plant application. Archiv.Civ.Mech.Eng 23, 14 (2023). https://doi.org/10.1007/s43452-022-00540-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-022-00540-3

Keywords

Navigation