Skip to main content
Log in

An Acid-triggered Reactive and Enhanced Fluorescent Probe for Selective Detection of Al3+/H+ and its Application in Real Water Samples and Living Cells

  • Research
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A reactive fluorescent “turn-on” probe (di-PIP) with imine-linked dual phenanthro[9,10-d]imidazole luminophore have been conveniently prepared as an Al3+ and H+ dual functional receptor. di-PIP displayed high selectivity and sensitivity towards Al3+ ion in DMF/HEPES accompanied by fluorescence blue-shift and a good linear relationship as well as a low detection limit of 30.5 nmol·L–1, which can root from the synergetic functions of the decomposition reaction of di-PIP promoted by acidic Al3+ and the coordination effect between decomposition product and Al3+. Intriguingly, it was found that hydrogen ion H+ can be sufficient for simulating the fluorescence enhancing of di-PIP. 1H NMR titration and MS analyses for elucidation of the intermediate structure further revealed that the acid-triggered decomposition reaction resulted in the rapid, and sensitive sensing to Al3+ and H+. In addition, the probe di-PIP could be successfully applied to the detection of Al3+ in real water samples, and also utilized to visualize Al3+ and H+ in the living cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2
Fig. 7

Similar content being viewed by others

Availability of Data and Materials

The data sets supporting the results of this article are included within the article and its additional files.

References

  1. Kaur B, Kaur N, Kumar S (2018) Colorimetric metal ion sensors – A comprehensive review of the years 2011–2016. Coord Chem Rev 358:13–69. https://doi.org/10.1016/j.ccr.2017.12.00208

    Article  CAS  Google Scholar 

  2. Lin M, Gong M, Lu B, Wu Y, Wang D, Guan M, Angell M, Chen C, Yang J, Hwang B, Dai H (2015) An ultrafast rechargeable aluminium-ion battery. Nature 520:324–328. https://doi.org/10.1038/nature14340

    Article  CAS  Google Scholar 

  3. Ammar J, Khan Z, Ghazi M, Naser N (2021) Synthesis of a new organic probe 4-(4 acetamidophenylazo) pyrogallol for spectrophotometric determination of Bi(III) and Al(III) in pharmaceutical samples. Rev Anal Chem 40:108–126. https://doi.org/10.1515/revac-2021-0125

    Article  CAS  Google Scholar 

  4. Manjunath R, Hrishikesan E, Kannan P (2015) A selective colorimetric and fluorescent sensor for Al3+ ion and its application to cellular imaging. Spectrochim Acta Part A: Mol Biomol Spectrosc 140:509–515. https://doi.org/10.1016/j.saa.2015.01.015

    Article  CAS  Google Scholar 

  5. Goswami S, Paul S (2013) Abhishek Manna Selective “naked eye” detection of Al(iii) and PPi in aqueous media on a rhodamine–isatin hybrid moiety. RSC Adv 3:10639–10643. https://doi.org/10.1039/c3ra40984h

    Article  CAS  Google Scholar 

  6. Woodson G (1998) An interesting case of osteomalacia due to antacid use associated with stainable bone aluminum in a patient with normal renal function. Bone 22:695–698. https://doi.org/10.1016/s8756-3282(98)00060-x

    Article  CAS  Google Scholar 

  7. Fasman G (1996) Aluminum and Alzheimer’s disease: model studies. Coord Chem Rev 149:125–165. https://doi.org/10.1016/s0010-8545(96)90020-x

    Article  CAS  Google Scholar 

  8. Grady J, Shao J, Arosio P, Santambrogio P, Chasteen N (2000) Vanadyl (IV) binding to mammalian ferritins. An EPR study aided by site-directed mutagenesis. J Inorg Biochem 80:107–113. https://doi.org/10.1016/s0162-0134(00)00046-5

    Article  CAS  Google Scholar 

  9. Sakamoto T, Ogasawara Y, Ishii K, Takahashi H, Tanabe S (2004) Accumulation of aluminum in ferritin isolated from rat brain. Neurosci Lett 366:264–267. https://doi.org/10.1016/j.neulet.2004.05.045

    Article  CAS  Google Scholar 

  10. Perl D, Brody A (1980) Alzheimer’s disease: X-ray spectrometric evidence of aluminum accumulation in neurofibrillary tangle-bearing neurons. Science 208:297–299. https://doi.org/10.1126/science.7367858

    Article  CAS  Google Scholar 

  11. Tavakoli O, Yoshida H (2005) Effective recovery of harmful metal ions from squid wastes using subcritical and supercritical water treatments. Environ Sci Technol 39:2357–2363. https://doi.org/10.1021/es030713s

    Article  CAS  Google Scholar 

  12. Nayak P (2002) Aluminum: Impacts and disease. Environ Res 89:101–115. https://doi.org/10.1006/enrs.2002.4352

    Article  CAS  Google Scholar 

  13. Lou Z, Li P, Song P, Han K (2013) Ratiometric fluorescence imaging of cellular hypochlorous acid based on heptamethine cyanine dyes. Analyst 138:6291–6295. https://doi.org/10.1039/c3an00198a

    Article  CAS  Google Scholar 

  14. Blackburn A, Doe W, Buffinton G (1999) Protein carbonyl formation on mucosal proteins in vitro and in dextran sulfate-induced colitis. Free Radical Biol Med 27:262–270. https://doi.org/10.1016/s0891-5849(99)00065-9

    Article  CAS  Google Scholar 

  15. Delhaize E, Ryan P (1995) Aluminum toxicity and tolerance in plants. Plant Physiol 107:315–321. https://doi.org/10.1016/j.sajb.2019.02.008

    Article  CAS  Google Scholar 

  16. Yue Y, Huo F, Cheng F, Zhu X, Mafireyi T, Strongin R, Yin C (2019) Functional synthetic probes for selective targeting and multi–analyte detection and imaging. Chem Soc Rev 48:4155–4177. https://doi.org/10.1039/c9cs90059d

    Article  CAS  Google Scholar 

  17. Gao P, Pan W, Li N, Tang B (2019) Fluorescent probes for organelle–targeted bioactive species imaging. Chem Sci 10:6035–6071. https://doi.org/10.1039/c9sc01652j

    Article  CAS  Google Scholar 

  18. Manivannan R, Son Y (2020) A Pyrene-Tetrazole Fused Fluorescent Probe for Effective Real Time Detection Towards Aluminium Ion. J Fluoresc 262:116334. https://doi.org/10.1007/s10895-022-02985-4

    Article  CAS  Google Scholar 

  19. Fan L, Liu K, Yang Z (2022) A novel and reversible multifunction probe for Al3+ and F- by fluorogenic and colorimetric method. J Photoch Photobio A 429:113911. https://doi.org/10.1016/j.jphotochem.2022.113911

    Article  CAS  Google Scholar 

  20. Villela A, Vuuren M, Willemen H, Derksen G, Beek T (2019) Photo-stability of a flavonoid dye in presence of aluminium ions. Dyes Pigm 162:222–231. https://doi.org/10.1016/j.dyepig.2018.10.021

    Article  CAS  Google Scholar 

  21. Kamaci U, Kamaci M, Peksel A (2021) A dual responsive colorimetric sensor based on polyazomethine and ascorbic acid for the detection of Al (III) and Fe (II) ions. Spectrochim Acta Part A: Mol Biomol Spectrosc 254:119650. https://doi.org/10.1016/j.saa.2021.119650

    Article  CAS  Google Scholar 

  22. Erdemir S (2019) Fluorometric dual sensing of Hg2+ and Al3+ by novel triphenylamine appended rhodamine derivative in aqueous media. Sens Actuators B Chem 290:558–564. https://doi.org/10.1016/j.snb.2019.04.037

    Article  CAS  Google Scholar 

  23. Imani M, Mohajeri N, Rastegar M, Zarghami N (2021) Recent advances in FRET-based biosensors for biomedical applications. Anal Biochem 630:114323. https://doi.org/10.1016/j.ab.2021.114323

    Article  CAS  Google Scholar 

  24. Das A, De S, Das G (2021) Naphthyl-functionalized ninhydrin-derived receptor for ‘CHEF’-based sequential sensing of Al(III) and PPi: Prospective chemosensing applications under physiological conditions. J Photoch Photobio A 418:113442. https://doi.org/10.1016/j.jphotochem.2021.113442

    Article  CAS  Google Scholar 

  25. Sun L, Wang X, Shi J, Yang S, Xu L (2021) Kaempferol as an AIE-active natural product probe for selective Al3+ detection in arabidopsis thaliana. Spectrochim Acta Part A: Mol Biomol Spectrosc 245:119303. https://doi.org/10.1016/j.saa.2020.119303

    Article  CAS  Google Scholar 

  26. Al-Duais M, Mohammedsaleh Z, Al-Shehri H, Al-Awthan Y, Bani-Atta S, Keshk A, Mustafa S, Althaqafy A, Al-Tweher A, Al-Aoh H, Panneerselvam C (2022) Bovine serum albumin functionalized blue emitting Ti3C2 MXene quantum dots as a sensitive fluorescence probe for Fe3+ ion detection and its toxicity analysis. Luminescence 37:633–641. https://doi.org/10.1002/bio.4204

    Article  CAS  Google Scholar 

  27. Zheng Q, Ding F, Hu X, Feng J, Shen J, He X (2021) ESIPT-based fluorescent probe for bioimaging and identification of group Al(III) ions in live cells and zebrafish. Bioorg Chem 109:104746. https://doi.org/10.1016/j.bioorg.2021.104746

    Article  CAS  Google Scholar 

  28. Peng S, Wang S, Ding H, Fan C, Liu G, Pu S (2022) A high selective chemosensor for detection of Al3+ based on diarylethene with a hydrazide unit. J Photoch Photobio A 425:113718. https://doi.org/10.1016/j.jphotochem.2021.113718

    Article  CAS  Google Scholar 

  29. Janc T, Korb J, Luksic M, Vlachy V, Bryant R, Meriguet G, Malikova N, Rollet A (2021) Multiscale water dynamics on protein surfaces: protein-specific response to surface ions. J Phys Chem B 125:8673–8681. https://doi.org/10.1021/acs.jpcb.1c02513

    Article  CAS  Google Scholar 

  30. He C, Lu K, Lin W (2014) Nanoscale metal-organic frameworks for real-time intracellular pH sensing in live cells. J Am Chem Soc 136:12253–12256. https://doi.org/10.1021/ja507333c

    Article  CAS  Google Scholar 

  31. Madshus I (1988) Regulation of intracellular pH in eukaryotic cells. Biochem J 250:1–8

    Article  CAS  Google Scholar 

  32. Hu J, Wu F, Feng S, Xu J, Xu Z, Chen Y, Tang T, Weng X, Zhou X (2014) A convenient ratiomeric pH probe and its application for monitoring pH change in living cells. Sens Actuat B Chem 196:194–202. https://doi.org/10.1016/j.snb.2014.01.119

    Article  CAS  Google Scholar 

  33. Chou P, Luo C, Wali N, Lin W, Ng S, Wang C, Zhao M, Lin S, Yang S, Liu P, Shie J, Wei T (2022) A chemical probe inhibitor targeting STAT1 restricts cancer stem cell traits and angiogenesis in colorectal cancer. J Biomed Sci 29:20. https://doi.org/10.1186/s12929-022-00803-4

    Article  CAS  Google Scholar 

  34. Koga N, Tanioka M, Kamino S, Sawada D (2021) Morpholine-substituted rhodamine analogue with multi-configurational switches for optical sensing of pH gradient under extreme acidic environments. Chem Eur J 27:3761–3765. https://doi.org/10.1002/chem.202004254

    Article  CAS  Google Scholar 

  35. Wan S, Xia S, Medford J, Durocher E, Steenwinkel T, Rule L, Zhang Y, Luck R, Werner T, Liu H (2021) A ratiometric near-infrared fluorescent probe based on a novel reactive cyanine platform for mitochondrial pH detection. J Mater Chem B 9:5150–5161. https://doi.org/10.1039/d1tb00643f

    Article  CAS  Google Scholar 

  36. Zhao B, Zhou Y, Fan M, Li Z, Wang L, Deng Q (2013) Synthesis, fluorescence properties and selective Cr(III) recognition of tetraaryl imidazole derivatives bearing thiazole group. Chin Chem Lett 24:257–259. https://doi.org/10.1016/j.cclet.2013.01.031

    Article  CAS  Google Scholar 

  37. Li S, Kan W, Zhao B, Liu T, Fang Y, Bai L, Wang L (2018) A fluorescent pH probe for an aqueous solution composed of 7-hydroxycoumarin, Schiff base and phenanthro[9,10-d]imidazole moieties (PICO). Heterocycl Commun 24:93–97. https://doi.org/10.1515/hc-2017-0174

    Article  CAS  Google Scholar 

  38. Firoj A, Anila H, Nandaraj T, Devraj G, Samit C, Amitava D (2016) Specific receptor for hydrazine: mapping the in situ release of hydrazine in live cells and in an in vitro enzymatic assay. Chem Commun 52:6166–6169. https://doi.org/10.1039/c6cc01787h

    Article  Google Scholar 

  39. Si M, Zhu W, Zhang Y, Barboiu M, Chen J (2020) Fluorodynamers displaying tunable fluorescence on constitutional exchanges in solution and at solid film–solution interface. Chem Eur J 26:10191–10194. https://doi.org/10.1002/chem.202000981

    Article  CAS  Google Scholar 

  40. Zhang R, Gao M, Bai S, Liu B (2015) A fluorescent light-up platform with “AIE + ESIPT” characteristics for multi-target detection both in solution and on paper strip. J Mater Chem B 3:1590–1596. https://doi.org/10.1039/c4tb01937g

    Article  CAS  Google Scholar 

  41. Yuan Y, Wang D, Long W, Deng F, Yu S, Tian J, Ouyang H, Lin S, Zhang X, Wei Y (2021) Ratiometric fluorescent detection of hypochlorite in aqueous solution and living cells using an ionic probe with aggregation-induced emission feature. Sens Actuators B Chem 330:1–8. https://doi.org/10.1016/j.snb.2020.129324

    Article  CAS  Google Scholar 

  42. Zhang S, Gu Y, Shi Z, Lu N, Xu H (2021) A novel reversible fluorescent probe based on naphthalimide for sequential detection of aluminum (Al3+) and fluoride (F-) ions and its applications. Anal Methods 13:5360–5368. https://doi.org/10.1039/d1ay01545a

    Article  CAS  Google Scholar 

  43. Zhang S, Wang Y, Xu H (2022) A new naphthalimide-picolinohydrazide derived fluorescent ‘‘turn-on” probe for hypersensitive detection of Al3+ ions and applications of real water analysis and bio-imaging. Spectrochim. Acta Part A: Mol Biomol Spectrosc 275:121193. https://doi.org/10.1016/j.saa.2022.121193

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (21978140 and 21506106), the Natural Science Foundation of Heilongjiang Province (GZ20210064) and the Qiqihar University Graduate Innovative Scientific Research Project, China (YJSCX2021005). The authors also gratefully acknowledge the financial support by the Heilongjiang Provincial Key Laboratory of Surface Active Agent and Auxiliary (BMHXJKF004 and BMHXJKF005).

Funding

The work was supported by the National Natural Science Foundation of China (21978140 and 21506106), the Natural Science Foundation of Heilongjiang Province (GZ20210064) and the Qiqihar University Graduate Innovative Scientific Research Project, China (YJSCX2021005).

Author information

Authors and Affiliations

Authors

Contributions

Bing Zhao, Wei Kan, Liyan Wang, Bo Song, and Limin Ding contributed significantly to write the manuscript and perform the analysis with constructive discussions; Zhigang Li, Fanqiang Bu, and Xin Qi performed the experiments and the data analyses.

Corresponding authors

Correspondence to Bing Zhao or Wei Kan.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Manuscript is approved by all authors for publication.

Competing Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1922 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Zhao, B., Kan, W. et al. An Acid-triggered Reactive and Enhanced Fluorescent Probe for Selective Detection of Al3+/H+ and its Application in Real Water Samples and Living Cells. J Fluoresc 33, 91–101 (2023). https://doi.org/10.1007/s10895-022-03039-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-022-03039-5

Keywords

Navigation