Skip to main content

Advertisement

Log in

Resveratrol, Endocrine Disrupting Chemicals, Neurodegenerative Diseases and Depression: Genes, Transcription Factors, microRNAs, and Sponges Involved

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

We aimed to examine the molecular basis of the positive effect of resveratrol against amyotrophic lateral sclerosis (ALS), Parkinson’s disease (PD), cognitive impairment (CI), and depression induced by a mixture of bisphenol A (BPA), BPS, and BPF. The CTD, GeneMania, Metascape, SwissADME, Cytoscape, MIENTURNET, miRNAsong, and Autodock Vina were the fundamental tools for analysis. Resveratrol exerts its protective effects on selected diseases induced by a mixture of BPA, BPS, and BPF through the following genes: PTGS2 and GSR for ALS; INS, IL6, BDNF, and SOD1 for PD; BDNF, CASP3, TNF, INS, IGF1, IL1B for CI; and BDNF, PTGS2, and IL6 for depression. Detoxification was noted as the most important for ALS, dopamine metabolism for PD, apoptosis for CI, and the selenium micronutrient network for depression. hsa-miR-377-3p, hsa-miR-1-3p, hsa-miR-128-3p, and hsa-miR-204-5p were highlighted. We created and tested in silico sponges that inhibited these miRNAs. NFE2L2, BACH1, PPARG, and NR4A3 were listed as the key transcription factors implicated in resveratrol's protective effect against harmful studied chemicals. Furthermore, resveratrol's physicochemical properties and pharmacokinetics are consistent with its therapeutic benefits in ALS, PD, CI, and depression, owing to its high gastrointestinal absorption, drug-likeness, non-P-glycoprotein substrate, and capacity to penetrate the blood–brain barrier.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Organization WH (2006) Neurological disorders: public health challenges. World Health Organization

    Google Scholar 

  2. Friedrich MJ (2017) Depression is the leading cause of disability around the world. JAMA 317:1517–1517. https://doi.org/10.1001/jama.2017.3826%JJAMA

    Article  Google Scholar 

  3. Hussain M, Kumar P, Khan S, Gordon DK, Khan S (2020) Similarities between depression and neurodegenerative diseases: pathophysiology, challenges in diagnosis and treatment options. Cureus 12:e11613–e11613. https://doi.org/10.7759/cureus.11613

    Article  Google Scholar 

  4. Nguyen HD, Kim M-S (2022) Exposure to a mixture of heavy metals induces cognitive impairment: genes and microRNAs involved. Toxicology. https://doi.org/10.1016/j.tox.2022.153164

    Article  Google Scholar 

  5. Nguyen HD, Oh H, Hoang NHM, Jo WH, Kim MS (2021) Environmental science and pollution research role of heavy metal concentrations and vitamin intake from food in depression: a national cross-sectional study (2009–2017). Environ Sci Pollut Res Int. https://doi.org/10.1007/s11356-021-15986-w

    Article  Google Scholar 

  6. Masuo Y, Ishido M (2011) Neurotoxicity of endocrine disruptors: possible involvement in brain development and neurodegeneration. J Toxicol Environ Health B 14:346–369. https://doi.org/10.1080/10937404.2011.578557

    Article  CAS  Google Scholar 

  7. Chen D, Kannan K, Tan H, Zheng Z, Feng YL, Wu Y, Widelka M (2016) Bisphenol analogues other than BPA: environmental occurrence, human exposure, and toxicity—a review. Environ Sci Technol 50:5438–5453. https://doi.org/10.1021/acs.est.5b05387

    Article  CAS  Google Scholar 

  8. Naderi M, Kwong RWM (2020) A comprehensive review of the neurobehavioral effects of bisphenol S and the mechanisms of action: new insights from in vitro and in vivo models. Environ Int 145:106078. https://doi.org/10.1016/j.envint.2020.106078

    Article  CAS  Google Scholar 

  9. Huang L, Liao M, Yang X, Gong H, Ma L, Zhao Y, Huang K (2016) Bisphenol analogues differently affect human islet polypeptide amyloid formation. RSC Adv 6:7239–7248. https://doi.org/10.1039/C5RA21792J

    Article  CAS  Google Scholar 

  10. Shayganfard M (2020) Molecular and biological functions of resveratrol in psychiatric disorders: a review of recent evidence. Cell Biosci 10:128. https://doi.org/10.1186/s13578-020-00491-3

    Article  Google Scholar 

  11. Komorowska J, Wątroba M, Szukiewicz D (2020) Review of beneficial effects of resveratrol in neurodegenerative diseases such as Alzheimer’s disease. Adv Med Sci 65:415–423. https://doi.org/10.1016/j.advms.2020.08.002

    Article  Google Scholar 

  12. Moore A, Beidler J, Hong MY (2018) Resveratrol and depression in animal models: a systematic review of the biological mechanisms. Molecules. https://doi.org/10.3390/molecules23092197

    Article  Google Scholar 

  13. Nguyen HD, Kim M-S (2022) Effects of chemical mixtures on liver function biomarkers in the Korean adult population: thresholds and molecular mechanisms for non-alcoholic fatty liver disease involved. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-022-21090-4

    Article  Google Scholar 

  14. Nguyen HD, Kim M-S (2022) Effects of heavy metals on cardiovascular diseases in pre and post-menopausal women: from big data to molecular mechanism involved. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-022-21208-8

    Article  Google Scholar 

  15. Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, Benner C, Chanda SK (2019) Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun 10:1523. https://doi.org/10.1038/s41467-019-09234-6

    Article  CAS  Google Scholar 

  16. Warde-Farley D, Donaldson SL, Comes O, Zuberi K, Badrawi R, Chao P, Franz M, Grouios C, Kazi F, Lopes CT, Maitland A, Mostafavi S, Montojo J, Shao Q, Wright G, Bader GD, Morris Q (2010) The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res 38:W214–W220. https://doi.org/10.1093/nar/gkq537%JNucleicAcidsResearch

    Article  CAS  Google Scholar 

  17. Nguyen HD, Jo WH, Hoang NHM, Kim M-S (2022) Curcumin-Attenuated TREM-1/DAP12/NLRP3/Caspase-1/IL1B, TLR4/NF-κB Pathways, and Tau Hyperphosphorylation Induced by 1,2-Diacetyl Benzene: an in vitro and in silico study. Neurotox Res. https://doi.org/10.1007/s12640-022-00535-1

    Article  Google Scholar 

  18. Nguyen HD, Kim M-S (2022) The effects of a mixture of cadmium, lead, and mercury on metabolic syndrome and its components, as well as cognitive impairment: genes, microRNAs, transcription factors, and sponge relationships. Biol Trace Elem Res. https://doi.org/10.1007/s12011-022-03343-y

    Article  Google Scholar 

  19. Keenan AB, Torre D, Lachmann A, Leong AK, Wojciechowicz ML, Utti V, Jagodnik KM, Kropiwnicki E, Wang Z and Ma’ayan AJNar (2019) ChEA3: transcription factor enrichment analysis by orthogonal omics integration. 47:W212–W224.

  20. Licursi V, Conte F, Fiscon G, Paci P (2019) MIENTURNET: an interactive web tool for microRNA-target enrichment and network-based analysis. BMC Bioinf 20:545. https://doi.org/10.1186/s12859-019-3105-x

    Article  Google Scholar 

  21. Nguyen HD, Kim M-S (2022) Cadmium, lead, and mercury mixtures interact with non-alcoholic fatty liver diseases. Environ Pollut 309:119780. https://doi.org/10.1016/j.envpol.2022.119780

    Article  CAS  Google Scholar 

  22. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461

    CAS  Google Scholar 

  23. Nguyen HD, Kim M-S (2022) The protective effects of curcumin on metabolic syndrome and its components: in-silico analysis for genes, transcription factors, and microRNAs involved. Arch Biochem Biophys 727:109326. https://doi.org/10.1016/j.abb.2022.109326

    Article  CAS  Google Scholar 

  24. Réus GZ, Titus SE, Abelaira HM, Freitas SM, Tuon T, Quevedo J, Budni J (2016) Neurochemical correlation between major depressive disorder and neurodegenerative diseases. Life Sci 158:121–129. https://doi.org/10.1016/j.lfs.2016.06.027

    Article  CAS  Google Scholar 

  25. Inadera H (2015) Neurological effects of bisphenol A and its analogues. Int J Med Sci 12:926–936. https://doi.org/10.7150/ijms.13267

    Article  CAS  Google Scholar 

  26. Moosmann B, Behl C (2002) Antioxidants as treatment for neurodegenerative disorders. Expert Opin Investig Drugs 11:1407–1435. https://doi.org/10.1517/13543784.11.10.1407

    Article  CAS  Google Scholar 

  27. Flynn JM, Melov S (2013) SOD2 in mitochondrial dysfunction and neurodegeneration. Free Radical Biol Med 62:4–12. https://doi.org/10.1016/j.freeradbiomed.2013.05.027

    Article  CAS  Google Scholar 

  28. da Cruz Jung IE, da Cruz IBM, Barbisan F, Trott A, Houenou LJ, Osmarin Turra B, Duarte T, de Souza PR, Maia-Ribeiro EA, da Costa Escobar Piccoli J, Bica CG, Duarte MMMF (2020) Superoxide imbalance triggered by Val16Ala-SOD2 polymorphism increases the risk of depression and self-reported psychological stress in free-living elderly people. Mol Genet Genomic Med 8:e1080–e1080. https://doi.org/10.1002/mgg3.1080

    Article  CAS  Google Scholar 

  29. Uchihara Y, Tanaka K, Asano T, Tamura F, Mizushima T (2016) Superoxide dismutase overexpression protects against glucocorticoid-induced depressive-like behavioral phenotypes in mice. Biochem Biophys Res Commun 469:873–877. https://doi.org/10.1016/j.bbrc.2015.12.085

    Article  CAS  Google Scholar 

  30. Trist BG, Hare DJ, Double KL (2018) A proposed mechanism for neurodegeneration in movement disorders characterized by metal dyshomeostasis and oxidative stress. Cell Chem Biol 25:807–816. https://doi.org/10.1016/j.chembiol.2018.05.004

    Article  CAS  Google Scholar 

  31. Huang M, Liu S, Fu L, Jiang X, Yang M (2020) Bisphenol A and its analogues bisphenol S, bisphenol F and bisphenol AF induce oxidative stress and biomacromolecular damage in human granulosa KGN cells. Chemosphere 253:126707. https://doi.org/10.1016/j.chemosphere.2020.126707

    Article  CAS  Google Scholar 

  32. Eyileten C, Sharif L, Wicik Z, Jakubik D, Jarosz-Popek J, Soplinska A, Postula M, Czlonkowska A, Kaplon-Cieslicka A, Mirowska-Guzel D (2021) The relation of the brain-derived neurotrophic factor with microRNAs in neurodegenerative diseases and ischemic stroke. Mol Neurobiol 58:329–347. https://doi.org/10.1007/s12035-020-02101-2

    Article  Google Scholar 

  33. Dwivedi Y (2009) Brain-derived neurotrophic factor: role in depression and suicide. Neuropsychiatr Dis Treat 5:433–449. https://doi.org/10.2147/ndt.s5700

    Article  CAS  Google Scholar 

  34. Wiciński M, Malinowski B, Węclewicz MM, Grześk E, Grześk G (2017) Resveratrol increases serum BDNF concentrations and reduces vascular smooth muscle cells contractility via a NOS-3-independent mechanism. Biomed Res Int 2017:9202954–9202954. https://doi.org/10.1155/2017/9202954

    Article  CAS  Google Scholar 

  35. Rothaug M, Becker-Pauly C, Rose-John S (2016) The role of interleukin-6 signaling in nervous tissue. Biochim Biophys Acta 1863:1218–1227. https://doi.org/10.1016/j.bbamcr.2016.03.018

    Article  CAS  Google Scholar 

  36. Ting EY-C, Yang AC, Tsai S-J (2020) Role of interleukin-6 in depressive disorder. Int J Mol Sci 21:2194. https://doi.org/10.3390/ijms21062194

    Article  CAS  Google Scholar 

  37. Minghetti L (2007) Role of COX-2 in inflammatory and degenerative brain diseases. Subcell Biochem 42:127–141. https://doi.org/10.1007/1-4020-5688-5_5

    Article  Google Scholar 

  38. Zhang W, Li L, Chen H, Zhang Y, Zhang Z, Lin Z, Shi M, Zhang W, Li X, Tang Z, Liu Y, Guo L, Shi M (2021) Bisphenol F promotes the secretion of pro-inflammatory cytokines in macrophages by enhanced glycolysis through PI3K-AKT signaling pathway. Toxicol Lett 350:30–39. https://doi.org/10.1016/j.toxlet.2021.06.011

    Article  CAS  Google Scholar 

  39. Ahmed F, Sarsenbayeva A, Katsogiannos P, Aguer C, Pereira MJ (2020) The effects of bisphenol A and bisphenol S on adipokine expression and glucose metabolism in human adipose tissue. Toxicology 445:152600. https://doi.org/10.1016/j.tox.2020.152600

    Article  CAS  Google Scholar 

  40. Song H, Park J, Bui PTC, Choi K, Gye MC, Hong Y-C, Kim JH, Lee YJ (2017) Bisphenol A induces COX-2 through the mitogen-activated protein kinase pathway and is associated with levels of inflammation-related markers in elderly populations. Environ Res 158:490–498. https://doi.org/10.1016/j.envres.2017.07.005

    Article  CAS  Google Scholar 

  41. Subbaramaiah K, Michaluart P, Chung WJ, Tanabe T, Telang N, Dannenberg AJ (1999) Resveratrol inhibits cyclooxygenase-2 transcription in human mammary epithelial cells. Ann NY Acad Sci 889:214–223. https://doi.org/10.1111/j.1749-6632.1999.tb08737.x

    Article  CAS  Google Scholar 

  42. de la Monte SM (2017) Insulin resistance and neurodegeneration: progress towards the development of new therapeutics for Alzheimer’s disease. Drugs 77:47–65. https://doi.org/10.1007/s40265-016-0674-0

    Article  CAS  Google Scholar 

  43. Pearson S, Schmidt M, Patton G, Dwyer T, Blizzard L, Otahal P, Venn A (2010) Depression and insulin resistance: cross-sectional associations in young adults. Diabetes Care 33:1128–1133. https://doi.org/10.2337/dc09-1940

    Article  CAS  Google Scholar 

  44. Kataria A, Levine D, Wertenteil S, Vento S, Xue J, Rajendiran K, Kannan K, Thurman JM, Morrison D, Brody R, Urbina E, Attina T, Trasande L, Trachtman H (2017) Exposure to bisphenols and phthalates and association with oxidant stress, insulin resistance, and endothelial dysfunction in children. Pediatr Res 81:857–864. https://doi.org/10.1038/pr.2017.16

    Article  CAS  Google Scholar 

  45. Zhao F, Jiang G, Wei P, Wang H, Ru S (2018) Bisphenol S exposure impairs glucose homeostasis in male zebrafish (Danio rerio). Ecotoxicol Environ Saf 147:794–802. https://doi.org/10.1016/j.ecoenv.2017.09.048

    Article  CAS  Google Scholar 

  46. Zhu X, Wu C, Qiu S, Yuan X, Li L (2017) Effects of resveratrol on glucose control and insulin sensitivity in subjects with type 2 diabetes: systematic review and meta-analysis. Nutr Metab 14:60. https://doi.org/10.1186/s12986-017-0217-z

    Article  CAS  Google Scholar 

  47. Khan S, Ahmad K, Alshammari EMA, Adnan M, Baig MH, Lohani M, Somvanshi P, Haque S (2015) Implication of Caspase-3 as a common therapeutic target for multineurodegenerative disorders and its inhibition using nonpeptidyl natural compounds. Biomed Res Int 2015:379817–379817. https://doi.org/10.1155/2015/379817

    Article  CAS  Google Scholar 

  48. Li Z, Jo J, Jia JM, Lo SC, Whitcomb DJ, Jiao S, Cho K, Sheng M (2010) Caspase-3 activation via mitochondria is required for long-term depression and AMPA receptor internalization. Cell 141:859–871. https://doi.org/10.1016/j.cell.2010.03.053

    Article  CAS  Google Scholar 

  49. Fouyet S, Olivier E, Leproux P, Dutot M, Rat P, Bisphenol A, Bisphenol F, Bisphenol S (2021) The bad and the ugly. Where is the good? Life (Basel, Switzerland) 11:314. https://doi.org/10.3390/life11040314

    Article  CAS  Google Scholar 

  50. Ulakcsai Z, Bagaméry F, Vincze I, Szökő É, Tábi T (2015) Protective effect of resveratrol against caspase 3 activation in primary mouse fibroblasts. Croat Med J 56:78–84. https://doi.org/10.3325/cmj.2015.56.78

    Article  CAS  Google Scholar 

  51. Zhu X-W, Liu S-S, Qin L-T, Chen F, Liu H-L (2013) Modeling non-monotonic dose–response relationships: model evaluation and hormetic quantities exploration. Ecotoxicol Environ Saf 89:130–136

    Article  CAS  Google Scholar 

  52. Wang C, He J, Xu T, Han H, Zhu Z, Meng L, Pang Q, Fan R (2021) Bisphenol A(BPA), BPS and BPB-induced oxidative stress and apoptosis mediated by mitochondria in human neuroblastoma cell lines. Ecotoxicol Environ Saf 207:111299. https://doi.org/10.1016/j.ecoenv.2020.111299

    Article  CAS  Google Scholar 

  53. Liu T, Qi H, Ma L, Liu Z, Fu H, Zhu W, Song T, Yang B, Li G (2015) Resveratrol attenuates oxidative stress and extends life span in the annual fish Nothobranchius guentheri. Rejuvenation Res 18:225–233. https://doi.org/10.1089/rej.2014.1618

    Article  CAS  Google Scholar 

  54. Cosín-Tomàs M, Senserrich J, Arumí-Planas M, Alquézar C, Pallàs M, Martín-Requero Á, Suñol C, Kaliman P, Sanfeliu C (2019) Role of resveratrol and selenium on oxidative stress and expression of antioxidant and anti-aging genes in immortalized lymphocytes from Alzheimer’s disease patients. Nutrients 11:1764. https://doi.org/10.3390/nu11081764

    Article  CAS  Google Scholar 

  55. Amporndanai K, Rogers M, Watanabe S, Yamanaka K, O’Neill PM, Hasnain SS (2020) Novel selenium-based compounds with therapeutic potential for SOD1-linked amyotrophic lateral sclerosis. EBioMedicine 59:102980. https://doi.org/10.1016/j.ebiom.2020.102980

    Article  CAS  Google Scholar 

  56. Meiser J, Weindl D, Hiller K (2013) Complexity of dopamine metabolism. Cell Commun Signal 11:34–34. https://doi.org/10.1186/1478-811X-11-34

    Article  CAS  Google Scholar 

  57. Castro B, Sánchez P, Torres JM, Ortega E (2015) Bisphenol A, bisphenol F and bisphenol S affect differently 5α-reductase expression and dopamine-serotonin systems in the prefrontal cortex of juvenile female rats. Environ Res 142:281–287. https://doi.org/10.1016/j.envres.2015.07.001

    Article  CAS  Google Scholar 

  58. Shuto T, Kuroiwa M, Koga Y, Kawahara Y, Sotogaku N, Toyomasu K, Nishi A (2013) Acute effects of resveratrol to enhance cocaine-induced dopamine neurotransmission in the striatum. Neurosci Lett 542:107–112. https://doi.org/10.1016/j.neulet.2013.02.050

    Article  CAS  Google Scholar 

  59. McKernan DP, Dinan TG, Cryan JF (2009) “Killing the Blues”: a role for cellular suicide (apoptosis) in depression and the antidepressant response? Prog Neurobiol 88:246–263. https://doi.org/10.1016/j.pneurobio.2009.04.006

    Article  CAS  Google Scholar 

  60. Wang W, Wang S, Liu T, Ma Y, Huang S, Lei L, Wen A, Ding Y (2020) Resveratrol: multi-targets mechanism on neurodegenerative diseases based on network pharmacology. Front Pharmacol. https://doi.org/10.3389/fphar.2020.00694

    Article  Google Scholar 

  61. Rahman MR, Islam T, Huq F, Quinn JMW, Moni MA (2019) Identification of molecular signatures and pathways common to blood cells and brain tissue of amyotrophic lateral sclerosis patients. Inf Med Unlocked 16:100193. https://doi.org/10.1016/j.imu.2019.100193

    Article  Google Scholar 

  62. Coccia E, Masanas M, López-Soriano J, Segura MF, Comella JX and Pérez-García MJ (2020) FAIM is regulated by MiR-206, MiR-1–3p and MiR-133b. 8:584606. https://doi.org/10.3389/fcell.2020.584606

  63. Zhang M, Han W, Xu Y, Li D, Xue Q (2021) Serum miR-128 serves as a potential diagnostic biomarker for Alzheimer’s disease. Neuropsychiatr Dis Treat 17:269–275. https://doi.org/10.2147/NDT.S290925

    Article  Google Scholar 

  64. Lan T, Li Y, Fan C, Wang L, Wang W, Chen S, Yu SY (2021) MicroRNA-204-5p reduction in rat hippocampus contributes to stress-induced pathology via targeting RGS12 signaling pathway. J Neuroinflammation 18:243. https://doi.org/10.1186/s12974-021-02299-5

    Article  CAS  Google Scholar 

  65. Zhang Z, Yan J, Chang Y, ShiDu Yan S, Shi H (2011) Hypoxia inducible factor-1 as a target for neurodegenerative diseases. Curr Med Chem 18:4335–4343. https://doi.org/10.2174/092986711797200426

    Article  CAS  Google Scholar 

  66. Coppen A, Bolander-Gouaille C (2005) Treatment of depression: time to consider folic acid and vitamin B12. J Psychopharmacol 19:59–65. https://doi.org/10.1177/0269881105048899

    Article  CAS  Google Scholar 

  67. Bergström P, von Otter M, Nilsson S, Nilsson A-C, Nilsson M, Andersen PM, Hammarsten O, Zetterberg H (2014) Association of NFE2L2 and KEAP1 haplotypes with amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 15:130–137. https://doi.org/10.3109/21678421.2013.839708

    Article  CAS  Google Scholar 

  68. Ungvari Z, Bagi Z, Feher A, Recchia FA, Sonntag WE, Pearson K, de Cabo R, Csiszar A (2010) Resveratrol confers endothelial protection via activation of the antioxidant transcription factor Nrf2. Am J Physiol Heart Circ Physiol 299:H18–H24. https://doi.org/10.1152/ajpheart.00260.2010

    Article  CAS  Google Scholar 

  69. Ahuja M, Ammal Kaidery N, Attucks OC, McDade E, Hushpulian DM, Gaisin A, Gaisina I, Ahn YH, Nikulin S, Poloznikov A, Gazaryan I, Yamamoto M, Matsumoto M, Igarashi K, Sharma SM, Thomas B (2021) Bach1 derepression is neuroprotective in a mouse model of Parkinson’s disease. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.2111643118

    Article  Google Scholar 

  70. Heneka MT, Klockgether T, Feinstein DL (2000) Peroxisome proliferator-activated receptor-gamma ligands reduce neuronal inducible nitric oxide synthase expression and cell death in vivo. J Neurosci 20:6862–6867. https://doi.org/10.1523/jneurosci.20-18-06862.2000

    Article  CAS  Google Scholar 

  71. Barrera J, Subramanian S, Chiba-Falek O (2018) Probing the role of PPARγ in the regulation of late-onset Alzheimer’s disease-associated genes. PLoS ONE 13:e0196943. https://doi.org/10.1371/journal.pone.0196943

    Article  CAS  Google Scholar 

  72. Schaffer DJ, Tunc-Ozcan E, Shukla PK, Volenec A, Redei EE (2010) Nuclear orphan receptor Nor-1 contributes to depressive behavior in the Wistar-Kyoto rat model of depression. Brain Res 1362:32–39. https://doi.org/10.1016/j.brainres.2010.09.041

    Article  CAS  Google Scholar 

  73. Liu Y-y, Zhang W-y, Wang C-g, Huang J-a, J-h J, Zeng D-x (2020) Resveratrol prevented experimental pulmonary vascular remodeling via miR-638 regulating NR4A3/cyclin D1 pathway. Microvasc Res 130:103988. https://doi.org/10.1016/j.mvr.2020.103988

    Article  CAS  Google Scholar 

  74. Chimento A, De Amicis F, Sirianni R, Sinicropi MS, Puoci F, Casaburi I, Saturnino C, Pezzi V (2019) Progress to improve oral bioavailability and beneficial effects of resveratrol. Int J Mol Sci 20:1381. https://doi.org/10.3390/ijms20061381

    Article  CAS  Google Scholar 

  75. Walle T, Hsieh F, DeLegge MH, Oatis JE, Walle UKJD (2004) High absorption but very low bioavailability of oral resveratrol in humans. Drug Metab Dispos 32:1377–1382

    Article  CAS  Google Scholar 

  76. Wang D, Hang T, Wu C, Liu WJJ (2005) Identification of the major metabolites of resveratrol in rat urine by HPLC-MS/MS. J Cromotogr 829:97–106

    Article  CAS  Google Scholar 

Download references

Acknowledgements

None.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

HDN: conceptualization. HDN: data collection. HDN: data analysis and interpretations. HDN: methodology. HDN: resources. HDN: writing—original draft. HDN: critical revision of the manuscript.

Corresponding author

Correspondence to Hai Duc Nguyen.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2931 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, H.D. Resveratrol, Endocrine Disrupting Chemicals, Neurodegenerative Diseases and Depression: Genes, Transcription Factors, microRNAs, and Sponges Involved. Neurochem Res 48, 604–624 (2023). https://doi.org/10.1007/s11064-022-03787-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-022-03787-7

Keywords

Navigation