Skip to main content

Advertisement

Log in

Retinoic Acid Prevents the Neuronal Damage Through the Regulation of Parvalbumin in an Ischemic Stroke Model

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Ischemic stroke is a neurological disease that causes brain damage by increasing oxidative stress and ion imbalance. Retinoic acid is a major metabolite of vitamin A and regulates oxidative stress, calcium homeostasis, and cell death. Intracellular calcium is involved in neuronal growth and synaptic plasticity. Parvalbumin is a calcium-binding protein that is mainly expressed in brain. In this study, we investigated whether retinoic acid has neuroprotective effects by controlling intracellular calcium concentration and parvalbumin expression in ischemic brain damage. Middle cerebral artery occlusion (MCAO) was performed to induce cerebral ischemia. Retinoic acid (5 mg/kg) or vehicle was injected into the abdominal cavity for four days before surgery and cerebral cortices were collected 24 h after MCAO for further studies. MCAO damage induced neurological deficits and histopathological changes and decreased parvalbumin expression. However, retinoic acid treatment alleviated these changes. In cultured neurons, glutamate (5 mM) exposure induced neuronal cell death, increased intracellular calcium concentration, and decreased parvalbumin expression. Retinoic acid treatment attenuated these changes against glutamate toxicity in a dose-dependent manner. It also regulates glutamate induced change in bcl-2 and bax expression. The mitigation effects of retinoic acid were greater under non-transfection conditions than under parvalbumin siRNA transfection conditions. Our findings showed that retinoic acid modulates intracellular calcium concentration and parvalbumin expression and prevents apoptosis in ischemic brain injury. In conclusion, retinoic acid contributes to the preservation of neurons from ischemic stroke by controlling parvalbumin expression and apoptosis-related proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Data will be made available on reasonable request.

Code Availability

Not applicable.

References

  1. Mistry EA, Dumont AS (2020) Medium vessel occlusion and acute ischemic stroke: a call for treatment paradigm reappraisal. Stroke 51:3200–3202

    Article  Google Scholar 

  2. Pappachan J, Kirkham FJ (2008) Cerebrovascular disease and stroke. Arch Dis Child 93:890–898

    Article  CAS  Google Scholar 

  3. Lai TW, Zhang S, Wang YT (2014) Excitotoxicity and stroke: identifying novel targets for neuroprotection. Prog Neurobiol 115:157–188

    Article  CAS  Google Scholar 

  4. Sims NR, Muyderman H (2010) Mitochondria, oxidative metabolism and cell death in stroke. Biochim Biophys Acta 1802:80–91

    Article  CAS  Google Scholar 

  5. Song M, Yu SP (2014) Ionic regulation of cell volume changes and cell death after ischemic stroke. Transl Stroke Res 5:17–27

    Article  CAS  Google Scholar 

  6. Yang C, Hawkins KE, Doré S, Candelario-Jalil E (2019) Neuroinflammatory mechanisms of blood-brain barrier damage in ischemic stroke. Am J Physiol Cell Physiol 316:C135–C153

    Article  CAS  Google Scholar 

  7. Baker KD, Edwards TM, Rickard NS (2013) The role of intracellular calcium stores in synaptic plasticity and memory consolidation. Neurosci Biobehav Rev 37:1211–1239

    Article  CAS  Google Scholar 

  8. Weber JT, Rzigalinski BA, Ellis EF (2001) Traumatic injury of cortical neurons causes changes in intracellular calcium stores and capacitative calcium influx. J Biol Chem 276:1800–1807

    Article  CAS  Google Scholar 

  9. Ludhiadch A, Sharma R, Muriki A, Munshi A (2022) Role of calcium homeostasis in ischemic stroke: a review. CNS Neurol Disord Drug Targets 21:52–61

    Article  CAS  Google Scholar 

  10. Chung JW, Ryu WS, Kim BJ, Yoon BW (2015) Elevated calcium after acute ischemic stroke: association with a poor short-term outcome and long-term mortality. J Stroke 17:54–59

    Article  Google Scholar 

  11. Marambaud P, Dreses-Werringloer U, Vingtdeux V (2009) Calcium signaling in neurodegeneration. Mol Neurodegener 4:1–15

    Article  Google Scholar 

  12. Cates MS, Berry MB, Ho EL, Li Q, Potter JD, Phillips GN Jr (1999) Metal-ion affinity and specificity in EF-hand proteins: coordination geometry and domain plasticity in parvalbumin. Structure 7:1269–1278

    Article  CAS  Google Scholar 

  13. Bjerke IE, Yates SC, Laja A, Witter MP, Puchades MA, Bjaalie JG, Leergaard TB (2020) Densities and numbers of calbindin and parvalbumin positive neurons across the rat and mouse brain. iScience 24:101906

    Article  Google Scholar 

  14. Reid RE (1985) The functional nature of calcium binding units in calmodulin, troponin C and parvalbumin. J Theor Biol 114:353–374

    Article  CAS  Google Scholar 

  15. Kahl CR, Means AR (2003) Regulation of cell cycle progression by calcium/calmodulin-dependent pathways. Endocr Rev 24:719–736

    Article  CAS  Google Scholar 

  16. Koledova VV, Khalil RA (2006) Ca2+, calmodulin, and cyclins in vascular smooth muscle cell cycle. Circ Res 98:1240–1243

    Article  CAS  Google Scholar 

  17. Ruden JB, Dugan LL, Konradi C (2021) Parvalbumin interneuron vulnerability and brain disorders. Neuropsychopharmacology 46:279–287

    Article  CAS  Google Scholar 

  18. Lanoue AC, Blatt GJ, Soghomonian JJ (2013) Decreased parvalbumin mRNA expression in dorsolateral prefrontal cortex in Parkinson’s disease. Brain Res 1531:37–47

    Article  CAS  Google Scholar 

  19. Park DJ, Kang JB, Shah FA, Koh PO (2021) Quercetin attenuates the reduction of parvalbumin in middle cerebral artery occlusion animal model. Lab Anim Res 37:9

    Article  CAS  Google Scholar 

  20. Wöhr M, Orduz D, Gregory P, Moreno H, Khan U, Vörckel KJ, Wolfer DP, Welzl H, Gall D, Schiffmann SN, Schwaller B (2015) Lack of parvalbumin in mice leads to behavioral deficits relevant to all human autism core symptoms and related neural morphofunctional abnormalities. Transl Psychiatry 5:e525

    Article  Google Scholar 

  21. Dräger UC (2006) Retinoic acid signaling in the functioning brain. Sci STKE 2006:pe10

    Article  Google Scholar 

  22. Yu S, Levi L, Siegel R, Noy N (2012) Retinoic acid induces neurogenesis by activating both retinoic acid receptors (RARs) and peroxisome proliferator-activated receptor β/δ (PPARβ/δ). J Biol Chem 287:42195–42205

    Article  CAS  Google Scholar 

  23. Wołoszynowska-Fraser MU, Kouchmeshky A, McCaffery P (2020) Vitamin A and retinoic acid in cognition and cognitive disease. Annu Rev Nutr 40:247–272

    Article  Google Scholar 

  24. Lee HP, Casadesus G, Zhu X, Lee HG, Perry G, Smith MA, Gustaw-Rothenberg K, Lerner A (2009) All-trans retinoic acid as a novel therapeutic strategy for Alzheimer’s disease. Expert Rev Neurother 9:1615–1621

    Article  CAS  Google Scholar 

  25. Cai W, Wang J, Hu M, Chen X, Lu Z, Bellanti JA, Zheng SG (2019) All trans-retinoic acid protects against acute ischemic stroke by modulating neutrophil functions through STAT1 signaling. J Neuroinflammation 16:175

    Article  Google Scholar 

  26. Kang JB, Park DJ, Shah MA, Koh PO (2021) Retinoic acid exerts neuroprotective effects against focal cerebral ischemia by preventing apoptotic cell death. Neurosci Lett 757:135979

    Article  CAS  Google Scholar 

  27. Aoto J, Nam CI, Poon MM, Ting P, Chen L (2008) Synaptic signaling by all-trans retinoic acid in homeostatic synaptic plasticity. Neuron 60:308–320

    Article  CAS  Google Scholar 

  28. Lenz M, Kruse P, Eichler A, Straehle J, Beck J, Deller T, Vlachos A (2021) All-trans retinoic acid induces synaptic plasticity in human cortical neurons. Elife 10:e63026

    Article  CAS  Google Scholar 

  29. Chatzi C, Brade T, Duester G (2011) Retinoic acid functions as a key GABAergic differentiation signal in the basal ganglia. PLoS Biol 9:e1000609

    Article  CAS  Google Scholar 

  30. Håglin S, Berghard A, Bohm S (2020) Increased retinoic acid catabolism in olfactory sensory neurons activates dormant tissue-specific stem cells and accelerates age-related metaplasia. J Neurosci 40:4116–4129

    Article  Google Scholar 

  31. Riancho J, Berciano MT, Ruiz-Soto M, Berciano J, Landreth G, Lafarga M (2016) Retinoids and motor neuron disease: Potential role in amyotrophic lateral sclerosis. J Neurol Sci 360:115–120

    Article  CAS  Google Scholar 

  32. Kang JB, Park DJ, Shah MA, Koh PO (2022) Quercetin ameliorates glutamate toxicity-induced neuronal cell death by controlling calcium-binding protein parvalbumin. J Vet Sci 23:e26

    Article  Google Scholar 

  33. Kong L, Wang Y, Wang XJ, Wang XT, Zhao Y, Wang LM, Chen ZY (2015) Retinoic acid ameliorates blood-brain barrier disruption following ischemic stroke in rats. Pharmacol Res 99:125–136

    Article  CAS  Google Scholar 

  34. Longa EZ, Weinstein PR, Carlson S, Cummins R (1989) Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20:84–91

    Article  CAS  Google Scholar 

  35. Hattori K, Lee H, Hurn PD, Crain BJ, Traystman RJ, DeVries AC (2000) Cognitive deficits after focal cerebral ischemia in mice. Stroke 31:1939–1944

    Article  CAS  Google Scholar 

  36. Takeshita H, Yamamoto K, Nozato S, Inagaki T, Tsuchimochi H, Shirai M, Yamamoto R, Imaizumi Y, Hongyo K, Yokoyama S, Takeda M, Oguro R, Takami Y, Itoh N, Takeya Y, Sugimoto K, Fukada SI, Rakugi H (2017) Modified forelimb grip strength test detects aging-associated physiological decline in skeletal muscle function in male mice. Sci Rep 7:42323

    Article  CAS  Google Scholar 

  37. Markgraf CG, Green EJ, Hurwitz BE, Morikawa E, Dietrich WD, McCabe PM, Ginsberg MD, Schneiderman N (1992) Sensorimotor and cognitive consequences of middle cerebral artery occlusion in rats. Brain Res 575:238–246

    Article  CAS  Google Scholar 

  38. Kim DH, Kim DW, Jung BH, Lee JH, Lee H, Hwang GS, Kang KS, Lee JW (2019) Ginsenoside Rb2 suppresses the glutamate-mediated oxidative stress and neuronal cell death in HT22 cells. J Ginseng Res 43:326–334

    Article  Google Scholar 

  39. Brossaud J, Roumes H, Moisan MP, Pallet V, Redonnet A, Corcuff JB (2013) Retinoids and glucocorticoids target common genes in hippocampal HT22 cells. J Neurochem 125:518–531

    Article  CAS  Google Scholar 

  40. Kao JP, Harootunian AT, Tsien RY (1989) Photochemically generated cytosolic calcium pulses and their detection by fluo-3. J Biol Chem 264:8179–8184

    Article  CAS  Google Scholar 

  41. Ahlemeyer B, Bauerbach E, Plath M, Steuber M, Heers C, Tegtmeier F, Krieglstein J (2001) Retinoic acid reduces apoptosis and oxidative stress by preservation of SOD protein level. Free Radic Biol Med 30:1067–1077

    Article  CAS  Google Scholar 

  42. Kitamura M, Ishikawa Y, Moreno-Manzano V, Xu Q, Konta T, Lucio-Cazana J, Furusu A, Nakayama K (2002) Intervention by retinoic acid in oxidative stress-induced apoptosis. Nephrol Dial Transplant 9:84–87

    Article  Google Scholar 

  43. Xing HY, Meng EY, Xia YP, Peng H (2015) Effect of retinoic acid on expression of LINGO-1 and neural regeneration after cerebral ischemia. J Huazhong Univ Sci Technolog Med Sci 35:54–57

    Article  CAS  Google Scholar 

  44. Sato Y, Meller R, Yang T, Taki W, Simon RP (2008) Stereo-selective neuroprotection against stroke with vitamin A derivatives. Brain Res 1241:188–192

    Article  CAS  Google Scholar 

  45. Baimbridge KG, Celio MR, Rogers JH (1992) Calcium-binding proteins in the nervous system. Trends Neurosci 15:303–308

    Article  CAS  Google Scholar 

  46. Bischop DP, Orduz D, Lambot L, Schiffmann SN, Gall D (2012) Control of neuronal excitability by calcium binding proteins: a new mathematical model for striatal fast-spiking interneurons. Front Mol Neurosci 5:78

    Article  CAS  Google Scholar 

  47. Baev AY, Vinokurov AY, Novikova IN, Dremin VV, Potapova EV, Abramov AY (2022) Interaction of Mitochondrial Calcium and ROS in Neurodegeneration. Cells 11:706

    Article  CAS  Google Scholar 

  48. Koh PO (2012) Melatonin regulates the calcium-buffering proteins, parvalbumin and hippocalcin, in ischemic brain injury. J Pineal Res 53:358–365

    Article  CAS  Google Scholar 

  49. Kristián T, Siesjö BK (1998) Calcium in ischemic cell death. Stroke 29:705–718

    Article  Google Scholar 

  50. Giorgi C, Baldassari F, Bononi A, Bonora M, De Marchi E, Marchi S, Missiroli S, Patergnani S, Rimessi A, Suski JM, Wieckowski MR, Pinton P (2012) Mitochondrial Ca(2+) and apoptosis. Cell Calcium 52:36–43

    Article  CAS  Google Scholar 

  51. Fairless R, Williams SK, Diem R (2019) Calcium-binding proteins as determinants of central nervous system neuronal vulnerability to disease. Int J Mol Sci 20:2146

    Article  CAS  Google Scholar 

  52. Ouh IO, Kim YM, Gim SA, Koh PO (2013) Focal cerebral ischemic injury decreases calbindin expression in brain tissue and HT22 cells. Lab Anim Res 29:156–161

    Article  Google Scholar 

  53. Yuan HH, Chen RJ, Zhu YH, Peng CL, Zhu XR (2013) The neuroprotective effect of overexpression of calbindin-D(28k) in an animal model of Parkinson’s disease. Mol Neurobiol 47:117–122

    Article  CAS  Google Scholar 

  54. Caillard O, Moreno H, Schwaller B, Llano I, Celio MR, Marty A (2000) Role of the calcium-binding protein parvalbumin in short-term synaptic plasticity. Proc Natl Acad Sci 97:13372–13377

    Article  CAS  Google Scholar 

  55. Kostandy BB (2012) The role of glutamate in neuronal ischemic injury: the role of spark in fire. Neurol Sci 33:223–237

    Article  Google Scholar 

  56. Guo H, Camargo LM, Yeboah F, Digan ME, Niu H, Pan Y, Reiling S, Soler-Llavina G, Weihofen WA, Wang HR, Shanker YG, Stams T, Bill A (2017) A NMDA-receptor calcium influx assay sensitive to stimulation by glutamate and glycine/D-serine. Sci Rep 7:11608

    Article  Google Scholar 

  57. Wang YZ, Christakos S (1995) Retinoic acid regulates the expression of the calcium binding protein, calbindin-D28K. Mol Endocrinol 9:1510–1521

    CAS  Google Scholar 

  58. Sakamoto K, Hiraiwa M, Saito M, Nakahara T, Sato Y, Nagao T, Ishii K (2010) Protective effect of all-trans retinoic acid on NMDA-induced neuronal cell death in rat retina. Eur J Pharmacol 635:56–61

    Article  CAS  Google Scholar 

  59. Guerra MT, Fonseca EA, Melo FM, Andrade VA, Aguiar CJ, Andrade LM, Pinheiro AC, Casteluber MC, Resende RR, Pinto MC, Fernandes SO, Cardoso VN, Souza-Fagundes EM, Menezes GB, de Paula AM, Nathanson MH, Leite Mde F (2011) Mitochondrial calcium regulates rat liver regeneration through the modulation of apoptosis. Hepatology 54:296–306

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government [MEST][NRF-2021R1F1A105878711].

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Data collection, analysis, and manuscript writing were performed by JK. Material preparation and data collection were performed by DP. PK wrote and supervised the research. All authors read and approved the manuscript.

Corresponding author

Correspondence to Phil-Ok Koh.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, JB., Park, DJ. & Koh, PO. Retinoic Acid Prevents the Neuronal Damage Through the Regulation of Parvalbumin in an Ischemic Stroke Model. Neurochem Res 48, 487–501 (2023). https://doi.org/10.1007/s11064-022-03769-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-022-03769-9

Keywords

Navigation