Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Increasing dominance of Indian Ocean variability impacts Australian wheat yields

Abstract

The relationships between crop productivity and climate variability drivers are often assumed to be stationary over time. However, this may not be true in a warming climate. Here we use a crop model and a machine learning algorithm to demonstrate the changing impacts of climate drivers on wheat productivity in Australia. We find that, from the end of the nineteenth century to the 1980s, wheat productivity was mainly subject to the impacts of the El Niño Southern Oscillation. Since the 1990s, the impacts from the El Niño Southern Oscillation have been decreasing, but those from the Indian Ocean Dipole have been increasing. The warming climate has brought more occurrences of positive Indian Ocean Dipole events, resulting in severe yield reductions in recent decades. Our findings highlight the need to adapt seasonal forecasting to the changing impacts of climate variability to inform the management of climate-induced yield losses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Simulated wheat yield across Australian wheatbelt.
Fig. 2: Annual mean Australian national wheat yield (black lines) and growing season mean climate driver indices (bars) during 1889–2020.
Fig. 3: Dominant climate driver of wheat yield at each grid as identified by the RF model.
Fig. 4: Partial dependence of wheat yield change on large-scale climate drivers in four subperiods as derived from the RF model.
Fig. 5: Relative importance of large-scale climate drivers on wheat productivity during 1988–2020 before and after detrending the DMI series, derived from the RF model.

Similar content being viewed by others

Data availability

The climate, soil and climate drivers indices data are publicly available from the following sources: the SILO climate data are at https://www.longpaddock.qld.gov.au/silo, the soil data are at https://www.apsim.info/apsim-model/apsoil/ and the climate drivers indices data are at https://psl.noaa.gov/. The detailed wheat yield data simulated by the APSIM crop model and the raw data of the figures are available at Puyu Feng’s Github homepage https://github.com/PuyuFeng/NF_Paper.git. Source data are provided with this paper.

Code availability

The detailed R code for data processing and illustration is available at Puyu Feng’s Github homepage https://github.com/PuyuFeng/NF_Paper.git.

References

  1. Osborne, T., Rose, G. & Wheeler, T. Variation in the global-scale impacts of climate change on crop productivity due to climate model uncertainty and adaptation. Agric. For. Meteorol. 170, 183–194 (2013).

    ADS  Google Scholar 

  2. Ray, D. K., Mueller, N. D., West, P. C. & Foley, J. A. Yield trends are insufficient to double global crop production by 2050. PLoS ONE 8, e66428 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ashok, K., Guan, Z. & Yamagata, T. Influence of the Indian Ocean Dipole on the Australian winter rainfall. Geophys. Res. Lett. 30, 1821 (2003).

    ADS  Google Scholar 

  4. Cai, W., van Rensch, P., Cowan, T. & Hendon, H. H. Teleconnection pathways of ENSO and the IOD and the mechanisms for impacts on Australian rainfall. J. Clim. 24, 3910–3923 (2011).

    ADS  Google Scholar 

  5. Ludescher, J. et al. Very early warning of next El Niño. Proc. Natl Acad. Sci. USA 111, 2064–2066 (2014).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Heino, M. et al. Two-thirds of global cropland area impacted by climate oscillations. Nat. Commun. 9, 1–10 (2018).

    ADS  CAS  Google Scholar 

  7. Phillips, J. G., Cane, M. A. & Rosenzweig, C. ENSO, seasonal rainfall patterns and simulated maize yield variability in Zimbabwe. Agric. For. Meteorol. 90, 39–50 (1998).

    ADS  Google Scholar 

  8. Stone, R. C., Hammer, G. L. & Marcussen, T. Prediction of global rainfall probabilities using phases of the Southern Oscillation Index. Nature 384, 252–255 (1996).

    ADS  CAS  Google Scholar 

  9. Freund, M. B. et al. Higher frequency of Central Pacific El Niño events in recent decades relative to past centuries. Nat. Geosci. 12, 450–455 (2019).

    ADS  CAS  Google Scholar 

  10. Power, S., Casey, T., Folland, C., Colman, A. & Mehta, V. Inter-decadal modulation of the impact of ENSO on Australia. Clim. Dyn. 15, 319–324 (1999).

    Google Scholar 

  11. King, A. D. et al. Extreme rainfall variability in Australia: patterns, drivers, and predictability. J. Clim. 27, 6035–6050 (2014).

    ADS  Google Scholar 

  12. Risbey, J. S., Pook, M. J., McIntosh, P. C., Wheeler, M. C. & Hendon, H. H. On the remote drivers of rainfall variability in Australia. Mon. Weather Rev. 137, 3233–3253 (2009).

    ADS  Google Scholar 

  13. Abram, N. J. et al. Palaeoclimate perspectives on the Indian Ocean Dipole. Quat. Sci. Rev. 237, 106302 (2020).

    Google Scholar 

  14. King, A. D., Pitman, A. J., Henley, B. J., Ukkola, A. M. & Brown, J. R. The role of climate variability in Australian drought. Nat. Clim. Chang. 10, 177–179 (2020).

    ADS  Google Scholar 

  15. Ummenhofer, C. C. et al. What causes southeast Australia’s worst droughts? Geophys. Res. Lett. 36, L04706 (2009).

    ADS  Google Scholar 

  16. Abram, N. J. et al. Evolution of the Southern Annular Mode during the past millennium. Nat. Clim. Chang. 4, 564–569 (2014).

    ADS  CAS  Google Scholar 

  17. Ropelewski, C. F. & Jones, P. D. An extension of the Tahiti–Darwin Southern Oscillation Index. Mon. Weather Rev. 115, 2161–2165 (1987).

    ADS  Google Scholar 

  18. Saji, N. H., Goswami, B. N., Vinayachandran, P. N. & Yamagata, T. A dipole mode in the tropical Indian Ocean. Nature 401, 360–363 (1999).

    ADS  CAS  PubMed  Google Scholar 

  19. Marshall, G. J. Trends in the Southern Annular Mode from observations and reanalyses. J. Clim. 16, 4134–4143 (2003).

    ADS  Google Scholar 

  20. Yuan, C. & Yamagata, T. Impacts of IOD, ENSO and ENSO Modoki on the Australian winter wheat yields in recent decades. Sci Rep. 5, 1–8 (2015).

    Google Scholar 

  21. Saji, N. H. & Yamagata, T. J. C. R. Possible impacts of Indian Ocean Dipole mode events on global climate. Clim. Res. 25, 151–169 (2003).

    Google Scholar 

  22. Cai, W. et al. Opposite response of strong and moderate positive Indian Ocean Dipole to global warming. Nat. Clim. Chang. 11, 27–32 (2021).

    ADS  Google Scholar 

  23. Wang, B. et al. Extreme fire weather is the major driver of severe bushfires in southeast Australia. Sci. Bull. 67, 655–664 (2022).

    Google Scholar 

  24. Cai, W., van Rensch, P., Cowan, T. & Hendon, H. H. An asymmetry in the IOD and ENSO teleconnection pathway and its impact on Australian climate. J. Clim. 25, 6318–6329 (2012).

    ADS  Google Scholar 

  25. Chung, C. T. & Power, S. B. The non-linear impact of El Niño, La Niña and the Southern Oscillation on seasonal and regional Australian precipitation. J. South. Hemisphere Earth Syst. Sci. 67, 25–45 (2017).

    Google Scholar 

  26. Dhame, S., Taschetto, A. S., Santoso, A. & Meissner, K. J. Indian Ocean warming modulates global atmospheric circulation trends. Clim. Dyn. 55, 2053–2073 (2020).

    Google Scholar 

  27. Ihara, C., Kushnir, Y. & Cane, M. A. Warming trend of the Indian Ocean SST and Indian Ocean Dipole from 1880 to 2004. J. Clim. 21, 2035–2046 (2008).

    ADS  Google Scholar 

  28. Cai, W. et al. Increased frequency of extreme Indian Ocean Dipole events due to greenhouse warming. Nature 510, 254–258 (2014).

    ADS  CAS  PubMed  Google Scholar 

  29. Hudson, D. et al. ACCESS-S1 The new Bureau of Meteorology multi-week to seasonal prediction system. J. South. Hemisphere Earth Syst. Sci. 67, 132–159 (2017).

    Google Scholar 

  30. Zheng, B., Chapman, S. & Chenu, K. The value of tactical adaptation to El Niño–Southern Oscillation for East Australian wheat. Climate 6, 77 (2018).

    ADS  Google Scholar 

  31. Keating, B. A. et al. An overview of APSIM, a model designed for farming systems simulation. Eur. J. Agron. 18, 267–288 (2003).

    Google Scholar 

  32. Brown, H., Huth, N. & Holzworth, D. Crop model improvement in APSIM: using wheat as a case study. Eur. J. Agron. 100, 141–150 (2018).

    Google Scholar 

  33. Innes, P. J., Tan, D. K. Y., Van Ogtrop, F. & Amthor, J. S. Effects of high-temperature episodes on wheat yields in New South Wales, Australia. Agric. For. Meteorol. 208, 95–107 (2015).

    ADS  Google Scholar 

  34. Jeffrey, S. J., Carter, J. O., Moodie, K. B. & Beswick, A. R. Using spatial interpolation to construct a comprehensive archive of Australian climate data. Environ. Model Softw. 16, 309–330 (2001).

    Google Scholar 

  35. Boer, M. M. et al. Future changes in climatic water balance determine potential for transformational shifts in Australian fire regimes. Environ. Res. Lett. 11, 065002 (2016).

    ADS  Google Scholar 

  36. Williamson, G. J. et al. Measurement of inter-and intra-annual variability of landscape fire activity at a continental scale: the Australian case. Environ. Res. Lett. 11, 035003 (2016).

    ADS  Google Scholar 

  37. Wang, B. et al. Australian wheat production expected to decrease by the late 21st century. Glob. Chang. Biol. 24, 2403–2415 (2018).

    ADS  PubMed  Google Scholar 

  38. Freeman, E. et al. ICOADS Release 3.0: a major update to the historical marine climate record. Int. J. Climatol. 37, 2211–2232 (2017).

    Google Scholar 

  39. Thirumalai, K., DiNezio, P. N., Okumura, Y. & Deser, C. Extreme temperatures in Southeast Asia caused by El Niño and worsened by global warming. Nat. Commun. 8, 1–8 (2017).

    Google Scholar 

  40. Titchner, H. A. & Rayner, N. A. The Met Office Hadley Centre sea ice and sea surface temperature data set, version 2: 1. Sea ice concentrations. J. Geophys. Res. Atmos. 119, 2864–2889 (2014).

    ADS  Google Scholar 

  41. Deser, C., Alexander, M. A., Xie, S. P. & Phillips, A. S. Sea surface temperature variability: patterns and mechanisms. Annu. Rev. Mar. Sci. 2, 115–143 (2010).

    ADS  Google Scholar 

  42. Heung, B., Bulmer, C. E. & Schmidt, M. G. Predictive soil parent material mapping at a regional-scale: a random forest approach. Geoderma 214, 141–154 (2014).

    ADS  Google Scholar 

  43. Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 28, 1–26 (2008).

    Google Scholar 

  44. Friedman, J. H. Greedy function approximation: a gradient boosting machine. Ann. Stat. 29, 1189–1232 (2001).

    MathSciNet  MATH  Google Scholar 

  45. Greenwell, B. M. pdp: an R package for constructing partial dependence plots. R J. 9, 421 (2017).

    Google Scholar 

  46. Nicholls, N. Increased Australian wheat yield due to recent climate trends. Nature 387, 484–485 (1997).

    ADS  CAS  Google Scholar 

  47. Archer, K. J. & Kimes, R. V. Empirical characterization of random forest variable importance measures. Comput. Stat. Data Anal. 52, 2249–2260 (2008).

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was part of a study investigating the impacts of and adaptation to our changing climate in Australia and China. This work is supported by the 2115 Talent Development Program of China Agricultural University (grant no. 1191-00109011), the Fundamental Research Funds for the Central Universities (grant no. 2022TC110), National Key R&D Program of China (grant no. 2020YFA0608004) and National Natural Science Foundation of China (grant no. 42088101).

Author information

Authors and Affiliations

Authors

Contributions

B.W., P.F. and Q.Y. designed the research. P.F. and D.L.L. collected climate and soil data. P.F. ran machine learning and crop models. P.F. drew the figures. P.F. and B.W. wrote the draft manuscript. I.M., A.S.T., N.J.A., J.-J.L, A.D.K., Y.C., Y.L., D.L.L., Q.Y. and K.H. contributed to writing the manuscript.

Corresponding authors

Correspondence to Puyu Feng, Bin Wang or Kelin Hu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Food thanks Weston Anderson and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1 and 2 and Supplementary Figs. 1–10.

Reporting Summary

Source data

Source Data Fig. 1

Numerical data used to generate Fig. 1.

Source Data Fig. 2

Numerical data used to generate Fig. 2.

Source Data Fig. 3

Numerical data used to generate Fig. 3.

Source Data Fig. 4

Numerical data used to generate Fig. 4.

Source Data Fig. 5

Numerical data used to generate Fig. 5.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, P., Wang, B., Macadam, I. et al. Increasing dominance of Indian Ocean variability impacts Australian wheat yields. Nat Food 3, 862–870 (2022). https://doi.org/10.1038/s43016-022-00613-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43016-022-00613-9

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene