Skip to main content
Log in

Influence of Mechanochemical and Sonochemical Methods of Preparation of TiO2/ZrO2 Composites on Photocatalytic Performance in Prometrine Decomposition

  • Published:
Theoretical and Experimental Chemistry Aims and scope

Nanosized TiO2/ZrO2=1:1 composites have been obtained by mechanochemical, ultrasonic, and coprecipitation methods. It is shown that mechanochemical and ultrasonic treatments of a TiO2 and ZrO2 mixture lead to size reduction of oxide particles, changes in X-ray diffraction spectra, the formation of a mesoporous structure of TiO2/ZrO2 samples, and an increase in their photocatalytic activity in the reaction of Gesagard (prometryn) herbicide destruction in an aqueous medium when compared to a mechanical TiO2 and ZrO2 mixture. It is found that the sample obtained by coprecipitation is X-ray amorphous with a well-developed surface, however, it is significantly inferior to samples obtained by alternative methods in terms of photoactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. A. K. Vasilevskaya and O. V. Almyasheva, Nanosystems: Physics, Chemistry, Mathematics, 3, No. 4, 75-81 (2012).

    Google Scholar 

  2. I. O. Marek, O. K. Ruban, V. P. Redko, et al., Zbirnyk Naukovykh Prats PAT “UkrNDI Vohnetryviv im. A. S. Berezhnoho”, 16, 86-92 (2016).

  3. H. Singh, Sunaina, K. K. Yadav, et al., Mater. Res. Bull., 123, 110698 (2020).

  4. L. Rimoldi, D. Meroni, E. Pargoletti, et al., Royal Soc. OpenSci., 6, No. 1, 181662 (2019).

    Article  CAS  Google Scholar 

  5. M. Krapchanska, R. Iordanova, Y. Dimitriev, and A. Bachvarova-Nedelcheva, J. Optoelectron. Adv. Mater., 12, No. 8, 1692-1695 (2010).

    CAS  Google Scholar 

  6. T. A. Khalyavka, S. V. Camyshan, N. N. Tsyba, and S. No. Shcherbakov, J. Nano- Electron. Phys., 8, No. 2, 2035-1-2035-6 (2016).

  7. U. Kuhn, N. Nattern, A. Gebert, and M. Kusy, J. Appl. Phys., 98, No. 5, 054307 (2005).

    Article  Google Scholar 

  8. A. Karolczuk, A. Carpinteri, G. Robak, et al., Arch. Civ. Mech. Eng., 20, No. 138, 1-13 (2020).

    Google Scholar 

  9. V. A. Zazhigalov, A. I. Kharlamov, L. Depero, et al., Theor. Exp. Chem., 36, 98-102 (2000).

    Article  CAS  Google Scholar 

  10. V. A. Zazhigalov, V. V. Sidorchuk, S. V. Khalameida, and L. S. Kuznetsova, Inorg. Mater., 44, 641-645 (2008).

    Article  CAS  Google Scholar 

  11. V. A. Zazhigalov, K. Wieczorek-Ciurowa, E. V. Sachuk, et al., Theor. Exp. Chem., 54, 225-234 (2018).

    Article  CAS  Google Scholar 

  12. V. A. Zazhigalov, O. V. Sachuk, O. A. Diyuk, et al., Nanochemistry, Biotechnology, Nanomaterials, and Their Applications, 214, 297-309 (2018).

    CAS  Google Scholar 

  13. V. A. Zazhigalov, O. A. Diyuk, O. V. Sachuk, et al., Nanochemistry, Biotechnology, Nanomaterials, and Their Applications, 221, 109-123 (2019).

  14. V. A. Zazhigalov, E. V. Sachuk, E. A. Diyuk, et al., Theor. Exp. Chem., 55, 215-221 (2019).

    Article  CAS  Google Scholar 

  15. P. Dulian, W. Bak, Cz. Kajtoch, and K. Wieczorek-Ciurowa, Acta Phys. Pol., 126, No. 4, 931-937 (2014).

  16. S. V. Gabelkov, R. V. Tarasov, N. S. Poltavtsev, et al., Questions of Atomic Science and Technology, No. 3, 116-120 (2004).

  17. P. Pulisova, J. Bohacek, J. Subrt, et al., J. Therm. Anal. Calorim., 101, 607-613 (2010).

    Article  CAS  Google Scholar 

  18. J. Erkelens, H. Th. Rijnten, and S. H. Eggink-Du Burck, Recl. Trav. Chim. Pays-Bas., 91, 1426-1432 (1972).

    Article  CAS  Google Scholar 

  19. A. V. Kostrikin, O. V. Kosenkova, R. V. Kuznetsova, et al., Questions of Modern Science and Practice. University Named after V. I. Vernadskyi, No. 2 (8), 181-186 (2007).

  20. A. I. Kryukov, A. L. Stroyuk, S. Ya. Kuchmiy, and V. D. Pokhodenko, Nanophotocatalysis, Academperiodika, Kyiv (2013).

  21. H. I. Yoo, C. R. Song, and D. K. Lee, J. Eur. Ceram. Soc., 24, 1259-1263 (2004).

    Article  CAS  Google Scholar 

  22. J. L. Giocondi and G. S. Rohrer, Top. Catal., 49, No. 1, 18-23 (2008).

    Article  CAS  Google Scholar 

  23. L. E. Brus, J. Chem. Phys., 79, 5566 (1983).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was performed with the financial support of the program of the National Academy of Sciences of Ukraine “New functional substances and materials for chemical production” (project No. 13/19-21) and the program for supporting young researchers (project No. 22-02/2020-21(2)) “Synthesis of selective catalysts for the production of pure hydrogen from ethanol at low temperatures”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Sachuk.

Additional information

Translated from Teoretychna ta Eksperymentalna Khimiya, Vol. 58, No. 3, pp. 171-178, May-June, 2022.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sachuk, O.V., Zazhigalov, V.A., Kiziun, O.V. et al. Influence of Mechanochemical and Sonochemical Methods of Preparation of TiO2/ZrO2 Composites on Photocatalytic Performance in Prometrine Decomposition. Theor Exp Chem 58, 190–197 (2022). https://doi.org/10.1007/s11237-022-09735-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11237-022-09735-4

Keywords

Navigation