Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A general one-step plug-and-probe approach to top-gated transistors for rapidly probing delicate electronic materials

Abstract

The miniaturization of silicon-based electronics has motivated considerable efforts in exploring new electronic materials, including two-dimensional semiconductors and halide perovskites, which are usually too delicate to maintain their intrinsic properties during the harsh device fabrication steps. Here we report a convenient plug-and-probe approach for one-step simultaneous van der Waals integration of high-k dielectrics and contacts to enable top-gated transistors with atomically clean and electronically sharp dielectric and contact interfaces. By applying the plug-and-probe top-gate transistor stacks on two-dimensional semiconductors, we demonstrate an ideal subthreshold swing of 60 mV per decade. Using this approach on delicate lead halide perovskite, we realize a high-k top-gate CsPbBr3 transistor with a low operating voltage and a very high two-terminal field-effect mobility of 32 cm2 V−1 s−1. This approach can be extended to centimetre-scale MoS2 and perovskite and generate top-gated transistor arrays, offering a rapid and convenient way of accessing intrinsic properties of delicate emerging materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The plug-and-probe approach for damage-free fabrication of top-gated transistors on delicate materials via one-step simultaneous transfer of metal contacts and metal/Y2O3 top-gated stack.
Fig. 2: Plug-and-probe devices on 2D materials.
Fig. 3: Plug-and-probe transistor array on CVD-grown monolayer MoS2.
Fig. 4: Top-gated CsPbBr3 transistor array fabricated via the vdW plug-and-probe approach.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Moore, G. E. Cramming more components onto integrated circuits, reprinted from Electronics, volume 38, number 8, April 19, 1965, pp. 114 ff. IEEE J. Solid-State Circuits 11, 33–35 (2006).

  2. Meindl, J. D., Chen, Q. & Davis, J. A. Limits on silicon nanoelectronics for terascale integration. Science 293, 2044–2049 (2001).

    Article  CAS  Google Scholar 

  3. International Roadmap for Devices and Systems (IEEE, 2021). https://irds.ieee.org/editions/2021

  4. Sze, S. M. & Ng, K. K. Physics of Semiconductor Devices (2006).

  5. Keyes, R. W. Fundamental limits of silicon technology. Proc. IEEE 89, 227–239 (2001).

    Article  CAS  Google Scholar 

  6. Zhang, G. Q., Graef, M. & Roosmalen, F. V. The rationale and paradigm of ‘more than Moore’. In 56th Electronic Components and Technology Conference, pp. 151–157 (IEEE, 2006).

  7. Fiori, G. et al. Electronics based on two-dimensional materials. Nat. Nanotechnol. 9, 768–779 (2014).

    Article  CAS  Google Scholar 

  8. Liu, Y. et al. Promises and prospects of two-dimensional transistors. Nature 591, 43–53 (2021).

    Article  CAS  Google Scholar 

  9. Nie, W. et al. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 347, 522–525 (2015).

    Article  CAS  Google Scholar 

  10. Cao, Y. et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature 562, 249–253 (2018).

    Article  CAS  Google Scholar 

  11. Chhowalla, M., Jena, D. & Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 1, 16052 (2016).

    Article  CAS  Google Scholar 

  12. Akinwande, D., Petrone, N. & Hone, J. Two-dimensional flexible nanoelectronics. Nat. Commun. 5, 5678 (2014).

    Article  CAS  Google Scholar 

  13. Leijtens, T., Bush, K. A., Prasanna, R. & McGehee, M. D. Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors. Nat. Energy 3, 828–838 (2018).

    Article  CAS  Google Scholar 

  14. Liu, X.-K. et al. Metal halide perovskites for light-emitting diodes. Nat. Mater. 20, 10–21 (2021).

    Article  CAS  Google Scholar 

  15. Yumoto, G. et al. Strong spin–orbit coupling inducing Autler–Townes effect in lead halide perovskite nanocrystals. Nat. Commun. 12, 3026 (2021).

    Article  Google Scholar 

  16. Kim, H. G. & Lee, H.-B.-R. Atomic layer deposition on 2D materials. Chem. Mater. 29, 3809–3826 (2017).

    Article  CAS  Google Scholar 

  17. Illarionov, Y. Y. et al. Insulators for 2D nanoelectronics: the gap to bridge. Nat. Commun. 11, 3385 (2020).

    Article  CAS  Google Scholar 

  18. Jeon, J. H., Jerng, S.-K., Akbar, K. & Chun, S.-H. Hydrophobic surface treatment and interrupted atomic layer deposition for highly resistive Al2O3 films on graphene. ACS Appl. Mater. Interfaces 8, 29637–29641 (2016).

    Article  CAS  Google Scholar 

  19. Li, W. et al. Uniform and ultrathin high-κ gate dielectrics for two-dimensional electronic devices. Nat. Electron. 2, 563–571 (2019).

    Article  CAS  Google Scholar 

  20. Sheng, Y. et al. Gate stack engineering in MoS2 field-effect transistor for reduced channel doping and hysteresis effect. Adv. Electron. Mater. 7, 2000395 (2021).

    Article  CAS  Google Scholar 

  21. McDonnell, S. et al. HfO2 on MoS2 by atomic layer deposition: adsorption mechanisms and thickness scalability. ACS Nano 7, 10354–10361 (2013).

    Article  CAS  Google Scholar 

  22. Xuan, Y. et al. Atomic-layer-deposited nanostructures for graphene-based nanoelectronics. Appl. Phys. Lett. 92, 013101 (2008).

    Article  Google Scholar 

  23. Straus, D. B., Guo, S., Abeykoon, A. M. M. & Cava, R. J. Understanding the instability of the halide perovskite CsPbI3 through temperature-dependent structural analysis. Adv. Mater. 32, 2001069 (2020).

    Article  CAS  Google Scholar 

  24. Senanayak Satyaprasad, P. et al. Understanding charge transport in lead iodide perovskite thin-film field-effect transistors. Sci. Adv. 3, e1601935 (2017).

    Article  CAS  Google Scholar 

  25. Schulman, D. S., Arnold, A. J. & Das, S. Contact engineering for 2D materials and devices. Chem. Soc. Rev. 47, 3037–3058 (2018).

    Article  CAS  Google Scholar 

  26. Haick, H., Niitsoo, O., Ghabboun, J. & Cahen, D. Electrical contacts to organic molecular films by metal evaporation: effect of contacting details. J. Phys. Chem. C 111, 2318–2329 (2007).

    Article  CAS  Google Scholar 

  27. Liao, L. et al. High-κ oxide nanoribbons as gate dielectrics for high mobility top-gated graphene transistors. Proc. Natl Acad. Sci. USA 107, 6711 (2010).

    Article  CAS  Google Scholar 

  28. Liu, Y. et al. Van der Waals heterostructures and devices. Nat. Rev. Mater. 1, 16042 (2016).

    Article  CAS  Google Scholar 

  29. Liu, Y., Huang, Y. & Duan, X. Van der Waals integration before and beyond two-dimensional materials. Nature 567, 323–333 (2019).

    Article  CAS  Google Scholar 

  30. Wang, P. & Duan, X. Probing and pushing the limit of emerging electronic materials via van der Waals integration. MRS Bull. 46, 534–546 (2021).

    Article  CAS  Google Scholar 

  31. Lee, G.-H. et al. Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride–graphene heterostructures. ACS Nano 7, 7931–7936 (2013).

    Article  CAS  Google Scholar 

  32. Illarionov, Y. Y. et al. Ultrathin calcium fluoride insulators for two-dimensional field-effect transistors. Nat. Electron. 2, 230–235 (2019).

    Article  CAS  Google Scholar 

  33. Liao, L. et al. High-performance top-gated graphene-nanoribbon transistors using zirconium oxide nanowires as high-dielectric-constant gate dielectrics. Adv. Mater. 22, 1941–1945 (2010).

    Article  CAS  Google Scholar 

  34. Liao, L. et al. Top-gated graphene nanoribbon transistors with ultrathin high-k dielectrics. Nano Lett. 10, 1917–1921 (2010).

    Article  CAS  Google Scholar 

  35. Liao, L. et al. High-speed graphene transistors with a self-aligned nanowire gate. Nature 467, 305–308 (2010).

    Article  CAS  Google Scholar 

  36. Cheng, R. et al. High-frequency self-aligned graphene transistors with transferred gate stacks. Proc. Natl Acad. Sci. USA 109, 11588 (2012).

    Article  CAS  Google Scholar 

  37. Cheng, R. et al. Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics. Nat. Commun. 5, 5143 (2014).

    Article  CAS  Google Scholar 

  38. Liu, Y. et al. Toward barrier free contact to molybdenum disulfide using graphene electrodes. Nano Lett. 15, 3030–3034 (2015).

    Article  CAS  Google Scholar 

  39. Liu, Y. et al. Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions. Nature 557, 696–700 (2018).

    Article  CAS  Google Scholar 

  40. Chen, P. et al. Approaching the intrinsic exciton physics limit in two-dimensional semiconductor diodes. Nature 599, 404–410 (2021).

    Article  CAS  Google Scholar 

  41. Wang, J. et al. Transferred metal gate to 2D semiconductors for sub-1 V operation and near ideal subthreshold slope. Sci. Adv. 7: eabf8744.

  42. Wang, Y. et al. Probing photoelectrical transport in lead halide perovskites with van der Waals contacts. Nat. Nanotechnol. 15, 768–775 (2020).

    Article  CAS  Google Scholar 

  43. Manchanda, L. & Gurvitch, M. Yttrium oxide/silicon dioxide: a new dielectric structure for VLSI/ULSI circuits. IEEE Electron Device Lett. 9, 180–182 (1988).

    Article  CAS  Google Scholar 

  44. Wang, Z. et al. Growth and performance of yttrium oxide as an ideal high-κ gate dielectric for carbon-based electronics. Nano Lett. 10, 2024–2030 (2010).

    Article  CAS  Google Scholar 

  45. Durand, C. et al. Electrical property improvements of yttrium oxide-based metal–insulator–metal capacitors. J. Vac. Sci. Technol. A 24, 459–466 (2006).

    Article  CAS  Google Scholar 

  46. Liu, H. & Ye, P. D. MoS2 dual-gate MOSFET with atomic-layer-deposited Al2O3 as top-gate dielectric. IEEE Electron Device Lett. 33, 546–548 (2012).

    Article  CAS  Google Scholar 

  47. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011).

    Article  CAS  Google Scholar 

  48. Gurarslan, A. et al. Surface-energy-assisted perfect transfer of centimeter-scale monolayer and few-layer MoS2 films onto arbitrary substrates. ACS Nano 8, 11522–11528 (2014).

    Article  CAS  Google Scholar 

  49. Li, T. et al. Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat. Nanotechnol. 16, 1201–1207 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

X.D. acknowledges financial support by the Office of Naval Research through grant number N00014-22-1-2631.

Author information

Authors and Affiliations

Authors

Contributions

X.D. conceived and led the project. P.W., L.W. and X.D. designed the experiments. L.W. and P.W. performed device fabrication, characterization and data analysis. J.H. participated in cross-section TEM characterization. B.P. performed the X-ray photoelectron spectroscopy measurements. C.J., Q.Q. and J.Z. prepared the materials. D.X. performed the ALD process. P.W., L.W., Y.H. and X.D. co-wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Xiangfeng Duan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Wenzhong Bao, Yang Chai and Tibor Grasser for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–11, Tables 1 and 2 and references 1–22.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Wang, P., Huang, J. et al. A general one-step plug-and-probe approach to top-gated transistors for rapidly probing delicate electronic materials. Nat. Nanotechnol. 17, 1206–1213 (2022). https://doi.org/10.1038/s41565-022-01221-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-022-01221-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing