Skip to main content
Log in

Pax7+ Satellite Cells in Human Skeletal Muscle After Exercise: A Systematic Review and Meta-analysis

  • Systematic Review
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Background

Skeletal muscle has extraordinary regenerative capabilities against challenge, mainly owing to its resident muscle stem cells, commonly identified by Pax7+, which expediently donate nuclei to the regenerating multinucleated myofibers. This local reserve of stem cells in damaged muscle tissues is replenished by undifferentiated bone marrow stem cells (CD34+) permeating into the surrounding vascular system.

Objective

The purpose of the study was to provide a quantitative estimate for the changes in Pax7+ muscle stem cells (satellite cells) in humans following an acute bout of exercise until 96 h, in temporal relation to circulating CD34+ bone marrow stem cells. A subgroup analysis of age was also performed.

Methods

Four databases (Web of Science, PubMed, Scopus, and BASE) were used for the literature search until February 2022. Pax7+ cells in human skeletal muscle were the primary outcome. Circulating CD34+ cells were the secondary outcome. The standardized mean difference (SMD) was calculated using a random-effects meta-analysis. Subgroup analyses were conducted to examine the influence of age, training status, type of exercise, and follow-up time after exercise.

Results

The final search identified 20 studies for Pax7+ cells comprising a total of 370 participants between the average age of 21 and 74 years and 26 studies for circulating CD34+ bone marrow stem cells comprising 494 participants between the average age of 21 and 67 years. Only one study assessed Pax7+ cells immediately after aerobic exercise and showed a 32% reduction in exercising muscle followed by a fast repletion to pre-exercise level within 3 h. A large effect on increasing Pax7+ cell content in skeletal muscles was observed 24 h after resistance exercise (SMD = 0.89, p < 0.001). Pax7+ cells increased to ~ 50% above pre-exercise level 24–72 h after resistance exercise. For a subgroup analysis of age, a large effect (SMD = 0.81, p < 0.001) was observed on increasing Pax7+ cells in exercised muscle among adults aged > 50 years, whereas adults at younger age presented a medium effect (SMD = 0.64, p < 0.001). Both resistance exercise and aerobic exercise showed a medium overall effect in increasing circulating CD34+ cells (SMD = 0.53, p < 0.001), which declined quickly to the pre-exercise baseline level after exercise within 6 h.

Conclusions

An immediate depletion of Pax7+ cells in exercising skeletal muscle concurrent with a transient release of CD34+ cells suggest a replenishment of the local stem cell reserve from bone marrow. A protracted Pax7+ cell expansion in the muscle can be observed during 24–72 h after resistance exercise. This result provides a scientific basis for exercise recommendations on weekly cycles allowing for adequate recovery time. Exercise-induced Pax7+ cell expansion in muscle remains significant at higher age, despite a lower stem cell reserve after age 50 years. More studies are required to confirm whether Pax7+ cell increment can occur after aerobic exercise.

Clinical Trial Registration

Registered at the International Prospective Register of Systematic Reviews (PROSPERO) [identification code CRD42021265457].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Moss FP, Leblond CP. Satellite cells as the source of nuclei in muscles of growing rats. Anat Rec. 1971;170(4):421–35. https://doi.org/10.1002/ar.1091700405.

    Article  CAS  Google Scholar 

  2. Schmalbruch H. The morphology of regeneration of skeletal muscles in the rat. Tissue Cell. 1976;8(4):673–92. https://doi.org/10.1016/0040-8166(76)90039-2.

    Article  CAS  Google Scholar 

  3. Bischoff R. Proliferation of muscle satellite cells on intact myofibers in culture. Dev Biol. 1986;115(1):129–39. https://doi.org/10.1016/0012-1606(86)90234-4.

    Article  CAS  Google Scholar 

  4. Nederveen JP, Joanisse S, Séguin CM, Bell KE, Baker SK, Phillips SM, et al. The effect of exercise mode on the acute response of satellite cells in old men. Acta Physiol (Oxf). 2015;215(4):177–90. https://doi.org/10.1111/apha.12601.

    Article  CAS  Google Scholar 

  5. Cadot B, Gache V, Gomes ER. Moving and positioning the nucleus in skeletal muscle: one step at a time. Nucleus. 2015;6(5):373–81. https://doi.org/10.1080/19491034.2015.1090073.

    Article  Google Scholar 

  6. Egner IM, Bruusgaard JC, Gundersen K. Satellite cell depletion prevents fiber hypertrophy in skeletal muscle. Development. 2016;143(16):2898–906. https://doi.org/10.1242/dev.134411.

    Article  CAS  Google Scholar 

  7. Dreyer HC, Blanco CE, Sattler FR, Schroeder ET, Wiswell RA. Satellite cell numbers in young and older men 24 hours after eccentric exercise. Muscle Nerve. 2006;33(2):242–53. https://doi.org/10.1002/mus.20461.

    Article  Google Scholar 

  8. Snijders T, Verdijk LB, Smeets JS, McKay BR, Senden JM, Hartgens F, et al. The skeletal muscle satellite cell response to a single bout of resistance-type exercise is delayed with aging in men. Age (Dordr). 2014;36(4):9699. https://doi.org/10.1007/s11357-014-9699-z.

    Article  Google Scholar 

  9. Seale P, Sabourin LA, Girgis-Gabardo A, Mansouri A, Gruss P, Rudnicki MA. Pax7 is required for the specification of myogenic satellite cells. Cell. 2000;102(6):777–86. https://doi.org/10.1016/s0092-8674(00)00066-0.

    Article  CAS  Google Scholar 

  10. Chargé SB, Rudnicki MA. Cellular and molecular regulation of muscle regeneration. Physiol Rev. 2004;84(1):209–38. https://doi.org/10.1152/physrev.00019.2003.

    Article  Google Scholar 

  11. Relaix F, Montarras D, Zaffran S, Gayraud-Morel B, Rocancourt D, Tajbakhsh S, et al. Pax3 and Pax7 have distinct and overlapping functions in adult muscle progenitor cells. J Cell Biol. 2006;172(1):91–102. https://doi.org/10.1083/jcb.200508044.

    Article  CAS  Google Scholar 

  12. Bellamy LM, Joanisse S, Grubb A, Mitchell CJ, McKay BR, Phillips SM, et al. The acute satellite cell response and skeletal muscle hypertrophy following resistance training. PLoS ONE. 2014;9(10): e109739. https://doi.org/10.1371/journal.pone.0109739.

    Article  CAS  Google Scholar 

  13. Farup J, Rahbek SK, Knudsen IS, de Paoli F, Mackey AL, Vissing K. Whey protein supplementation accelerates satellite cell proliferation during recovery from eccentric exercise. Amino Acids. 2014;46(11):2503–16. https://doi.org/10.1007/s00726-014-1810-3.

    Article  CAS  Google Scholar 

  14. Hyldahl RD, Olson T, Welling T, Groscost L, Parcell AC. Satellite cell activity is differentially affected by contraction mode in human muscle following a work-matched bout of exercise. Front Physiol. 2014;5:485. https://doi.org/10.3389/fphys.2014.00485.

    Article  Google Scholar 

  15. Nederveen JP, Joanisse S, Snijders T, Ivankovic V, Baker SK, Phillips SM, et al. Skeletal muscle satellite cells are located at a closer proximity to capillaries in healthy young compared with older men. J Cachexia Sarcopenia Muscle. 2016;7(5):547–54. https://doi.org/10.1002/jcsm.12105.

    Article  Google Scholar 

  16. Snijders T, Nederveen JP, McKay BR, Joanisse S, Verdijk LB, van Loon LJ, et al. Satellite cells in human skeletal muscle plasticity. Front Physiol. 2015;6:283. https://doi.org/10.3389/fphys.2015.00283.

    Article  Google Scholar 

  17. Welle S, Totterman S, Thornton C. Effect of age on muscle hypertrophy induced by resistance training. J Gerontol A Biol Sci Med Sci. 1996;51(6):M270–5. https://doi.org/10.1093/gerona/51a.6.m270.

    Article  CAS  Google Scholar 

  18. Verdijk LB, Snijders T, Drost M, Delhaas T, Kadi F, Van Loon LJC. Satellite cells in human skeletal muscle; from birth to old age. Age. 2014;36(2):545–57. https://doi.org/10.1007/s11357-013-9583-2.

    Article  CAS  Google Scholar 

  19. Walker DK, Fry CS, Drummond MJ, Dickinson JM, Timmerman KL, Gundermann DM, et al. Pax7+ satellite cells in young and older adults following resistance exercise. Muscle Nerve. 2012;46(1):51–9. https://doi.org/10.1002/mus.23266.

    Article  Google Scholar 

  20. Joanisse S, McKay BR, Nederveen JP, Scribbans TD, Gurd BJ, Gillen JB, et al. Satellite cell activity, without expansion, after nonhypertrophic stimuli. Am J Physiol Regul Integr and Comp Physiol. 2015;309(9):R1101–11. https://doi.org/10.1152/ajpregu.00249.2015.

    Article  CAS  Google Scholar 

  21. Corbel SY, Lee A, Yi L, Duenas J, Brazelton TR, Blau HM, et al. Contribution of hematopoietic stem cells to skeletal muscle. Nat Med. 2003;9(12):1528–32. https://doi.org/10.1038/nm959.

    Article  CAS  Google Scholar 

  22. Ferrari G, Cusella-De Angelis G, Coletta M, Paolucci E, Stornaiuolo A, Cossu G, et al. Muscle regeneration by bone marrow-derived myogenic progenitors. Science. 1998;279(5356):1528–30. https://doi.org/10.1126/science.279.5356.1528.

    Article  CAS  Google Scholar 

  23. Bittner RE, Schöfer C, Weipoltshammer K, Ivanova S, Streubel B, Hauser E, et al. Recruitment of bone-marrow-derived cells by skeletal and cardiac muscle in adult dystrophic mdx mice. Anat Embryol (Berl). 1999;199(5):391–6. https://doi.org/10.1007/s004290050237.

    Article  CAS  Google Scholar 

  24. Tamaki T, Okada Y, Uchiyama Y, Tono K, Masuda M, Nitta M, et al. Skeletal muscle-derived CD34+/45- and CD34-/45- stem cells are situated hierarchically upstream of Pax7+ cells. Stem Cells Dev. 2008;17(4):653–67. https://doi.org/10.1089/scd.2008.0070.

    Article  CAS  Google Scholar 

  25. Camargo FD, Green R, Capetenaki Y, Jackson KA, Goodell MA. Single hematopoietic stem cells generate skeletal muscle through myeloid intermediates. Nat Med. 2003;9(12):1520–7. https://doi.org/10.1038/nm963.

    Article  CAS  Google Scholar 

  26. Krause DS, Ito T, Fackler MJ, Smith OM, Collector MI, Sharkis SJ, et al. Characterization of murine CD34, a marker for hematopoietic progenitor and stem cells. Blood. 1994;84(3):691–701.

    Article  CAS  Google Scholar 

  27. Montarras D, Morgan J, Collins C, Relaix F, Zaffran S, Cumano A, et al. Direct isolation of satellite cells for skeletal muscle regeneration. Science. 2005;309(5743):2064–7. https://doi.org/10.1126/science.1114758.

    Article  CAS  Google Scholar 

  28. Ieronimakis N, Balasundaram G, Rainey S, Srirangam K, Yablonka-Reuveni Z, Reyes M. Absence of CD34 on murine skeletal muscle satellite cells marks a reversible state of activation during acute injury. PLoS ONE. 2010;5(6): e10920. https://doi.org/10.1371/journal.pone.0010920.

    Article  CAS  Google Scholar 

  29. Fina L, Molgaard HV, Robertson D, Bradley NJ, Monaghan P, Delia D, et al. Expression of the CD34 gene in vascular endothelial cells. Blood. 1990;75(12):2417–26. https://doi.org/10.1002/eji.1830250606.

    Article  CAS  Google Scholar 

  30. Lee JY, Qu-Petersen Z, Cao B, Kimura S, Jankowski R, Cummins J, et al. Clonal isolation of muscle-derived cells capable of enhancing muscle regeneration and bone healing. J Cell Biol. 2000;150(5):1085–100. https://doi.org/10.1083/jcb.150.5.1085.

    Article  CAS  Google Scholar 

  31. Beauchamp JR, Heslop L, Yu DS, Tajbakhsh S, Kelly RG, Wernig A, et al. Expression of CD34 and Myf5 defines the majority of quiescent adult skeletal muscle satellite cells. J Cell Biol. 2000;151(6):1221–34. https://doi.org/10.1083/jcb.151.6.1221.

    Article  CAS  Google Scholar 

  32. Tamaki T, Akatsuka A, Ando K, Nakamura Y, Matsuzawa H, Hotta T, et al. Identification of myogenic-endothelial progenitor cells in the interstitial spaces of skeletal muscle. J Cell Biol. 2002;157(4):571–7. https://doi.org/10.1083/jcb.200112106.

    Article  CAS  Google Scholar 

  33. Lee TXY, Wu J, Jean WH, Condello G, Alkhatib A, Hsieh CC, et al. Reduced stem cell aging in exercised human skeletal muscle is enhanced by ginsenoside Rg1. Aging (Albany NY). 2021;13(12):16567–76. https://doi.org/10.18632/aging.203176.

    Article  CAS  Google Scholar 

  34. Yang C, Jiao Y, Wei B, Yang Z, Wu JF, Jensen J, et al. Aged cells in human skeletal muscle after resistance exercise. Aging (Albany NY). 2018;10(6):1356–65. https://doi.org/10.18632/aging.101472.

    Article  CAS  Google Scholar 

  35. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372: n71. https://doi.org/10.1136/bmj.n71.

    Article  Google Scholar 

  36. Brown P, Brunnhuber K, Chalkidou K, Chalmers I, Clarke M, Fenton M, et al. How to formulate research recommendations. BMJ. 2006;333(7572):804–6. https://doi.org/10.1136/bmj.38987.492014.94.

    Article  Google Scholar 

  37. PeÑAilillo L, Blazevich A, Numazawa H, Nosaka K. Metabolic and muscle damage profiles of concentric versus repeated eccentric cycling. Med Sci Sports Exerc. 2013;45(9):1173–81. https://doi.org/10.1249/MSS.0b013e31828f8a73.

    Article  CAS  Google Scholar 

  38. van de Vyver M, Myburgh KH. Cytokine and satellite cell responses to muscle damage: interpretation and possible confounding factors in human studies. J Muscle Res Cell Motil. 2012;33(3–4):177–85. https://doi.org/10.1007/s10974-012-9303-z.

    Article  CAS  Google Scholar 

  39. Moreau D, Chou E. The acute effect of high-intensity exercise on executive function: a meta-analysis. Perspect Psychol Sci. 2019;14(5):734–64. https://doi.org/10.1177/1745691619850568.

    Article  Google Scholar 

  40. Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee IM, et al. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc. 2011;43(7):1334–59. https://doi.org/10.1249/MSS.0b013e318213fefb.

    Article  Google Scholar 

  41. Scribbans TD, Vecsey S, Hankinson PB, Foster WS, Gurd BJ. The effect of training intensity on VO2max in young healthy adults: a meta-regression and meta-analysis. Int J Exerc Sci. 2016;9(2):230–47.

    Google Scholar 

  42. De Pauw K, Roelands B, Cheung SS, de Geus B, Rietjens G, Meeusen R. Guidelines to classify subject groups in sport-science research. Int J Sports Physiol Perform. 2013;8(2):111–22. https://doi.org/10.1123/ijspp.8.2.111.

    Article  Google Scholar 

  43. Sterne JAC, Savović J, Page MJ, Elbers RG, Blencowe NS, Boutron I, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ. 2019;366: l4898. https://doi.org/10.1136/bmj.l4898.

    Article  Google Scholar 

  44. JPT H, Jagoe T, J C, M C, T L, MJ P, et al. Cochrane handbook for systematic reviews of interventions version 6.3 (updated February 2022); 2022.

  45. Fritz CO, Morris PE, Richler JJ. Effect size estimates: current use, calculations, and interpretation. J Exp Psychol Gen. 2012;141(1):2–18. https://doi.org/10.1037/a0024338.

    Article  Google Scholar 

  46. Lamberink HJ, Otte WM, Sinke MRT, Lakens D, Glasziou PP, Tijdink JK, et al. Statistical power of clinical trials increased while effect size remained stable: an empirical analysis of 136,212 clinical trials between 1975 and 2014. J Clin Epidemiol. 2018;102:123–8. https://doi.org/10.1016/j.jclinepi.2018.06.014.

    Article  Google Scholar 

  47. Faraone SV. Interpreting estimates of treatment effects: implications for managed care. P T. 2008;33(12):700–11.

    Google Scholar 

  48. Lee DK. Alternatives to P value: confidence interval and effect size. Korean J Anesthesiol. 2016;69(6):555–62. https://doi.org/10.4097/kjae.2016.69.6.555.

    Article  Google Scholar 

  49. Hoaglin DC. Misunderstandings about Q and “Cochran’s Q test” in meta-analysis. Stat Med. 2016;35(4):485–95. https://doi.org/10.1002/sim.6632.

    Article  Google Scholar 

  50. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557–60. https://doi.org/10.1136/bmj.327.7414.557.

    Article  Google Scholar 

  51. Aguayo D, Mueller SM, Boutellier U, Auer M, Jung HH, Flück M, et al. One bout of vibration exercise with vascular occlusion activates satellite cells. Exp Physiol. 2016;101(2):295–307. https://doi.org/10.1113/EP085330.

    Article  Google Scholar 

  52. Abou Sawan S, Hodson N, Babits P, Malowany JM, Kumbhare D, Moore DR. Satellite cell and myonuclear accretion is related to training-induced skeletal muscle fiber hypertrophy in young males and females. J Appl Physiol (1985). 2021;131(3):871–80. https://doi.org/10.1152/japplphysiol.00424.2021.

    Article  Google Scholar 

  53. Roberts LA, Raastad T, Markworth JF, Figueiredo VC, Egner IM, Shield A, et al. Post-exercise cold water immersion attenuates acute anabolic signalling and long-term adaptations in muscle to strength training. J Physiol. 2015;593(18):4285–301. https://doi.org/10.1113/jp270570.

    Article  CAS  Google Scholar 

  54. Baker JM, Nederveen JP, Parise G. Aerobic exercise in humans mobilizes HSCs in an intensity-dependent manner. J Appl Physiol (1985). 2017;122(1):182–90. https://doi.org/10.1152/japplphysiol.00696.2016.

    Article  Google Scholar 

  55. Bonsignore MR, Morici G, Riccioni R, Huertas A, Petrucci E, Veca M, et al. Hemopoietic and angiogenetic progenitors in healthy athletes: different responses to endurance and maximal exercise. J Appl Physiol (1985). 2010;109(1):60–7. https://doi.org/10.1152/japplphysiol.01344.2009.

    Article  CAS  Google Scholar 

  56. Bonsignore MR, Morici G, Santoro A, Pagano M, Cascio L, Bonanno A, et al. Circulating hematopoietic progenitor cells in runners. J Appl Physiol (1985). 2002;93(5):1691–7. https://doi.org/10.1152/japplphysiol.00376.2002.

    Article  Google Scholar 

  57. Nederveen JP, Snijders T, Joanisse S, Wavell CG, Mitchell CJ, Johnston LM, et al. Altered muscle satellite cell activation following 16 wk of resistance training in young men. Am J Physiol Regul Integr Comp Physiol. 2017;312(1):R85-92. https://doi.org/10.1152/ajpregu.00221.2016.

    Article  Google Scholar 

  58. O’Carroll L, Wardrop B, Murphy RP, Ross MD, Harrison M. Circulating angiogenic cell response to sprint interval and continuous exercise. Eur J Appl Physiol. 2019;119(3):743–52. https://doi.org/10.1007/s00421-018-04065-7.

    Article  Google Scholar 

  59. Niemiro GM, Parel J, Beals J, van Vliet S, Paluska SA, Moore DR, et al. Kinetics of circulating progenitor cell mobilization during submaximal exercise. J Appl Physiol (1985). 2017;122(3):675–82. https://doi.org/10.1152/japplphysiol.00936.2016.

    Article  CAS  Google Scholar 

  60. Ribeiro F, Ribeiro IP, Gonçalves AC, Alves AJ, Melo E, Fernandes R, et al. Effects of resistance exercise on endothelial progenitor cell mobilization in women. Sci Rep. 2017;7(1):17880. https://doi.org/10.1038/s41598-017-18156-6.

    Article  CAS  Google Scholar 

  61. Chang E, Paterno J, Duscher D, Maan ZN, Chen JS, Januszyk M, et al. Exercise induces stromal cell-derived factor-1α-mediated release of endothelial progenitor cells with increased vasculogenic function. Plast Reconstr Surg. 2015;135(2):340e-e350. https://doi.org/10.1097/PRS.0000000000000917.

    Article  CAS  Google Scholar 

  62. Thijssen DHJ, Vos JB, Verseyden C, Van Zonneveld AJ, Smits P, Sweep FCGJ, et al. Haematopoietic stem cells and endothelial progenitor cells in healthy men: effect of aging and training. Aging Cell. 2006;5(6):495–503. https://doi.org/10.1111/j.1474-9726.2006.00242.x.

    Article  CAS  Google Scholar 

  63. Wu J, Saovieng S, Cheng IS, Jensen J, Jean W-H, Alkhatib A, et al. Satellite cells depletion in exercising human skeletal muscle is restored by ginseng component Rg1 supplementation. J Funct Foods. 2019;58:27–33. https://doi.org/10.1016/j.jff.2019.04.032.

    Article  CAS  Google Scholar 

  64. Nederveen JP, Joanisse S, Thomas AC, Snijders T, Manta K, Bell KE, et al. Age-related changes to the satellite cell niche are associated with reduced activation following exercise. FASEB J. 2020;34(7):8975–89. https://doi.org/10.1096/fj.201900787R.

    Article  CAS  Google Scholar 

  65. Toth KG, McKay BR, De Lisio M, Little JP, Tarnopolsky MA, Parise G. IL-6 induced STAT3 signalling is associated with the proliferation of human muscle satellite cells following acute muscle damage. PLoS ONE. 2011;6(3): e17392. https://doi.org/10.1371/journal.pone.0017392.

    Article  CAS  Google Scholar 

  66. Mackey AL, Rasmussen LK, Kadi F, Schjerling P, Helmark IC, Ponsot E, et al. Activation of satellite cells and the regeneration of human skeletal muscle are expedited by ingestion of nonsteroidal anti-inflammatory medication. FASEB J. 2016;30(6):2266–81. https://doi.org/10.1096/fj.201500198R.

    Article  CAS  Google Scholar 

  67. Nederveen JP, Joanisse S, Snijders T, Thomas ACQ, Kumbhare D, Parise G. The influence of capillarization on satellite cell pool expansion and activation following exercise-induced muscle damage in healthy young men. J Physiol. 2018;596(6):1063–78. https://doi.org/10.1113/JP275155.

    Article  CAS  Google Scholar 

  68. Shill DD, Lansford KA, Hempel HK, Call JA, Murrow JR, Jenkins NT. Effect of exercise intensity on circulating microparticles in men and women. Exp Physiol. 2018;103(5):693–700. https://doi.org/10.1113/EP086644.

    Article  CAS  Google Scholar 

  69. Ross M, Ingram L, Taylor G, Malone E, Simpson RJ, West D, et al. Older men display elevated levels of senescence-associated exercise-responsive CD28null angiogenic T cells compared with younger men. Physiol Rep. 2018;6(12): e13697. https://doi.org/10.14814/phy2.13697.

    Article  CAS  Google Scholar 

  70. Lee HS, Muthalib M, Akimoto T, Nosaka K. Changes in the number of circulating CD34+ cells after eccentric exercise of the elbow flexors in relation to muscle damage. J Sport Health Sci. 2015;4(3):275–81. https://doi.org/10.1016/j.jshs.2013.12.005.

    Article  Google Scholar 

  71. Craenenbroeck EMFV, Vrints CJ, Haine SE, Vermeulen K, Goovaerts I, Van Tendeloo VFI, et al. A maximal exercise bout increases the number of circulating CD34+/KDR+ endothelial progenitor cells in healthy subjects: relation with lipid profile. J Appl Physiol (1985). 2008;104(4):1006–13. https://doi.org/10.1152/japplphysiol.01210.2007.

    Article  CAS  Google Scholar 

  72. Zaldivar F, Eliakim A, Radom-Aizik S, Leu S-Y, Cooper DM. The effect of brief exercise on circulating CD34+ stem cells in early and late pubertal boys. Pediatr Res. 2007;61(4):491–5. https://doi.org/10.1203/pdr.0b013e3180332d36.

    Article  Google Scholar 

  73. McKay BR, Ogborn DI, Baker JM, Toth KG, Tarnopolsky MA, Parise G. Elevated SOCS3 and altered IL-6 signaling is associated with age-related human muscle stem cell dysfunction. Am J Physiol Cell Physiol. 2013;304(8):C717–28. https://doi.org/10.1152/ajpcell.00305.2012.

    Article  CAS  Google Scholar 

  74. Snijders T, Bell KE, Nederveen JP, Saddler NI, Mazara N, Kumbhare DA, et al. Ingestion of a multi-ingredient supplement does not alter exercise-induced satellite cell responses in older men. J Nutr. 2018;148(6):891–9. https://doi.org/10.1093/jn/nxy063.

    Article  Google Scholar 

  75. Möbius-Winkler S, Hilberg T, Menzel K, Golla E, Burman A, Schuler G, et al. Time-dependent mobilization of circulating progenitor cells during strenuous exercise in healthy individuals. J Appl Physiol (1985). 2009;107(6):1943–50. https://doi.org/10.1152/japplphysiol.00532.2009.

    Article  CAS  Google Scholar 

  76. McKay BR, Ogborn DI, Bellamy LM, Tarnopolsky MA, Parise G. Myostatin is associated with age-related human muscle stem cell dysfunction. FASEB J. 2012;26(6):2509–21. https://doi.org/10.1096/fj.11-198663.

    Article  CAS  Google Scholar 

  77. Cermak NM, Snijders T, McKay BR, Parise G, Verdijk LB, Tarnopolsky MA, et al. Eccentric exercise increases satellite cell content in type II muscle fibers. Med Sci Sports Exerc. 2013;45(2):230–7. https://doi.org/10.1249/MSS.0b013e318272cf47.

    Article  Google Scholar 

  78. Agha NH, Baker FL, Kunz HE, Graff R, Azadan R, Dolan C, et al. Vigorous exercise mobilizes CD34+ hematopoietic stem cells to peripheral blood via the β(2)-adrenergic receptor. Brain Behav Immun. 2018;68:66–75. https://doi.org/10.1016/j.bbi.2017.10.001.

    Article  CAS  Google Scholar 

  79. Harris E, Rakobowchuk M, Birch KM. Interval exercise increases angiogenic cell function in postmenopausal women. BMJ Open Sport Exerc Med. 2017;3(1): e000248. https://doi.org/10.1136/bmjsem-2017-000248.

    Article  Google Scholar 

  80. Morici G, Zangla D, Santoro A, Pelosi E, Petrucci E, Gioia M, et al. Supramaximal exercise mobilizes hematopoietic progenitors and reticulocytes in athletes. Am J Physiol Regul Integr Comp Physiol. 2005;289(5):R1496–503. https://doi.org/10.1152/ajpregu.00338.2005.

    Article  CAS  Google Scholar 

  81. Kroepfl JM, Pekovits K, Stelzer I, Fuchs R, Zelzer S, Hofmann P, et al. Exercise increases the frequency of circulating hematopoietic progenitor cells, but reduces hematopoietic colony-forming capacity. Stem Cells Dev. 2012;21(16):2915–25. https://doi.org/10.1089/scd.2012.0017.

    Article  CAS  Google Scholar 

  82. Krüger K, Pilat C, Schild M, Lindner N, Frech T, Muders K, et al. Progenitor cell mobilization after exercise is related to systemic levels of G-CSF and muscle damage. Scand J Med Sci Sports. 2015;25(3):e283–91. https://doi.org/10.1111/sms.12320.

    Article  Google Scholar 

  83. Laufs U, Urhausen A, Werner N, Scharhag J, Heitz A, Kissner G, et al. Running exercise of different duration and intensity: effect on endothelial progenitor cells in healthy subjects. Eur J Cardiovasc Prev Rehabil. 2005;12(4):407–14. https://doi.org/10.1097/01.hjr.0000174823.87269.2e.

    Article  Google Scholar 

  84. Ross MD, Wekesa AL, Phelan JP, Harrison M. Resistance exercise increases endothelial progenitor cells and angiogenic factors. Med Sci Sports Exerc. 2013;46(1):16–23. https://doi.org/10.1249/MSS.0b013e3182a142da.

    Article  CAS  Google Scholar 

  85. Yang Z, Wang JM, Chen L, Luo CF, Tang AL, Tao J. Acute exercise-induced nitric oxide production contributes to upregulation of circulating endothelial progenitor cells in healthy subjects. J Hum Hypertens. 2007;21(6):452–60. https://doi.org/10.1038/sj.jhh.1002171.

    Article  CAS  Google Scholar 

  86. Montgomery R, Paterson A, Williamson C, Florida-James G, Ross MD. Blood flow restriction exercise attenuates the exercise-induced endothelial progenitor cell response in healthy, young men. Front Physiol. 2019;10:447. https://doi.org/10.3389/fphys.2019.00447.

    Article  Google Scholar 

  87. Stelzer I, Kröpfl JM, Fuchs R, Pekovits K, Mangge H, Raggam RB, et al. Ultra-endurance exercise induces stress and inflammation and affects circulating hematopoietic progenitor cell function. Scand J Med Sci Sports. 2015;25(5):e442–50. https://doi.org/10.1111/sms.12347.

    Article  CAS  Google Scholar 

  88. Wardyn GG, Rennard SI, Brusnahan SK, McGuire TR, Carlson ML, Smith LM, et al. Effects of exercise on hematological parameters, circulating side population cells, and cytokines. Exp Hematol. 2008;36(2):216–23. https://doi.org/10.1016/j.exphem.2007.10.003.

    Article  CAS  Google Scholar 

  89. Kröpfl JM, Beltrami FG, Gruber HJ, Stelzer I, Spengler CM. Exercise-induced circulating hematopoietic stem and progenitor cells in well-trained subjects. Front Physiol. 2020;11:308. https://doi.org/10.3389/fphys.2020.00308.

    Article  Google Scholar 

  90. Snijders T, Nederveen JP, Bell KE, Lau SW, Mazara N, Kumbhare DA, et al. Prolonged exercise training improves the acute type II muscle fibre satellite cell response in healthy older men. J Physiol. 2019;597(1):105–19. https://doi.org/10.1113/jp276260.

    Article  CAS  Google Scholar 

  91. Reidy PT, Fry CS, Dickinson JM, Drummond MJ, Rasmussen BB. Postexercise essential amino acid supplementation amplifies skeletal muscle satellite cell proliferation in older men 24 hours postexercise. Physiol Rep. 2017;5(11): e13269. https://doi.org/10.14814/phy2.13269.

    Article  CAS  Google Scholar 

  92. Snijders T, Verdijk LB, McKay BR, Smeets JS, van Kranenburg J, Groen BB, et al. Acute dietary protein intake restriction is associated with changes in myostatin expression after a single bout of resistance exercise in healthy young men. J Nutr. 2014;144(2):137–45. https://doi.org/10.3945/jn.113.183996.

    Article  CAS  Google Scholar 

  93. Ross MD, Malone EM, Simpson R, Cranston I, Ingram L, Wright GP, et al. Lower resting and exercise-induced circulating angiogenic progenitors and angiogenic T cells in older men. Am J Physiol Heart Circ Physiol. 2018;314(3):H392-402. https://doi.org/10.1152/ajpheart.00592.2017.

    Article  CAS  Google Scholar 

  94. Dreyfus PA, Chretien F, Chazaud B, Kirova Y, Caramelle P, Garcia L, et al. Adult bone marrow-derived stem cells in muscle connective tissue and satellite cell niches. Am J Pathol. 2004;164(3):773–9. https://doi.org/10.1016/S0002-9440(10)63165-3.

    Article  Google Scholar 

  95. Zheng B, Cao B, Crisan M, Sun B, Li G, Logar A, et al. Prospective identification of myogenic endothelial cells in human skeletal muscle. Nat Biotechnol. 2007;25(9):1025–34. https://doi.org/10.1038/nbt1334.

    Article  CAS  Google Scholar 

  96. Carlson BM, Faulkner JA. Muscle transplantation between young and old rats: age of host determines recovery. Am J Physiol Cell Physiol. 1989;256:C1262–6. https://doi.org/10.1152/ajpcell.1989.256.6.C1262.

    Article  CAS  Google Scholar 

  97. Conboy IM, Conboy MJ, Smythe GM, Rando TA. Notch-mediated restoration of regenerative potential to aged muscle. Science. 2003;302:1575–7. https://doi.org/10.1126/science.1087573.

    Article  CAS  Google Scholar 

  98. Rader EP, Faulkner JA. Effect of aging on the recovery following contraction-induced injury in muscles of female mice. J Appl Physiol (1985). 2006;101(3):887–92. https://doi.org/10.1152/japplphysiol.00380.2006.

    Article  Google Scholar 

  99. Kadi F, Charifi N, Denis C, Lexell J. Satellite cells and myonuclei in young and elderly women and men. Muscle Nerve. 2004;29(1):120–7. https://doi.org/10.1002/mus.10510.

    Article  Google Scholar 

  100. McKay BR, Toth KG, Tarnopolsky MA, Parise G. Satellite cell number and cell cycle kinetics in response to acute myotrauma in humans: immunohistochemistry versus flow cytometry. J Physiol. 2010;588(17):3307–20. https://doi.org/10.1113/jphysiol.2010.190876.

    Article  CAS  Google Scholar 

  101. Decaroli MC, Rochira V. Aging and sex hormones in males. Virulence. 2017;8(5):545–70. https://doi.org/10.1080/21505594.2016.1259053.

    Article  CAS  Google Scholar 

  102. Dechenes CJ, Verchere CB, Andrikopoulos S, Kahn SE. Human aging is associated with parallel reductions in insulin and amylin release. Am J Physiol Cell Physiol. 1998;275(5):E785–91. https://doi.org/10.1152/ajpendo.1998.275.5.E785.

    Article  CAS  Google Scholar 

  103. Guillet C, Prod’homme M, Balage M, Gachon P, Giraudet C, Morin L, et al. Impaired anabolic response of muscle protein synthesis is associated with S6K1 dysregulation in elderly humans. FASEB J. 2004;18(13):1586–7. https://doi.org/10.1096/fj.03-1341fje.

    Article  CAS  Google Scholar 

  104. Kimball SR, Horetsky RL, Jefferson LS. Signal transduction pathways involved in the regulation of protein synthesis by insulin in L6 myoblasts. Am J Physiol Cell Physiol. 1998;274(1):C221–8. https://doi.org/10.1152/ajpcell.1998.274.1.C221.

    Article  CAS  Google Scholar 

  105. Kimball SR, Jurasinski CV, Lawrence JC Jr, Jefferson LS. Insulin stimulates protein synthesis in skeletal muscle by enhancing the association of eIF-4E and eIF-4G. Am J Physiol Cell Physiol. 1997;272:C754–9. https://doi.org/10.1152/ajpcell.1997.272.2.C754.

    Article  CAS  Google Scholar 

  106. O’Connor PM, Kimball SR, Suryawan A, Bush JA, Nguyen HV, Jefferson LS, et al. Regulation of translation initiation by insulin and amino acids in skeletal muscle of neonatal pigs. Am J Physiol Cell Physiol. 2003;285(1):E40-53. https://doi.org/10.1152/ajpendo.00563.2002.

    Article  CAS  Google Scholar 

  107. Perfetti R, Rafizadeh CM, Liotta AS, Egan JM. Age-dependent reduction in insulin secretion and insulin mRNA in isolated islets from rats. Am J Physiol Cell Physiol. 1995;269:E983–90. https://doi.org/10.1152/ajpendo.1995.269.6.E983.

    Article  CAS  Google Scholar 

  108. Calvanese V, Lee LK, Mikkola HK. Sex hormone drives blood stem cell reproduction. EMBO J. 2014;33(6):534–5. https://doi.org/10.1002/embj.201487976.

    Article  CAS  Google Scholar 

  109. Shahbazi M, Cundiff P, Zhou W, Lee P, Patel A, D’Souza SL, et al. The role of insulin as a key regulator of seeding, proliferation, and mRNA transcription of human pluripotent stem cells. Stem Cell Res Ther. 2019;10(1):228. https://doi.org/10.1186/s13287-019-1319-5.

    Article  CAS  Google Scholar 

  110. Fu X, Xiao J, Wei Y, Li S, Liu Y, Yin J, et al. Combination of inflammation-related cytokines promotes long-term muscle stem cell expansion. Cell Res. 2015;25(6):655–73. https://doi.org/10.1038/cr.2015.58.

    Article  CAS  Google Scholar 

  111. Wu J, Saovieng S, Cheng IS, Liu T, Hong S, Lin C-Y, et al. Ginsenoside Rg1 supplementation clears senescence-associated β-galactosidase in exercising human skeletal muscle. J Ginseng Res. 2019;43(4):580–8. https://doi.org/10.1016/j.jgr.2018.06.002.

    Article  Google Scholar 

  112. Townsend JR, Stout JR, Jajtner AR, Church DD, Beyer KS, Riffe JJ, et al. Polyphenol supplementation alters intramuscular apoptotic signaling following acute resistance exercise. Physiol Rep. 2018;6(2): e13552. https://doi.org/10.14814/phy2.13552.

    Article  CAS  Google Scholar 

  113. Justice JN, Gregory H, Tchkonia T, LeBrasseur NK, Kirkland JL, Kritchevsky SB, et al. Cellular senescence biomarker p16INK4a+ cell burden in thigh adipose is associated with poor physical function in older women. J Gerontol A Biol Sci Med Sci. 2018;73(7):939–45. https://doi.org/10.1093/gerona/glx134.

    Article  CAS  Google Scholar 

  114. Forcina L, Cosentino M, Musarò A. Mechanisms regulating muscle regeneration: insights into the interrelated and time-dependent phases of tissue healing. Cells. 2020;9(5):1297. https://doi.org/10.3390/cells9051297.

    Article  CAS  Google Scholar 

  115. Tidball JG. Regulation of muscle growth and regeneration by the immune system. Nat Rev Immunol. 2017;17(3):165–78. https://doi.org/10.1038/nri.2016.150.

    Article  CAS  Google Scholar 

  116. Callegari GA, Novaes JS, Neto GR, Dias I, Garrido ND, Dani C. Creatine kinase and lactate dehydrogenase responses after different resistance and aerobic exercise protocols. J Hum Kinet. 2017;58:65–72. https://doi.org/10.1515/hukin-2017-0071.

    Article  Google Scholar 

  117. Tufvesson E, Svensson H, Ankerst J, Bjermer L. Increase of club cell (Clara) protein (CC16) in plasma and urine after exercise challenge in asthmatics and healthy controls, and correlations to exhaled breath temperature and exhaled nitric oxide. Respir Med. 2013;107(11):1675–81. https://doi.org/10.1016/j.rmed.2013.08.004.

    Article  Google Scholar 

  118. Bolger C, Tufvesson E, Anderson SD, Devereux G, Ayres JG, Bjermer L, et al. Effect of inspired air conditions on exercise-induced bronchoconstriction and urinary CC16 levels in athletes. J Appl Physiol (1985). 2011;111(4):1059–65. https://doi.org/10.1152/japplphysiol.00113.2011.

    Article  CAS  Google Scholar 

  119. Combes A, Dekerle J, Dumont X, Twomey R, Bernard A, Daussin F, et al. Continuous exercise induces airway epithelium damage while a matched-intensity and volume intermittent exercise does not. Respir Res. 2019;20(1):12. https://doi.org/10.1186/s12931-019-0978-1.

    Article  Google Scholar 

  120. Rochefort GY, Vaudin P, Bonnet N, Pages JC, Domenech J, Charbord P, et al. Influence of hypoxia on the domiciliation of mesenchymal stem cells after infusion into rats: possibilities of targeting pulmonary artery remodeling via cells therapies? Respir Res. 2005;6(1):125. https://doi.org/10.1186/1465-9921-6-125.

    Article  CAS  Google Scholar 

  121. Rawlins EL, Hogan BL. Ciliated epithelial cell lifespan in the mouse trachea and lung. Am J Physiol Lung Cell Mol Physiol. 2008;295(1):L231–4. https://doi.org/10.1152/ajplung.90209.2008.

    Article  CAS  Google Scholar 

  122. Welch C, Greig C, Masud T, Wilson D, Jackson TA. COVID-19 and acute sarcopenia. Aging Dis. 2020;11(6):1345–51. https://doi.org/10.14336/AD.2020.1014.

    Article  Google Scholar 

  123. Steffl M, Bohannon RW, Petr M, Kohlikova E, Holmerova I. Relation between cigarette smoking and sarcopenia: meta-analysis. Physiol Res. 2015;64(3):419–26. https://doi.org/10.33549/physiolres.932802.

    Article  CAS  Google Scholar 

  124. Collins CA, Olsen I, Zammit PS, Heslop L, Petrie A, Partridge TA, et al. Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell. 2005;122(2):289–301. https://doi.org/10.1016/j.cell.2005.05.010.

    Article  CAS  Google Scholar 

  125. Sacco A, Doyonnas R, Kraft P, Vitorovic S, Blau HM. Self-renewal and expansion of single transplanted muscle stem cells. Nature. 2008;456(7221):502–6. https://doi.org/10.1038/nature07384.

    Article  CAS  Google Scholar 

  126. Pesce M, Orlandi A, Iachininoto MG, Straino S, Torella AR, Rizzuti V, et al. Myoendothelial differentiation of human umbilical cord blood-derived stem cells in ischemic limb tissues. Circ Res. 2003;93(5):e51-62. https://doi.org/10.1161/01.Res.0000090624.04507.45.

    Article  Google Scholar 

  127. Adams GR, Zaldivar FP, Nance DM, Kodesh E, Radom-Aizik S, Cooper DM. Exercise and leukocyte interchange among central circulation, lung, spleen, and muscle. Brain Behav Immun. 2011;25(4):658–66. https://doi.org/10.1016/j.bbi.2011.01.002.

    Article  Google Scholar 

  128. Koç ON, Gerson SL, Phillips GL, Cooper BW, Kutteh L, Van Zant G, et al. Autologous CD34+ cell transplantation for patients with advanced lymphoma: effects of overnight storage on peripheral blood progenitor cell enrichment and engraftment. Bone Marrow Transplant. 1998;21(4):337–43. https://doi.org/10.1038/sj.bmt.1701096.

    Article  Google Scholar 

  129. Frangoul H, Altshuler D, Cappellini MD, Chen YS, Domm J, Eustace BK, et al. CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia. N Engl J Med. 2021;384(3):252–60. https://doi.org/10.1056/NEJMoa2031054.

    Article  CAS  Google Scholar 

  130. Hoggatt J, Singh P, Sampath J, Pelus LM. Prostaglandin E2 enhances hematopoietic stem cell homing, survival, and proliferation. Blood. 2009;113(22):5444–55. https://doi.org/10.1182/blood-2009-01-201335.

    Article  CAS  Google Scholar 

  131. Sapp RM, Evans WS, Eagan LE, Chesney CA, Zietowski EM, Prior SJ, et al. The effects of moderate and high-intensity exercise on circulating markers of endothelial integrity and activation in young, healthy men. J Appl Physiol (1985). 2019;127(5):1245–56. https://doi.org/10.1152/japplphysiol.00477.2019.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chia-Hua Kuo.

Ethics declarations

Funding

No source of funding was used to assist in the preparation of this work.

Conflicts of interest/competing interests

Luthfia Dewi, Yin-Chou Lin, Andrew Nicholls, Giancarlo Condello, Chih-Yang Huang, and Chia-Hua Kuo have no conflicts of interest that are directly relevant to the content of this article.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

The datasets created and analyzed in this study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

Author contributions

LD and CHK formulated the review. LD and CYH conducted database searches independently. LYC checked the references. LD, CYH, and CHK took part in the screening process and data extraction. LD performed the meta-analyses. LD, LYC, and CHK wrote the first draft on the manuscript. All authors critically revised the manuscript and approved the final version of the manuscript.

Supplementary Information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dewi, L., Lin, YC., Nicholls, A. et al. Pax7+ Satellite Cells in Human Skeletal Muscle After Exercise: A Systematic Review and Meta-analysis. Sports Med 53, 457–480 (2023). https://doi.org/10.1007/s40279-022-01767-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-022-01767-z

Navigation